JPS6060424A - Catalytic combustion apparatus - Google Patents
Catalytic combustion apparatusInfo
- Publication number
- JPS6060424A JPS6060424A JP58166473A JP16647383A JPS6060424A JP S6060424 A JPS6060424 A JP S6060424A JP 58166473 A JP58166473 A JP 58166473A JP 16647383 A JP16647383 A JP 16647383A JP S6060424 A JPS6060424 A JP S6060424A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- combustor
- temperature
- combustion
- catalytic combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007084 catalytic combustion reaction Methods 0.000 title claims abstract description 10
- 239000003054 catalyst Substances 0.000 claims abstract description 57
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000010970 precious metal Substances 0.000 claims abstract description 5
- 230000003197 catalytic effect Effects 0.000 claims description 9
- 239000011247 coating layer Substances 0.000 claims description 9
- 229910000510 noble metal Inorganic materials 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052763 palladium Inorganic materials 0.000 abstract description 3
- 229910052681 coesite Inorganic materials 0.000 abstract description 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract description 2
- 229910052697 platinum Inorganic materials 0.000 abstract description 2
- 239000000377 silicon dioxide Substances 0.000 abstract description 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 2
- 229910052682 stishovite Inorganic materials 0.000 abstract description 2
- 229910052905 tridymite Inorganic materials 0.000 abstract description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 238000002485 combustion reaction Methods 0.000 description 19
- 239000000446 fuel Substances 0.000 description 13
- 239000007789 gas Substances 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- BYFGZMCJNACEKR-UHFFFAOYSA-N aluminium(i) oxide Chemical compound [Al]O[Al] BYFGZMCJNACEKR-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、ガスタービン燃焼器に関して、更に詳しくは
燃焼時に発生する窒素酸化物(以下NOxと称す)の量
が少なく、且つ、良好な燃焼効率を有する触媒燃焼方式
のガスタービン触媒燃焼器に関する。Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a gas turbine combustor, and more specifically, the present invention relates to a gas turbine combustor, and more specifically, a gas turbine combustor that has a small amount of nitrogen oxides (hereinafter referred to as NOx) generated during combustion and has good combustion efficiency. The present invention relates to a gas turbine catalytic combustor using a catalytic combustion method.
近年、石油資源等の枯渇化に伴い、エネルギー資源を効
率的に使用するため、例えば、ガスタービン等において
は、できるだけ高温において燃料を燃焼させることが望
まれている。In recent years, with the depletion of petroleum resources and the like, in order to use energy resources efficiently, for example, in gas turbines and the like, it is desired to burn fuel at as high a temperature as possible.
しかしながら、従来は、燃料と空気の混合物をスパーク
プラグ等を用いて着火して気相燃焼せしめる方法である
ため、燃焼器内において、部分的に200υ℃を超える
高温部が存在する。そして、この高温部において、窒素
酸化後(NOx)が多量に生成し環境汚染等の問題を生
ずることが知られている。However, in the conventional method, a mixture of fuel and air is ignited using a spark plug or the like to cause vapor phase combustion, and therefore, there are parts of the combustor that have a high temperature of over 200 υ°C. It is known that a large amount of nitrogen oxidation (NOx) is generated in this high temperature section, causing problems such as environmental pollution.
このような問題を解消するために、触媒を用いて燃料と
空気の混合物を燃焼せしめる触媒燃焼方式が提案されて
いる。この燃焼方式によれば、均一な燃焼が可能であシ
、且つ、NOxが生成しない上限温度である1500℃
程度まで、燃焼温度を高めることができる。In order to solve these problems, a catalytic combustion method has been proposed in which a mixture of fuel and air is combusted using a catalyst. According to this combustion method, uniform combustion is possible and the upper temperature limit at which NOx is generated is 1500°C.
The combustion temperature can be increased to a certain degree.
しかし、前記した触媒燃焼方式をガスタービンに適用す
る場合には、その燃焼触媒に相反する二つの特性、即ち
、低温着火性及び耐熱性が要求される。現在実用されて
いるガスタービンにおいて、燃焼用空気は300℃程度
に予熱された後、圧縮送風機で燃焼器に導入されている
。そして、火炎燃焼した混合気は1200℃程度に冷却
された後タービン内へ送入される。従って、ガスタービ
ン燃焼器内に燃焼用触媒充填部を設置した場合、該燃焼
触媒には300℃程度の温度で燃料用ガスを着火させる
と共に、燃焼ガスによる1200℃程度の温度に耐える
ことが要求されることになる。However, when the above-mentioned catalytic combustion method is applied to a gas turbine, the combustion catalyst is required to have two contradictory characteristics, namely, low-temperature ignitability and heat resistance. In gas turbines currently in use, combustion air is preheated to about 300° C. and then introduced into the combustor using a compressor blower. The flame-combusted air-fuel mixture is then cooled to about 1200° C. and then sent into the turbine. Therefore, when a combustion catalyst filling part is installed in a gas turbine combustor, the combustion catalyst is required to ignite the fuel gas at a temperature of about 300°C and to withstand a temperature of about 1200°C caused by the combustion gas. will be done.
上記したガスタービン用燃焼触媒としては、白金(Pt
)系あるいはパラジウム(Pd )系あるいはそれら
の合金系等の貴金属系触媒を使用するととが考えられる
。かかる貴金属系触媒としては、例えば第1図に示した
ように、一定の機械的強度を有する面l熱性J1.!体
1上に、活性担体としてのγ−アルミナ(γ−A、72
0s )被覆層2を設け、浸漬法等により貴金属触媒3
を担持せしめたもの等が知られている。As the combustion catalyst for gas turbines described above, platinum (Pt
) type catalyst, palladium (Pd) type catalyst, or a noble metal type catalyst such as an alloy type catalyst thereof. As such a noble metal catalyst, for example, as shown in FIG. 1, a surface-thermal J1. ! γ-alumina (γ-A, 72
0s) A coating layer 2 is provided, and a noble metal catalyst 3 is coated using a dipping method or the like.
There are known products that carry .
これらの触媒を用いた触媒燃焼器の概念図を第2図に示
した。第1図において、1次燃焼用燃料ノズル4から噴
出された燃料が燃焼した後、2次燃料用ノズル5からの
燃料と燃焼空気7とが混合されて、触媒9において触媒
燃焼が起り、タービルノズル8からタービン内へ噴射さ
れる。このような燃焼器における問題点は前述したよう
に触媒の低温での着火性能と耐熱性であるが、現在のと
ころを充分に満足するものは得られていない。A conceptual diagram of a catalytic combustor using these catalysts is shown in FIG. In FIG. 1, after the fuel injected from the primary combustion fuel nozzle 4 is combusted, the fuel from the secondary fuel nozzle 5 and combustion air 7 are mixed, catalytic combustion occurs in the catalyst 9, and the It is injected into the turbine from the bill nozzle 8. As mentioned above, the problem with such a combustor is the low-temperature ignition performance and heat resistance of the catalyst, but at present no one has been obtained that fully satisfies these requirements.
本発明の目的は、低温での着火性が優れた触媒と高温で
の耐久性が優れた触媒を組み合せた高性能なガスタービ
ン触媒燃焼器を提供することにある。An object of the present invention is to provide a high-performance gas turbine catalytic combustor that combines a catalyst with excellent ignitability at low temperatures and a catalyst with excellent durability at high temperatures.
本発明者らは、触媒燃焼用の触媒について鋭意研究を重
ねた結果、天然ガスを燃料とした時低温での着火特性が
一番優れているのは、ハニカム構造体上にγ−アルミナ
の被覆層を設け、Pdを主成分とした貴金属を担持した
ものであることが明らかとなった。これらの触媒は耐熱
性が低いため、従来Oeなどの希土類の酸化物を添加し
耐熱性を向上していた。我々はこれらの触媒の改良を重
ねた結果、800〜1000℃で用いるならばOeなど
の酸化物の添加は耐久性に問題があることがわかった。As a result of extensive research into catalysts for catalytic combustion, the present inventors found that the one with the best ignition characteristics at low temperatures when using natural gas as fuel is a coating of γ-alumina on a honeycomb structure. It has become clear that a layer is provided to support a noble metal mainly composed of Pd. Since these catalysts have low heat resistance, conventionally, rare earth oxides such as Oe have been added to improve heat resistance. As a result of repeated improvements to these catalysts, we have found that the addition of oxides such as Oe poses a problem in durability when used at temperatures of 800 to 1000°C.
これはOeなどは1000℃程度の高温になると、Pd
なとの貴金属と結合し、Pdの触媒活性が低下してしま
うものと考えられた。そこで我々はOeの替りにPd等
の反応性が低いLa 、Ndが好しいことを見い出し、
その他の希土類の添加は好しくないことを見い出した。This is because when Oe etc. reach a high temperature of about 1000℃, Pd
It was thought that the catalytic activity of Pd was reduced by bonding with other noble metals. Therefore, we found that La and Nd, which have low reactivity such as Pd, are preferable instead of Oe.
It has been found that addition of other rare earth elements is not preferable.
また、被覆層に用いるアルミナにおいても、5I02が
含まれていると高温で貴金属と結合し、同様に活性が低
下することがわかった。そこで我々は、被覆層に実質的
にSin、を含まないアルミナを主成分とし、Laある
いは〉りN dを添加したものを用いで、Pdを主体と
する筒金用を相持した触媒を試作したところ低温での着
火性及び耐久性も優れていることが明らかとなった。Furthermore, it has been found that if 5I02 is contained in alumina used for the coating layer, it will bond with noble metals at high temperatures, resulting in a similar decrease in activity. Therefore, we prototyped a catalyst whose main component was alumina containing virtually no Sin in the coating layer, with the addition of La or Nd, as well as a cylindrical metal layer mainly composed of Pd. It has also become clear that it has excellent ignitability and durability at low temperatures.
しかし、この触媒だけを用いて燃焼器を構成してもメタ
ンを完全燃焼させることは困か体であった。However, even if a combustor was constructed using only this catalyst, it was difficult to completely burn methane.
また、プロパンなどの燃焼し易い燃料を用いた場合は初
期には完全燃焼可能であ−たが、触媒の温度が後半部で
は1000℃以上になるため、後半部の劣化が激しく実
用的でなかった。これは、1000℃以上の高温では、
触媒の被覆層が劣化してしまうためである。In addition, when using easily combustible fuel such as propane, complete combustion was possible in the initial stage, but since the temperature of the catalyst rose to over 1000°C in the latter half, deterioration in the latter half was severe, making it impractical. Ta. This means that at high temperatures of 1000℃ or higher,
This is because the catalyst coating layer deteriorates.
そこで、より面j熱性が高い安定な触媒、すなわち触媒
燃焼器の後段の触媒について、さらに梓討した結果、高
温スチームリ7オーミング用に開発された触媒をさらに
改良することによって目的を達した。すなわち、OaO
,A403.NiOがらなり、S i O2が05チ以
下である触媒をハニカム構造に形成し、Pt、Pdなど
の貴金属を担持することにょシ、高温(100(1〜1
200C)での高活性と安定性が優れている乃虫媒を得
ることが出来た。この触媒はPt?cどの貴金属を添加
しかい場合は高温での物質的安定性は高いが、活性は充
分でないが、Ptを少量添加することによって高活が数
段高まった。Therefore, as a result of further research into a stable catalyst with higher surface thermal properties, that is, a catalyst in the latter stage of the catalytic combustor, we achieved our goal by further improving the catalyst developed for high-temperature steam refueling. That is, OaO
, A403. A catalyst consisting of NiO and SiO2 of less than 0.05 cm is formed into a honeycomb structure, and a high temperature (100 (1 to 1
We were able to obtain a insect pollutant with high activity and excellent stability at 200C. Is this catalyst Pt? When any precious metal is added, the material stability at high temperatures is high, but the activity is not sufficient, but by adding a small amount of Pt, the activity is increased several times.
この触媒はハニカム構造体自身が触媒作用をもつOaO
、A1203 、 N iOの混合焼結外であυ、従来
のγ−アルミナの被覆層を有していないため、これの劣
化による活性低下がない。This catalyst is OaO in which the honeycomb structure itself has a catalytic effect.
, A1203, and NiO, and does not have the conventional γ-alumina coating layer, so there is no reduction in activity due to deterioration of this.
ここで、本発明の実施例によって詳細に説明する。Here, the present invention will be explained in detail by way of examples.
3種類(A、H,O)の触媒を試作した。触媒Aは1句
系触媒であるが被覆層中にCeを含み、かつ5i02が
被覆層のアルミナ中に2%含まれている。触媒Bは本発
明に用いられる触媒であり、Pd系触媒であるがCeの
替シにLaを用い、被覆層中の5in2は05%以下と
したものである。触媒0は、本発明に用いられるCaO
,Al2O,、NiOからなり、5i02が05%以下
でPtが1%担持されているものである。実験1は触媒
Aを10crn充填した燃焼器を用いて、実験2は触媒
Bを10儒充填した燃焼器を用いて、実験3は前段に触
媒Aを5α、後段に触媒Cを5crn充填した燃焼器を
用いて、実験4は前段に触媒Bを5−1後段に触媒Cを
5ぼ充填した本発明の場合の燃焼器を用いて行なった。Three types of catalysts (A, H, O) were prototyped. Catalyst A is a single catalyst, but contains Ce in the coating layer, and 2% of 5i02 is contained in the alumina of the coating layer. Catalyst B is a catalyst used in the present invention, and is a Pd-based catalyst, but La is used instead of Ce, and 5in2 in the coating layer is 0.05% or less. Catalyst 0 is CaO used in the present invention
, Al2O, and NiO, with 0.5% or less of 5i02 and 1% of Pt supported. Experiment 1 used a combustor filled with 10 crn of catalyst A, Experiment 2 used a combustor filled with 10 crn of catalyst B, and Experiment 3 used a combustor filled with 5 crn of catalyst A in the front stage and 5 crn of catalyst C in the latter stage. Experiment 4 was conducted using a combustor according to the present invention in which 5 parts of catalyst B were filled in the front stage and 5 parts of catalyst C were packed in the latter stage.
燃焼器は実検用の25闘〆の小型装置を用い、流速は2
0シ懺、触媒入口ガス温度は450℃とした。燃料は天
然ガス(メタン主成分)とした。天然ガスは空気に対し
て3チ混合した。実験毎の燃焼効率の経時変化を第3図
に示した。第3図においてaは実験1の、bは実験2の
、Cは実験3の、dは実験4の結果である。第3図のよ
うに実験1,2の場合は初期から燃焼効率は悪く、実験
3の場合は初期の燃焼効率は良いが経時変化とともに効
率は低下した。実験4の場合は長期にわたって安定な燃
焼効率を示した。The combustor uses a small device of 25 mm for actual inspection, and the flow rate is 2.
The catalyst inlet gas temperature was 450°C. The fuel was natural gas (mainly methane). Natural gas was mixed with 3 parts of air. Figure 3 shows the change in combustion efficiency over time for each experiment. In FIG. 3, a is the result of experiment 1, b is the result of experiment 2, C is the result of experiment 3, and d is the result of experiment 4. As shown in FIG. 3, in Experiments 1 and 2, the combustion efficiency was poor from the beginning, and in Experiment 3, although the initial combustion efficiency was good, the efficiency decreased with time. Experiment 4 showed stable combustion efficiency over a long period of time.
この事から、本発明の触媒燃焼器は従来のものと比較し
て佛−れていることがわかる。This shows that the catalytic combustor of the present invention is superior to the conventional one.
本発明のガスタービン用触媒燃焼器は、従来のものに比
べて、低温着火性を保持しながら、その耐久性が大幅に
向上したものである。従って、エネルギーの節約及び効
率的利用が可能であり、又NOx等を発生させることな
く燃焼が可能であるため、環境汚染等の問題をひき起こ
すことがないものである。The catalytic combustor for gas turbines of the present invention maintains low-temperature ignitability and has significantly improved durability compared to conventional ones. Therefore, it is possible to save and use energy efficiently, and since it is possible to burn it without generating NOx or the like, it does not cause problems such as environmental pollution.
第1図は従来の貴金属系燃焼触媒の構造を示す模式比1
であり、第2図は触媒燃焼力式のガスタービン燃焼器の
概念図であり、第3図は本発明燃焼器(d)と従来例の
燃焼器(a−c)との比較を示す説明図である。
トハニカム構造体、2・・被援層、3・・・貴金属触媒
粒子、4・1次燃料ノズル、5・2次燃料ノズル、6・
・点火器、7・・・燃焼用空気、8・・・ノズル、9・
・ハニカム構造触媒。Figure 1 is a schematic diagram showing the structure of a conventional noble metal combustion catalyst.
FIG. 2 is a conceptual diagram of a catalytic combustion type gas turbine combustor, and FIG. 3 is an explanation showing a comparison between the combustor of the present invention (d) and a conventional combustor (ac). It is a diagram. Honeycomb structure, 2. Assisted layer, 3. Precious metal catalyst particles, 4. Primary fuel nozzle, 5. Secondary fuel nozzle, 6.
・Igniter, 7... Combustion air, 8... Nozzle, 9.
・Honeycomb structure catalyst.
Claims (1)
るにあたシ、触媒充填部を2段に構成し、前段には少な
くともPdを含む貴金属触媒を充填し、後段にはOaO
,A40.、、NiOを主成分とする触媒に貴金属を添
加した触媒を用いることを特徴と媒の被覆層がAl!0
1を主成分としてS i 02が05以下で、かつLa
、Ndのうちすくなくとも1種類が、Ni075(10
%以上、A)、0. d: 2 I) 〜70%、ca
。 が20〜60f)でかつ5iO1が0.5%以下である
ハニカム構造体に、Pd−Ptなとの貴金属を0.1〜
3チ好しくけ0.1〜1%担持した触媒であることを特
徴とする触媒燃焼器。(1) When using the catalytic combustion method in the combustor of a gas turbine, the catalyst filling section is configured in two stages, the first stage is filled with a noble metal catalyst containing at least Pd, and the second stage is filled with OaO
, A40. ,, It is characterized by using a catalyst containing NiO as a main component with the addition of noble metals, and the coating layer of the medium is Al! 0
1 as the main component, S i 02 is 05 or less, and La
, at least one type of Nd is Ni075 (10
% or more, A), 0. d: 2 I) ~70%, ca
. is 20 to 60f) and 5iO1 is 0.5% or less, and precious metals such as Pd-Pt are added to the honeycomb structure in the amount of 0.1 to
A catalytic combustor characterized in that the catalyst is supported by 0.1 to 1% of the three catalysts.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58166473A JPS6060424A (en) | 1983-09-12 | 1983-09-12 | Catalytic combustion apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58166473A JPS6060424A (en) | 1983-09-12 | 1983-09-12 | Catalytic combustion apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6060424A true JPS6060424A (en) | 1985-04-08 |
Family
ID=15832045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58166473A Pending JPS6060424A (en) | 1983-09-12 | 1983-09-12 | Catalytic combustion apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6060424A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5248251A (en) * | 1990-11-26 | 1993-09-28 | Catalytica, Inc. | Graded palladium-containing partial combustion catalyst and a process for using it |
US5250489A (en) * | 1990-11-26 | 1993-10-05 | Catalytica, Inc. | Catalyst structure having integral heat exchange |
US5258349A (en) * | 1990-11-26 | 1993-11-02 | Catalytica, Inc. | Graded palladium-containing partial combustion catalyst |
US5259754A (en) * | 1990-11-26 | 1993-11-09 | Catalytica, Inc. | Partial combustion catalyst of palladium on a zirconia support and a process for using it |
US5281128A (en) * | 1990-11-26 | 1994-01-25 | Catalytica, Inc. | Multistage process for combusting fuel mixtures |
US5425632A (en) * | 1990-11-26 | 1995-06-20 | Catalytica, Inc. | Process for burning combustible mixtures |
US5511972A (en) * | 1990-11-26 | 1996-04-30 | Catalytica, Inc. | Catalyst structure for use in a partial combustion process |
CN114618517A (en) * | 2020-12-10 | 2022-06-14 | 中国科学院大连化学物理研究所 | Metal honeycomb combustion catalyst with integral structure, preparation method and application |
-
1983
- 1983-09-12 JP JP58166473A patent/JPS6060424A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5248251A (en) * | 1990-11-26 | 1993-09-28 | Catalytica, Inc. | Graded palladium-containing partial combustion catalyst and a process for using it |
US5250489A (en) * | 1990-11-26 | 1993-10-05 | Catalytica, Inc. | Catalyst structure having integral heat exchange |
US5258349A (en) * | 1990-11-26 | 1993-11-02 | Catalytica, Inc. | Graded palladium-containing partial combustion catalyst |
US5259754A (en) * | 1990-11-26 | 1993-11-09 | Catalytica, Inc. | Partial combustion catalyst of palladium on a zirconia support and a process for using it |
US5281128A (en) * | 1990-11-26 | 1994-01-25 | Catalytica, Inc. | Multistage process for combusting fuel mixtures |
US5405260A (en) * | 1990-11-26 | 1995-04-11 | Catalytica, Inc. | Partial combustion catalyst of palladium on a zirconia support and a process for using it |
US5425632A (en) * | 1990-11-26 | 1995-06-20 | Catalytica, Inc. | Process for burning combustible mixtures |
US5511972A (en) * | 1990-11-26 | 1996-04-30 | Catalytica, Inc. | Catalyst structure for use in a partial combustion process |
CN114618517A (en) * | 2020-12-10 | 2022-06-14 | 中国科学院大连化学物理研究所 | Metal honeycomb combustion catalyst with integral structure, preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0153579B2 (en) | ||
JPS6066022A (en) | Combustion in gas turbine | |
JPS6060424A (en) | Catalytic combustion apparatus | |
JPS5941706A (en) | Combustion catalyst system for methane fuel | |
JPS61252408A (en) | Method of igniting methane fuel | |
JPS60196511A (en) | Catalyst system for combustion and burning method used in said system | |
JPS61180818A (en) | Hot air generation by catalytic burning | |
JPS6279847A (en) | Catalyst system for combustion of lower hydrocarbon fuel and combustion method using said system | |
JPS61237905A (en) | Combustion method of methane fuel by contact combustion catalyst system | |
JPS6352283B2 (en) | ||
JPS61235609A (en) | Combustion method for methane fuel in catalyst system | |
JPH0156325B2 (en) | ||
JPS61252409A (en) | Method of igniting methane fuel | |
JPS59180220A (en) | Gas turbine combustor | |
JPS62216642A (en) | Catalytic material for gas turbine combustor | |
JPS60122807A (en) | Low nitrogene oxide combustion | |
JP2001227330A (en) | Engine system | |
JPH0156327B2 (en) | ||
JPS61171870A (en) | Internal-combustion engine utilized reforming natural gas | |
JPS6280419A (en) | Combustion catalyst system for low class hydro-carbon fuel and combustion method of using this system | |
JPH0156330B2 (en) | ||
JP2672510B2 (en) | Catalytic combustion type gas turbine combustor | |
JPS62149346A (en) | Catalyst for combustion | |
JPH0419449B2 (en) | ||
JPS59170622A (en) | Combustor for gas turbine |