[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6060711A - Manufacture of semiconductor film - Google Patents

Manufacture of semiconductor film

Info

Publication number
JPS6060711A
JPS6060711A JP58169792A JP16979283A JPS6060711A JP S6060711 A JPS6060711 A JP S6060711A JP 58169792 A JP58169792 A JP 58169792A JP 16979283 A JP16979283 A JP 16979283A JP S6060711 A JPS6060711 A JP S6060711A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor film
plasma
magnetic field
electromagnetic coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58169792A
Other languages
Japanese (ja)
Inventor
Takeo Fukatsu
深津 猛夫
Masaru Takeuchi
勝 武内
Kazuyuki Goto
一幸 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58169792A priority Critical patent/JPS6060711A/en
Publication of JPS6060711A publication Critical patent/JPS6060711A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain the semiconductor film having excellent electric characteristic by a method wherein an electromagnetic coil, with which a magnetic field will be formed, is wound around the substrate whereon a semiconductor film obtained by the plasma decomposition of reaction gas will be formed. CONSTITUTION:An electromagnetic coil 8, the winding direction of which is in parallel with the surface of a substrate 6, is provided in such a manner that it surrounds the substrate 6, a high frequency electrode 3 and an earthing electrode 4. When a DC current is applied to the coil 8, a magnetic field 9 is formed as shown by the broken lines in the diagram. When reaction gas is introduced into a reaction chamber 1 through the intermediary of an introducing hole 7 and plasma is excited by performing a high frequency glow discharge between electrodes 3 and 4, high speed charge particles perform a helical cyclotron movement along the magnetic field. The movement direction of the charged particles does not cross at right angle with the surface of the substrate 6 which is being formed by plasma decomposition, the number of collision with the surface of the substrate 6 is reduced remarkably, and the damage on the semiconductor film is also reduced.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は反応ガスのプラズマ分解によシ基板表面に半導
体膜全形成する半導体膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing a semiconductor film in which the entire semiconductor film is formed on the surface of a substrate by plasma decomposition of a reactive gas.

(ロ) 従来技術 シラン等の反応ガス雰囲気中でグロー放雷によりプラズ
マを励起し、斯るプラズマによって上記反応カスを分解
して得られたアモルファス41体膜を基板表面(F形成
する方法は特公昭56−67718号公報等に開示され
た如く既に矧らtている。
(b) Prior art A plasma is excited by glow lightning in an atmosphere of a reactive gas such as silane, and the amorphous 41 film obtained by decomposing the reaction residue is deposited on the substrate surface (the method of forming F is As disclosed in Japanese Publication No. 56-67718, etc., there have already been other methods.

4不 第1図は斯る従来知らねたアモルファス半へ膜の製造方
法を説明するための概念図であって、(1)は排気口(
2)を介して低真窒に保持された反応室、(3) +4
.1は該反応室+11内に於いて互いに対同配置せしめ
られた高周波電源(5)が連なる高周波電析及びアース
電極、(6)は斯る両電極+31 +4+の内アース電
極+41 ”側に配置されたステンレス或いは予めその
表面に透明#、雷膜が#着さ力、たガラス等の基板、+
71は反応室(1)円に反応ガスを導入する導入口であ
る。
4. Figure 1 is a conceptual diagram for explaining the previously unknown method of manufacturing an amorphous semi-film, in which (1) shows the exhaust port (
2) reaction chamber maintained in low nitrogen via (3) +4
.. 1 is a high-frequency electrodeposition and ground electrode connected to high-frequency power sources (5) arranged in parallel with each other in the reaction chamber +11, and (6) is arranged on the ground electrode +41'' side of both electrodes +31 and +4+. Substrates such as stainless steel or glass with transparent # or lightning film deposited on the surface in advance, +
Reference numeral 71 denotes an inlet for introducing a reaction gas into the reaction chamber (1).

斯る構成に於いて、反応室(1)内に上記導入口(7)
から例えばモノシラン(Sin、)等の反応ガスを導入
すると共に、図示していないヒーティング手段で基板(
6)を数100℃程度に保持し、高周波電源(5)によ
p両電倹f31 +41間に高周波グロー放雷によるブ
ラズマを励起させると、プラズマ中発生した高速荷電粒
子が反応ガスに衝突して該反応ガスを分解し、分解して
得られた活性種が基板]6)上のアモルファス半導体膜
の形成に寄与する。
In such a configuration, the above-mentioned inlet (7) is provided in the reaction chamber (1).
A reactive gas such as monosilane (Sin) is introduced from the substrate, and a heating means (not shown) is used to heat the substrate (
6) is maintained at a temperature of several hundred degrees Celsius, and a high-frequency power supply (5) excites plasma by high-frequency glow lightning between the p and p electric currents f31 +41. When plasma is excited by high-frequency glow lightning, the high-speed charged particles generated in the plasma collide with the reactant gas. The reactive gas is decomposed, and the active species obtained by the decomposition contribute to the formation of an amorphous semiconductor film on the substrate]6).

然し乍ら、この従来方法によると、基板(6)が冨周波
電極(3)及びアース電極(4)間に位置し、しかも該
基板(6)の表面は荷電粒子の移動方向とほぼ直交する
ために、プラズマ中の高速荷電粒子が基板(6)の表面
に衝突し、基板(6)や透明導電膜或いは形成されつつ
あるアモルファス半導体膜にダメージが与えられること
になり、該アモルファス半導体膜のeKi %的特性か
悪化する危惧を備えていた。
However, according to this conventional method, the substrate (6) is located between the high-frequency electrode (3) and the earth electrode (4), and the surface of the substrate (6) is almost perpendicular to the moving direction of the charged particles. , high-speed charged particles in the plasma collide with the surface of the substrate (6), damaging the substrate (6), the transparent conductive film, or the amorphous semiconductor film that is being formed, and the eKi% of the amorphous semiconductor film decreases. There was a risk that the characteristics of the patient would worsen.

一方、近年上記アモルファス学導体の内、シラン等のシ
リコン化合物を反応ガスとして得られるアモルファスシ
リコン系の半導体が、元エネルギを直接電気エネルギに
変換する光起電力装管、所謂太陽電池の半廓体濁料とし
て一躍脚光を浴びている。この光起電力装置を家庭用電
力源とする場合、斯る光起電力装置を直接屋根瓦に形成
するのが敷設箇所から云って最適である。
On the other hand, in recent years, among the above-mentioned amorphous conductors, amorphous silicon-based semiconductors obtained by using silicon compounds such as silane as a reaction gas have been used as photovoltaic devices that directly convert original energy into electrical energy, so-called half-circuits of solar cells. It is now in the spotlight as a pollutant. When using this photovoltaic device as a household power source, it is optimal to form such a photovoltaic device directly on a roof tile, considering the installation location.

然しζ1−屋根瓦の一般的形状は表面が波状を呈してお
り、第1図に示した従来方法によりアモルファスシリコ
ン系の半導体膜を、斯る曲面状表面に均一に形成するこ
とは、基板(6)の表面に於ける高周波電極(3)との
対向距離が不揃いとなりプラズマ状態が乱れるために困
難である。
However, the general shape of ζ1 roof tiles has a wavy surface, and it is difficult to uniformly form an amorphous silicon semiconductor film on such a curved surface by the conventional method shown in FIG. 6) is difficult because the facing distance from the high-frequency electrode (3) on the surface becomes uneven and the plasma state is disturbed.

(ハ)発明の目的 本発明の第1の目的に、反応ガスのプラズマ分MKより
雷ダ的特性の優fiた半導体膜の製造方法を提供するこ
とにあり、また耐2の目的は均一な半導体膜を基板の表
面に形成することにある0に)発明の構成 反応ガスのプラズマ分解により得られる半導体膜を基板
表面に形成する本発明半導体膜の製造方法は、上記基板
の周囲に磁場を形成する電磁コイルを巻回する構成にあ
り、オた上記電磁コイルの巻回方向は基板表面に沿って
平行に設けられている0 めの概念図であって′、同図に於いて第1図と同じもの
については同番号を付し説明を割愛する。即ち、本発明
の特徴に基板(6)、高周波電極(3)及びアースπτ
極(4)の周囲を包囲すべく、その巻回方向が上記基板
(6)の表面に沿って平行な電磁コイル(8)を設けた
古ころである。
(c) Purpose of the Invention The first object of the present invention is to provide a method for manufacturing a semiconductor film which has superior lightning characteristics than the plasma component MK of the reaction gas, and the second purpose is to provide a method for manufacturing a semiconductor film having superior lightning characteristics than the plasma component MK of the reaction gas. (0) Forming a semiconductor film on the surface of a substrate The method for producing a semiconductor film of the present invention, which forms a semiconductor film obtained by plasma decomposition of a constituent reaction gas on the surface of a substrate, involves applying a magnetic field around the substrate. The electromagnetic coil to be formed is wound in a configuration in which the winding direction of the electromagnetic coil is parallel to the surface of the substrate. Components that are the same as those in the figure are given the same numbers and explanations are omitted. That is, the features of the present invention include the substrate (6), the high frequency electrode (3), and the earth πτ.
In order to surround the pole (4), an electromagnetic coil (8) is provided, the winding direction of which is parallel to the surface of the substrate (6).

而[7て、電磁コイル(8)に直流電流を通電すると、
該コイル(8)は周回する上記電流によって図中破線で
示す如き磁場(9)を形成する。この状態に於いて、反
応室(1)内に反応ガス全導入口(7)を介して導入す
ると共に、高周波電極(3)及びアース電極(4)間に
高周波グロー放電によりプラズマを励起すると、該プラ
ズマ中の高4荷電粒子は、上記磁場によりその移動方向
が規制さ名、第6図に示す如く磁場(9)に沿って螺旋
状のサイクロトン運りをする。
[7] When direct current is applied to the electromagnetic coil (8),
The coil (8) forms a magnetic field (9) as shown by the broken line in the figure by the circulating current. In this state, when a reaction gas is introduced into the reaction chamber (1) through the entire inlet (7) and a plasma is excited by high-frequency glow discharge between the high-frequency electrode (3) and the earth electrode (4), The direction of movement of the highly charged particles in the plasma is regulated by the magnetic field, and as shown in FIG. 6, the highly charged particles in the plasma are transported in a spiral cycloton along the magnetic field (9).

この様に扁速荷電粒子力5電磁コイル(8)によって形
成さねた1111場に沿ってサイクロトン運動すると、
該荷電粒子の移動方向は当該プラズマ分解で以って形成
されつつある基板(6)の表面と直交するに至らず、従
って基板(6)表面との衝突回数が大幅に減小し、半導
体膜へのダメージが低減される。
In this way, when the cycloton moves along the 1111 field formed by the flattened charged particle force 5 electromagnetic coil (8),
The moving direction of the charged particles is not perpendicular to the surface of the substrate (6) that is being formed by the plasma decomposition, so the number of collisions with the surface of the substrate (6) is greatly reduced, and the semiconductor film damage to is reduced.

第4図は未発明の第2実帷例の概念図であって、基板(
6)が平板でになく屋根瓦の如くその表面が曲面状を呈
する場合に適用される。この実施例に於いて第1実施例
と異なるところは、高周波電極(3)及びアース電極(
4)が基板16)の曲面状表面に対応して同形状の曲面
状を呈すると共に、電磁コイル(8)の巻回方向が曲面
状表面に沿って蛇行している点圧ある。即ち、斯る構成
に於いて、高周波電極(3)及びアース電極(4)間の
高周波グロー放電を生起せしめプラズマを励起すると、
高速荷電粒子に電磁コイル(8)によるi場の規制を受
け、該コイル(8)の巻回方向に第5因に示すように蛇
行しな力3らサイクロトン運動をする。従って、高速荷
電粒子の移動方向が基板(6)の曲面状表面に沿うため
に、高周波電極(3)及びアース電極(4)間に励起さ
れたプラズマの状態は不揃いとならず、上記高速荷電粒
子が反応ガスと衝突して形成される活性種の分布も上記
基板(6)の曲面状表面に対して均一となる。
FIG. 4 is a conceptual diagram of an uninvented second practical example, in which the substrate (
6) is applied when the surface is not a flat plate but has a curved surface such as a roof tile. This embodiment differs from the first embodiment in the high frequency electrode (3) and the earth electrode (3).
4) exhibits the same curved shape corresponding to the curved surface of the substrate 16), and the winding direction of the electromagnetic coil (8) meanders along the curved surface. That is, in such a configuration, when a high frequency glow discharge is generated between the high frequency electrode (3) and the earth electrode (4) and plasma is excited,
The high-speed charged particles are regulated by the i-field by the electromagnetic coil (8), and undergo cycloton motion in the winding direction of the coil (8) due to the meandering force 3 as shown in the fifth factor. Therefore, since the moving direction of the high-speed charged particles follows the curved surface of the substrate (6), the state of the plasma excited between the high-frequency electrode (3) and the earth electrode (4) does not become uneven, and the high-speed charged particles The distribution of active species formed when the particles collide with the reactive gas also becomes uniform over the curved surface of the substrate (6).

例えば13.56MHz 、 10〜10 QWatt
の高周波出力で以ってガス圧0.1〜i Torrのシ
ランガスW囲i中ニ於いてアモルファスシリコンの半導
体膜を形成する場合、電磁コイル(8)のターン数及び
電流値は磁束密度が500〜20 OQ Gu日日程程
度磁5(9)を形成すべく設計される。
For example, 13.56MHz, 10~10 QWatt
When forming an amorphous silicon semiconductor film in a silane gas W at a gas pressure of 0.1 to i Torr with a high frequency output of ~20 OQ Gu days are designed to form a magnet 5 (9).

(へ) 発明の効果 未発明は以上の説明から明らかな如く、反応ガスのプラ
ズマ分解により得られる半導体膜が形成される基板の周
囲に磁場全形成する電磁コイルを巻回せしめたので、プ
ラズマ中を移動する高速荷電粒子は上記磁場によりその
移動方向が規制され、基板の半導体膜形成面との衝突回
数が大幅に減小し、形成さjつつある半導体膜へのダメ
ージが低減する結果、電気的特性の優れた半導体膜を製
造すること力5できる。更に磁場を形成する上記電磁コ
イル巻回方向を基板表面に沿って平行に配置することに
よって、基板表面から見たプラズマの励起状態を揃える
ことができ、均一性の高い半導体膜を形成することがで
きる。しかも斯る均一性の高い半導体膜を基板表面が曲
面状を呈する例えば屋根瓦の如き基板に対しても、上記
當硼コイルの巻回方間を基板の曲面状表面に沿って平行
、即ち蛇行せしめることによって容易に形成することが
でき、汎用外に富む。
(f) Effects of the Invention As is clear from the above explanation, the electromagnetic coil that forms the entire magnetic field is wound around the substrate on which the semiconductor film obtained by plasma decomposition of the reactant gas is formed. The direction of movement of the high-speed charged particles moving is regulated by the above magnetic field, and the number of collisions with the semiconductor film forming surface of the substrate is greatly reduced, reducing damage to the semiconductor film being formed. It is possible to manufacture semiconductor films with excellent physical properties. Furthermore, by arranging the winding direction of the electromagnetic coil that forms the magnetic field parallel to the substrate surface, the excited state of the plasma as seen from the substrate surface can be made uniform, and a highly uniform semiconductor film can be formed. can. Moreover, even when such a highly uniform semiconductor film is applied to a substrate having a curved surface, such as a roof tile, the winding direction of the coil is parallel to the curved surface of the substrate, that is, in a meandering manner. It can be easily formed by applying heat, and is versatile.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方法を説明するための概念図、第2図は大
発明方法の第1実権例を説明するための概念1昶、第6
内に第2(羽の実施例に於ける高速重粒子の運動を説明
するための概念図、第4図は大発明方法の第2笑施例を
説明するための概念図、第5図は第4図の実施例に於け
る高速荷電粒子の運動を説明するための概念図、を夫々
示している。 (1)・・・反応室、j31・・・高周波電極、(4)
・・・アース電極、(6)・・・基板、(8)・・・電
磁コイル、(9)・・・磁場。 第1図 第2図 第3図 第5図
Figure 1 is a conceptual diagram for explaining the conventional method, and Figure 2 is a conceptual diagram for explaining the first practical example of the great invention method.
Figure 4 is a conceptual diagram for explaining the motion of high-speed heavy particles in the second embodiment of the invention, Figure 4 is a conceptual diagram for explaining the second embodiment of the great invention method, and Figure 5 is a conceptual diagram for explaining the second embodiment of the great invention method. Conceptual diagrams for explaining the movement of high-speed charged particles in the example of Fig. 4 are shown. (1) Reaction chamber, j31... High frequency electrode, (4)
... Earth electrode, (6) ... Substrate, (8) ... Electromagnetic coil, (9) ... Magnetic field. Figure 1 Figure 2 Figure 3 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)反応ガス雰囲気中に設けられた基板表面に、上記
反応ガスのプラズマ分解により得られる半導体膜を形成
する半導体膜の製造方法であって、上記基板の周囲に磁
場を形成する電磁コイルが巻回されていることを特徴と
した半導体膜の製造方法。
(1) A method for manufacturing a semiconductor film, which comprises forming a semiconductor film obtained by plasma decomposition of the reaction gas on the surface of a substrate provided in a reaction gas atmosphere, the method comprising an electromagnetic coil that forms a magnetic field around the substrate. A method for manufacturing a semiconductor film, characterized in that it is wound.
(2)上記電磁コイルの巻回方間は基板表面に沿って平
行であることを特徴とする特許請求の範囲第1項記載の
半導体膜の製造方法。
(2) The method for manufacturing a semiconductor film according to claim 1, wherein the winding direction of the electromagnetic coil is parallel to the substrate surface.
(3)上記基板の表面は曲面状を呈すると共に、1上記
電磁コイルの巻回方間は曲面状表面に沿って蛇行してい
ること特徴とした特許請求の範囲第2項記載の半導体装
置の製造方法。
(3) The semiconductor device according to claim 2, wherein the surface of the substrate has a curved shape, and the winding direction of the first electromagnetic coil is meandering along the curved surface. Production method.
JP58169792A 1983-09-14 1983-09-14 Manufacture of semiconductor film Pending JPS6060711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58169792A JPS6060711A (en) 1983-09-14 1983-09-14 Manufacture of semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58169792A JPS6060711A (en) 1983-09-14 1983-09-14 Manufacture of semiconductor film

Publications (1)

Publication Number Publication Date
JPS6060711A true JPS6060711A (en) 1985-04-08

Family

ID=15892964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58169792A Pending JPS6060711A (en) 1983-09-14 1983-09-14 Manufacture of semiconductor film

Country Status (1)

Country Link
JP (1) JPS6060711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7445832B2 (en) 2000-12-25 2008-11-04 Ngk Insulators, Ltd. Ribboned polarization-maintaining fiber and manufacturing method therefor, and polarization-maintaining optical fiber array using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7445832B2 (en) 2000-12-25 2008-11-04 Ngk Insulators, Ltd. Ribboned polarization-maintaining fiber and manufacturing method therefor, and polarization-maintaining optical fiber array using the same

Similar Documents

Publication Publication Date Title
KR910003170B1 (en) Semiconductor device manufacturing method
JP2009545165A (en) Method and system for manufacturing polycrystalline silicon and silicon-germanium solar cells
EP0708688A4 (en) Method for the improved microwave deposition of thin films
JPS60206018A (en) Manufacture of semiconductor
US4760008A (en) Electrophotographic photosensitive members and methods for manufacturing the same using microwave radiation in magnetic field
JP2005005280A (en) Method for passivating semiconductor substrate
US20100178435A1 (en) Methods and systems for manufacturing polycrystalline silicon and silicon-germanium solar cells
JP2989279B2 (en) Plasma CVD equipment
JP3327391B2 (en) Thin film manufacturing apparatus and manufacturing method
WO2007060876A1 (en) Plasma processing apparatus and plasma processing method
AU726151B2 (en) Plasma CVD apparatus
JPS6060711A (en) Manufacture of semiconductor film
US20100263797A1 (en) Plasma processing apparatus
JP3486590B2 (en) Deposition film forming equipment
CN101964301A (en) Plasma filter screen device, plasma screening method and plasma equipment thereof
CN101617409A (en) Make the method and system of polysilicon and silicon-germanium solar cells
JPH0142125B2 (en)
EP0140130B1 (en) Process and apparatus for preparing semiconductor layer
JPH0420985B2 (en)
JP2001291882A (en) Method of manufacturing thin film
JP3095565B2 (en) Plasma chemical vapor deposition equipment
JPS63142627A (en) Manufacture of semiconductor thin film
JP2662688B2 (en) Coating method
JPH01111319A (en) Manufacture of semiconductor thin film
JPH03146673A (en) Method and device for depositing thin film