[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6059891B2 - Method for separating methacrolein and methacrylic acid - Google Patents

Method for separating methacrolein and methacrylic acid

Info

Publication number
JPS6059891B2
JPS6059891B2 JP11704077A JP11704077A JPS6059891B2 JP S6059891 B2 JPS6059891 B2 JP S6059891B2 JP 11704077 A JP11704077 A JP 11704077A JP 11704077 A JP11704077 A JP 11704077A JP S6059891 B2 JPS6059891 B2 JP S6059891B2
Authority
JP
Japan
Prior art keywords
methacrolein
methacrylic acid
tower
gas
reaction mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11704077A
Other languages
Japanese (ja)
Other versions
JPS5452027A (en
Inventor
徹也 大類
迪夫 加藤
政美 綾野
昌明 岩佐
恒次郎 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP11704077A priority Critical patent/JPS6059891B2/en
Priority to NL7809746A priority patent/NL7809746A/en
Priority to FR7827689A priority patent/FR2404619A1/en
Priority to DE19782842092 priority patent/DE2842092A1/en
Priority to GB7838561A priority patent/GB2004886B/en
Publication of JPS5452027A publication Critical patent/JPS5452027A/en
Publication of JPS6059891B2 publication Critical patent/JPS6059891B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/783Separation; Purification; Stabilisation; Use of additives by gas-liquid treatment, e.g. by gas-liquid absorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/48Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はメタクロレインおよび/または反応条件下で
メタクロレインを生成する化合物と分子状酸素を酸化触
媒の存在下で気相酸化してメタクリル酸を製造する際、
メタクリル酸およびメタクロレインを効率良く分離回収
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing methacrylic acid by gas-phase oxidation of methacrolein and/or a compound that produces methacrolein under reaction conditions and molecular oxygen in the presence of an oxidation catalyst.
The present invention relates to a method for efficiently separating and recovering methacrylic acid and methacrolein.

ここで、反応条件下でメタクロレインを生成する化合物
とは、たとえばイソブチレンまたはを−ブタノール等の
ことで、以後イソブチレン等と略称する。 イソブチレ
ン等または/およびメタクロレインを水蒸気、分子状酸
素(多くは空気)とともに酸化触媒存在下において気相
酸化させると、目的物であるメタクリル酸の他に、酢酸
、一酸化炭素、二酸化炭素、未反応イソブチレン等およ
び/または未反応メタクロレイン、酸素、窒素などを含
有するガス状反応混合物が得られる。
Here, the compound that produces methacrolein under reaction conditions is, for example, isobutylene or -butanol, and will be abbreviated as isobutylene etc. hereinafter. When isobutylene, etc. and/or methacrolein is oxidized in the gas phase with water vapor and molecular oxygen (mostly air) in the presence of an oxidation catalyst, in addition to the target methacrylic acid, acetic acid, carbon monoxide, carbon dioxide, and A gaseous reaction mixture containing reacted isobutylene, etc. and/or unreacted methacrolein, oxygen, nitrogen, etc. is obtained.

これら反応混合物から目的物のメタクリル酸のみならず
メタクロレインを効率良く分離回収することが必要であ
る。イソブチレン等または/およびメタクロレインから
メタクリル酸への工業用酸化触媒の開発が数多く行われ
ているが、その触媒性能は工業的にまだ十分に満足なも
のでなく、特にメタクロレインの低転化率を与える反応
条件下ではメタクリル酸選択率が高くとも、メタクロレ
インの高転化率を与える反応条件下てはメタクリル酸選
択率が著しく低下する性能の触媒が大部分てある現状で
は、メタクロレインの転化率を比較的低くして未反応メ
タクロレインをメタクリル酸水溶液から有効に分離回収
し、酸化反応器へ循環する技術を開発することが、イソ
ブチレン等または/およびメタクロレインの気相酸化法
によるメタクリル酸の製造法が工業的製法として成立す
るか否かを決める重要な要因となる。この様なガス状反
応混合物からメタクロレインーを分離する方法として、
例えは特開昭50−111017号公報にはメタクロレ
インの分離回収に関する方法がある。
It is necessary to efficiently separate and recover not only the target methacrylic acid but also methacrolein from these reaction mixtures. Many industrial oxidation catalysts for isobutylene, etc. and/or methacrolein to methacrylic acid have been developed, but their catalytic performance is still not industrially satisfactory, especially for low conversion rates of methacrolein. Currently, there are most catalysts that have a high methacrylic acid selectivity under the given reaction conditions, but the methacrylic acid selectivity drops significantly under the reaction conditions that give a high conversion rate of methacrolein. Developing a technology to effectively separate and recover unreacted methacrolein from an aqueous methacrylic acid solution and circulate it to an oxidation reactor with a relatively low This is an important factor that determines whether a manufacturing method can be established as an industrial manufacturing method or not. As a method for separating methacrolein from such a gaseous reaction mixture,
For example, JP-A-50-111017 discloses a method for separating and recovering methacrolein.

その概要はメタクロレイン1モルに対し50〜500モ
ルの水によりメタクロレイン含有混合ガスを吸収し、メ
タクロレイン水溶液として回!収した後、蒸留またはス
トリツピングを適用してメタクロレインを分離する方法
てある。この方法はガス状反応混合物からメタクロレイ
ンを吸収分離する場合に、メタクロレインの吸収を高圧
下又は深冷下で行うか、多量の水を使用す;るか、又は
極端に段数の多い吸収塔を用いなければならなくなる。
The outline is that a methacrolein-containing mixed gas is absorbed by 50 to 500 moles of water per mole of methacrolein, and then converted into an aqueous solution of methacrolein. There is a method of separating methacrolein by applying distillation or stripping after it is collected. In this method, when methacrolein is absorbed and separated from a gaseous reaction mixture, the absorption of methacrolein is carried out under high pressure or deep cooling, a large amount of water is used, or an absorption tower with an extremely large number of plates is used. will have to be used.

何故ならメタクロレインの水に対する溶解度(6.1重
量%、25℃)は小さく、水への吸収は極めて困難だか
らである。多量の水をメタクロレインの吸収溶媒として
用いるとメタク1ロレイン吸収塔のみならす、吸収塔に
続くメタクロレイン蒸留塔やストリツピング塔を徒らに
大きくすることになる。高圧下でメタクロレインの吸収
を行うことは、メタクロレイン吸収塔以前の反応器等す
べての機器の操作圧力をメタクロレイン吸収塔の操作圧
力を高くした分たけ昇圧することになり、各機器の耐圧
、安全性および経済性の面で多大の困難を伴うことにな
る。また、深冷下または段数の多い吸収塔を用いるのは
経済性の面から不利である。従つて水の様にメタクロレ
インの溶解度の小さい吸収溶媒を用いることは明らかに
工業的製法として得策とは言えない。この様にメタクロ
レインの水への溶解度が小さノいことから、特開昭49
−92007号の様に水の代りにアルコール類をメタク
ロレインの吸収溶媒として用いることが提案されている
が、これ等の溶媒がメタクロレインの吸収溶媒として有
効であつても、分離回収した後のメタクロレインはメタ
クロレインの酸化反応工程へ循環して使用する場合、回
収メタクロレインと共に微量ではあつてもこれ等有機溶
媒が酸化反応工程へ循環されることになり、酸化工程の
該有機溶媒による触媒被毒、酸化反応の阻害、該有機溶
媒蒸気の混入による爆発等の異常反応の危険性などが併
起するため、メタクロレインの吸収性能が良いと言う理
由だけで有機溶媒をメタクロレインの吸収溶媒として使
用することは必ずしも望ましいことではない。
This is because methacrolein has a low solubility in water (6.1% by weight, 25°C) and is extremely difficult to absorb into water. If a large amount of water is used as an absorption solvent for methacrolein, not only the methacrolein absorption tower but also the methacrolein distillation tower and stripping tower following the absorption tower will be unnecessarily large. Absorbing methacrolein under high pressure means increasing the operating pressure of all equipment, including the reactor, before the methacrolein absorption tower by the same amount as the operating pressure of the methacrolein absorption tower. , it would be accompanied by great difficulties in terms of safety and economy. Furthermore, it is disadvantageous from an economic point of view to use deep cooling or an absorption tower with a large number of stages. Therefore, the use of an absorption solvent in which methacrolein has a low solubility, such as water, is clearly not a good idea as an industrial production method. Because of the low solubility of methacrolein in water, it was discovered that
-92007, it has been proposed to use alcohols instead of water as absorption solvents for methacrolein, but even if these solvents are effective as absorption solvents for methacrolein, the When methacrolein is recycled to the methacrolein oxidation reaction process, organic solvents such as these are recycled to the oxidation process together with the recovered methacrolein, even if only in small amounts, and the oxidation process is catalyzed by the organic solvent. Since there are risks of poisoning, inhibition of oxidation reactions, and abnormal reactions such as explosions due to contamination of the organic solvent vapor, organic solvents should not be used as methacrolein absorption solvents simply because they have good methacrolein absorption performance. It is not necessarily desirable to use it as

かかる状況下において、本発明者らはメタクロレインの
吸収性能も良く、かつ、分離回収後のメタクロレィンを
触媒被毒などの不安もなく容易に酸化反応工程へ循環使
用することが可能なメタクロレイン吸収溶媒およびそれ
を用いるプロセスを鋭意研究した結果、メタクリル酸を
含む水溶液が第1図に示すごとく単なる水と比較してメ
タクロレィンの溶解性が著しく勝れていることを見出し
、本発明を完成するに至つた。
Under such circumstances, the present inventors have developed a methacrolein absorber that has good methacrolein absorption performance and that allows methacrolein after separation and recovery to be easily recycled to the oxidation reaction process without worrying about catalyst poisoning. As a result of intensive research into solvents and processes using them, it was discovered that an aqueous solution containing methacrylic acid has significantly better solubility of methacrolein than plain water, as shown in Figure 1. I've reached it.

こ)に示した第1図は水又はメタクリル酸水溶液におけ
るメタクロレインのヘンリー定数を示したものである。
本発明の目的は、メタクリル酸水溶液の濃度をできる限
り高濃度に保ちながらメタクロレインとメタクリル酸を
完全に分離することにある。本発明はイソブチレン等ま
たは/およびメタクロレインの気相酸化により生成する
反応ガスからメタクロレインとメタクリル酸とを分離す
る方法において、先ず、酸化反応器出口の反応混合ガス
を凝縮器に導き、該凝縮器で予め凝縮蓄積させた凝縮液
の一部と該ガス状反応混合物とを100℃以下の温度て
直接向流接続させることにより反応混合物中の水、メタ
クリル酸を凝縮させる。本凝縮操作を1段階で行なう場
合は操作温度は100′C以下、望ましくは30〜80
℃である。また凝縮操作を2段階で行なう楊合は第1段
目の操作温度は1000C以下望ましくは30〜80゜
Cであり、第2段目の操.作温度は10〜50℃であり
、かつ第2段目温度が第1段目温度以上にならないこと
が望ましい。操作温度が100℃以上に高い楊合には、
メタクロレイン及びメタクリル酸の重合が著しくなるの
で好ましくない。反応混合ガスと凝縮液との直接向流接
触の方式は充填塔、多孔板塔、泡鐘塔、スプレー塔など
通常行われている接触方式であればその形式に制約され
ることはない。
Figure 1 shown in Figure 1 shows the Henry's constant of methacrolein in water or an aqueous methacrylic acid solution.
An object of the present invention is to completely separate methacrolein and methacrylic acid while keeping the concentration of the methacrylic acid aqueous solution as high as possible. The present invention provides a method for separating methacrolein and methacrylic acid from a reaction gas generated by gas phase oxidation of isobutylene etc. and/or methacrolein. Water and methacrylic acid in the reaction mixture are condensed by directly connecting a part of the condensate that has been condensed and accumulated in a reactor to the gaseous reaction mixture at a temperature of 100° C. or lower. When carrying out this condensation operation in one step, the operating temperature is 100'C or less, preferably 30 to 80°C.
It is ℃. In addition, when the condensation operation is carried out in two stages, the operating temperature in the first stage is 1000°C or less, preferably 30 to 80°C, and the operating temperature in the second stage is 1000°C or less, preferably 30 to 80°C. The operating temperature is 10 to 50°C, and it is desirable that the second stage temperature does not exceed the first stage temperature. When the operating temperature is higher than 100℃,
This is not preferred because the polymerization of methacrolein and methacrylic acid becomes significant. The method of direct countercurrent contact between the reaction mixture gas and the condensate is not limited to any conventional contact method such as a packed column, perforated plate column, bubble bell column, or spray column.

凝縮器の塔頂から出るメタクロレインを含むガスは次い
て30℃以下望ましくはO〜15℃の温度範囲て操作さ
れるメタクロレイン吸収塔塔底へ導かれ、該塔頂より供
給される5重量%以上望ましくは1呼量%以上のメタク
リル酸を含有するメタクリル酸水溶液と向流接触するこ
とによりメタクロレインが吸収され、該吸収塔頂よりメ
タクロレインをほS゛完全に分離したガス体を、また塔
底からはメタクロレインを吸収したメタクリル酸水溶液
を得る。
The methacrolein-containing gas exiting from the top of the condenser is then led to the bottom of a methacrolein absorption tower operated at a temperature of 30°C or lower, preferably from 0 to 15°C, and the 5 weight gas supplied from the top of the tower is Methacrolein is absorbed by countercurrent contact with an aqueous methacrylic acid solution containing methacrylic acid in an amount of 1% or more, preferably 1% or more by volume, and a gaseous body from which methacrolein has been almost completely separated from the top of the absorption column, An aqueous methacrylic acid solution that has absorbed methacrolein is obtained from the bottom of the tower.

メタクロレイン吸収塔の操作温度が30以上の場合、メ
タクロレインの吸収効率が悪くなるので好ましくない。
また該吸収塔に使われる吸収液のメタクリル酸が5重量
%以下の場合は溶解度が小さくなり吸収効率が悪くなる
ので好ましくない。メタクロレイン吸収塔の形式は、充
填塔、多孔板塔、泡鐘塔、スプレー塔など通常用いられ
ている形式の吸収塔てあれば良く、その形式に制約され
ることはない。
If the operating temperature of the methacrolein absorption tower is 30°C or higher, it is not preferable because the absorption efficiency of methacrolein becomes poor.
Furthermore, if the methacrylic acid content of the absorption liquid used in the absorption tower is less than 5% by weight, the solubility will be low and the absorption efficiency will be poor, which is not preferable. The type of methacrolein absorption tower may be any commonly used type of absorption tower, such as a packed tower, perforated plate tower, bubble bell tower, or spray tower, and is not limited to the type.

メタクロレインの吸収溶媒として用いるメタクリル酸水
溶液量は該吸収塔入口ガス体に対しモル比で8以下望ま
しくは1〜5の範囲が望ましい。
The amount of the aqueous methacrylic acid solution used as an absorption solvent for methacrolein is preferably 8 or less, preferably 1 to 5 in molar ratio to the gas at the inlet of the absorption tower.

この様にして該吸収塔塔底より得られたメタクロレイン
を吸収したメタクリル酸水溶液は、30〜100℃望ま
しくは50〜80℃の温度範囲で操作される次のメタク
ロレイン放散塔塔頂へ、また先の凝縮器で得られた凝縮
液は該メタクロレイン放散塔中段又は塔頂へ夫々導き、
該放散塔底部から窒素、空気、炭酸ガス、イソブチレン
等または/およびメタクロレイン酸化反応排ガス、又は
該酸化反応排ガスの燃焼排ガスなどの不活性ガスを供給
することにより該メタクロレイン放散塔供給液中に含有
されるメタクロレインを該放散塔塔頂へガス状混合物と
して分離し、該放散塔底よりメタクロレインをほS゛完
全に分離除去したメタクリル酸水溶液を得る。メタクロ
レイン放散塔の操作温度が30℃以下の場合、メタクロ
レインの蒸気圧が小さくなり放散効果が悪くなるので好
ましくない。
The methacrolein-absorbed aqueous methacrylic acid solution obtained from the bottom of the absorption tower in this way is transferred to the top of the next methacrolein stripping tower, which is operated at a temperature range of 30 to 100°C, preferably 50 to 80°C. In addition, the condensate obtained in the previous condenser is led to the middle stage or the top of the methacrolein stripping tower, respectively,
By supplying an inert gas such as nitrogen, air, carbon dioxide, isobutylene, etc. or/and methacrolein oxidation reaction exhaust gas, or combustion exhaust gas of the oxidation reaction exhaust gas from the bottom of the stripping tower, the methacrolein stripping tower feed liquid is The contained methacrolein is separated as a gaseous mixture at the top of the stripping column, and an aqueous methacrylic acid solution in which methacrolein has been almost completely separated and removed is obtained from the bottom of the stripping column. If the operating temperature of the methacrolein stripping tower is 30° C. or lower, the vapor pressure of methacrolein becomes low and the stripping effect becomes poor, which is not preferable.

また操作温度が1000C以上の場合、メタクロレイン
およびメタクリル酸の重合が著しくなるので好ましくな
い。該放散塔の形式は充填塔、多孔板基、泡鐘塔、スプ
レー塔など通常用いられている形式の気液接触装置であ
れば良く、その形式には制約されない。該放散塔塔底部
へ供給する不活性ガス量は、該放散塔へ供給する全液量
に対しモル比で1以下望ましくは0.3以下の範囲が望
ましい。
Further, if the operating temperature is 1000C or higher, the polymerization of methacrolein and methacrylic acid becomes significant, which is not preferable. The type of the stripping tower may be any commonly used gas-liquid contact device such as a packed tower, perforated plate, bubble tower, or spray tower, and is not limited to its type. The amount of inert gas supplied to the bottom of the stripping tower is desirably in a molar ratio of 1 or less, preferably 0.3 or less, relative to the total amount of liquid supplied to the stripping tower.

メタクロレイン吸収塔及びメタクロレイン放散塔に於け
る操作温度は、塔の形式に合わせて色々な方法が考えら
れるが、塔に外套管を設置したり、塔内への伝熱用コイ
ルの挿入などにより、冷媒又は熱媒を該外套管又は該コ
イルに循環して保持することができる。
Various methods can be considered for controlling the operating temperature in methacrolein absorption towers and methacrolein stripping towers, depending on the type of tower. Accordingly, the refrigerant or heat medium can be circulated and retained in the mantle tube or the coil.

メタクロレイン吸収塔塔頂にメタクロレイン吸収溶媒と
して供給する5重量%以上のメタクリル酸を含有する水
溶液は、全く他所から得られるメタクリル酸水溶液を用
いても良いし、メタクロレイン放散塔の缶出液の一部を
冷却して循環使用しjても良い。
The aqueous solution containing 5% by weight or more of methacrylic acid to be supplied to the top of the methacrolein absorption tower as a methacrolein absorption solvent may be an aqueous methacrylic acid solution obtained entirely elsewhere, or may be the bottoms of the methacrolein stripping tower. A part of it may be cooled and used for circulation.

また該放散塔の塔頂から得られるメタクロレインを含有
する不活性ガス混合物は、メタクロレインの製造、その
他の用途に用いても良いし、また不活性ガスと共にイソ
ブチレン等または/および7メタクロレインの気相酸化
反応器入ロへ再循環しても良い。
In addition, the inert gas mixture containing methacrolein obtained from the top of the stripping tower may be used for the production of methacrolein or other purposes, or it may be used together with the inert gas to produce isobutylene, etc. or/and 7 methacrolein. It may be recirculated to the gas phase oxidation reactor.

本発明に供される反応混合ガスはイソブチレン等および
/またはメタクロレインの酸化により得られる生成ガス
であり、メタクリル酸、酢酸、メフタクロレイン、未反
応イソブチレン等、水蒸気、二酸化炭素、一酸化炭素、
酸素、窒素などからなる。
The reaction mixture gas used in the present invention is a product gas obtained by oxidizing isobutylene, etc. and/or methacrolein, and includes methacrylic acid, acetic acid, mephthacrolein, unreacted isobutylene, etc., water vapor, carbon dioxide, carbon monoxide,
Consists of oxygen, nitrogen, etc.

以下図面に従つて本発明を更に詳細に説明するが、第2
図は本発明の1実施形態であり、本発明はこれに限定さ
れるものではない。
The present invention will be explained in more detail below with reference to the drawings.
The figure is one embodiment of the present invention, and the present invention is not limited thereto.

また第2図は本発明に係るメタクロレインとメタクリル
酸を分離するにあたり、反応器出口混合ガスの凝縮操作
を2段階で行なつた場合の1例である。
Moreover, FIG. 2 is an example of a case where the condensation operation of the mixed gas at the reactor outlet is performed in two stages in separating methacrolein and methacrylic acid according to the present invention.

イソブチレン等または/およびメタクロレイン気相酸化
反応器3より出た反応混合ガスはライン4より第1段凝
縮器5の塔底に供給され、ライン6、冷却器8、ライン
9を通してリサイクルされるメタクリル酸を含む第1段
凝縮液と直接向流接触することにより、反応混合ガス中
の水蒸気、メタクリル酸などが凝縮される。
Isobutylene, etc. or/and methacrolein The reaction mixture gas discharged from the gas phase oxidation reactor 3 is supplied to the bottom of the first stage condenser 5 through line 4, and is recycled through line 6, cooler 8, and line 9 to produce methacrylate. Water vapor, methacrylic acid, etc. in the reaction mixture gas are condensed by direct countercurrent contact with the first stage condensate containing acid.

第1段凝縮器5の塔底から出たメタクリル酸を含んだ第
1段凝縮液はライン7、熱交換器2牡加熱器25を通し
て、メタクロレイン放散塔31の中段へ供給される。第
1段凝縮器5の塔頂ガスはライン10を通して第1段凝
縮器5より低い温度範囲で操作される第2段凝縮器11
の塔底に供給され、ライン12、冷却器1牡ライン15
を通してリサイクルされるメタクリル酸を含む第2段凝
縮液と直接向流接触することにより、第1段凝縮器塔頂
ガス中に残存するメタクリル酸、水蒸気の大部分を凝縮
分離する。第2段凝縮器11の塔底から出たメタクリル
酸を含んだ第2段凝縮液はライン13、熱交換器23を
通してメタクロレイン放散塔31の5中段へ供給される
。ここで第1段凝縮液抜出しライン7と第2段凝縮液抜
出しライン13は第2図の様に別々にメタクロレイン放
散塔31へ供給しても良いし、又一つに合流させてから
メタクロレイン放散塔31へ供給しても良い。第1段凝
縮器5および第2段凝縮器11でメタクリル酸、水蒸気
の大部分を分離除去した第2段凝縮器塔頂ガスはライン
16を通してメタクロレイン吸収塔17の塔底部へ供給
される。
The first stage condensate containing methacrylic acid discharged from the bottom of the first stage condenser 5 is supplied to the middle stage of the methacrolein stripping tower 31 through the line 7 and the two heat exchanger heaters 25. The top gas of the first stage condenser 5 is passed through a line 10 to a second stage condenser 11 which is operated in a lower temperature range than the first stage condenser 5.
is supplied to the bottom of the tower, line 12, cooler 1 line 15
Most of the methacrylic acid and water vapor remaining in the top gas of the first stage condenser are condensed and separated by direct countercurrent contact with the second stage condensate containing methacrylic acid recycled through the first stage condenser. The second stage condensate containing methacrylic acid discharged from the bottom of the second stage condenser 11 is supplied to the middle stage 5 of the methacrolein stripping tower 31 through the line 13 and the heat exchanger 23. Here, the first stage condensate withdrawal line 7 and the second stage condensate withdrawal line 13 may be supplied separately to the methacrolein stripping tower 31 as shown in FIG. 2, or they may be combined into one and then the methacrolein It may also be supplied to the rain diffusion tower 31. The second stage condenser top gas from which most of the methacrylic acid and water vapor have been separated and removed in the first stage condenser 5 and the second stage condenser 11 is supplied to the bottom of the methacrolein absorption tower 17 through a line 16.

メタクロレイン吸収塔17の塔頂部へはライン26を通
し3てメタクリル酸水溶液をメタクロレイン吸収溶媒と
して供給し、メタクロレイン吸収塔内を上昇するメタク
ロレイン含有ガスと向流接触させることによりガス中の
メタクロレインを吸収する。メタクロレインを分離した
メタクロレイン吸収塔塔頂4ガスはライン20より放出
し、排ガス処埋設備などを通して大気中へ排出される。
メタクロレインを吸収したメタクリル酸水溶液はライン
19より抜き出し、熱交換器21、加熱器22を通して
メタクロレイン放散塔31の塔頂へ送られる。メタクロ
レイン吸収塔17はメタクロレインの吸収を増加させる
ために、できる限り低温で操業されるのが望ましく、3
0℃以下、望ましくは0〜15℃の温度範囲で操作され
ることが望ましい。このため該吸収塔には外套管塔内へ
の冷却用コイルの挿入などにより冷媒を循環して温度保
持をする必要がある。ライン26からのメタクリル酸水
溶液の供給はメタクロレイン放散塔31塔底抜出液の一
部フを循環しても良く、また他の全く別の源から得たメ
タクリル酸水溶液を用いても良い。メタクロレイン放散
塔31ではライン32より空気、窒素、炭酸ガス、イソ
ブチレン等または/およびメタクリル酸化反応排ガス、
又は該酸化反門応排ガスの燃焼排ガスなどの不活性ガス
を供給し、ライン19、ライン13、ライン7よりメタ
クロレイン放散塔31へ供給される液中に含有されるメ
タクロレインを放散し、塔頂よりライン27を通してメ
タクロレインを含有するガス状混合物を抜出す。
An aqueous methacrylic acid solution is supplied as a methacrolein absorption solvent to the top of the methacrolein absorption tower 17 through a line 26, and is brought into countercurrent contact with the methacrolein-containing gas rising inside the methacrolein absorption tower, thereby reducing the amount of gas in the gas. Absorbs methacrolein. The methacrolein absorption column top 4 gas from which methacrolein has been separated is discharged from line 20 and discharged into the atmosphere through exhaust gas processing equipment or the like.
The aqueous methacrylic acid solution that has absorbed methacrolein is extracted from line 19 and sent to the top of methacrolein stripping tower 31 through heat exchanger 21 and heater 22 . The methacrolein absorption tower 17 is desirably operated at as low a temperature as possible in order to increase absorption of methacrolein;
It is desirable to operate at a temperature range below 0°C, preferably from 0 to 15°C. Therefore, it is necessary to circulate the refrigerant in the absorption tower to maintain its temperature by inserting a cooling coil into the jacket tube tower. The aqueous methacrylic acid solution from the line 26 may be supplied by circulating a portion of the liquid extracted from the bottom of the methacrolein stripping tower 31, or may be an aqueous methacrylic acid solution obtained from a completely different source. In the methacrolein stripping tower 31, air, nitrogen, carbon dioxide, isobutylene, etc. or/and methacrylic oxidation reaction exhaust gas,
Alternatively, an inert gas such as combustion exhaust gas of the oxidation reaction exhaust gas is supplied, and methacrolein contained in the liquid supplied to the methacrolein stripping tower 31 from lines 19, 13, and 7 is diffused. A gaseous mixture containing methacrolein is withdrawn from the top through line 27.

このガス状混合物はメタクロレインの製造又は他の用途
に用いても良いし、加熱器28を通してイソブチレン等
および/またはメタクロレイン気相酸化反応器3の入口
原料ガスライン1へ循環して使用することもできる。
This gaseous mixture may be used for the production of methacrolein or for other purposes, or may be circulated through the heater 28 to the inlet raw material gas line 1 of the gas phase oxidation reactor 3 for isobutylene and/or methacrolein. You can also do it.

メタクロレイン放散塔31の塔底抜出液はライン29を
通し、熱交換器24,23、にて冷却しライン30より
メタクロレインを殆んど完全に分離したメタクリル酸水
溶液を抜出しメタクリル酸の精製その他の工程へ送られ
る。メタクロレイン放散塔31の塔底抜出液の一部は、
熱交換器21.ライン26、冷却器18を通してメタク
ロレイン吸収塔17のメタクロレイン吸収溶媒として用
いても良い。メタクロレイン放散塔31てはメタクロレ
インの大部分、および若干の水の蒸発などにより操作温
度が低下するため、該放散塔に外套管、加熱コイル等を
施し、熱媒を循環することにより、必要に応じて該放散
塔操作温度を必要な温度範囲に保持しなければならない
The liquid extracted from the bottom of the methacrolein stripping tower 31 is passed through line 29, cooled by heat exchangers 24 and 23, and an aqueous methacrylic acid solution from which methacrolein has been almost completely separated is extracted from line 30, and purified to produce methacrylic acid. Sent to other processes. A part of the liquid extracted from the bottom of the methacrolein stripping tower 31 is
Heat exchanger 21. It may be used as a methacrolein absorption solvent in the methacrolein absorption tower 17 through the line 26 and the cooler 18. Since the operating temperature of the methacrolein stripping tower 31 decreases due to evaporation of most of the methacrolein and some of the water, the stripping tower is equipped with a mantle, a heating coil, etc., and the heat medium is circulated to reduce the temperature required. The operating temperature of the stripping tower must be maintained within the required temperature range.

熱交換器21,23,24、加熱器22,25、冷却器
18のメタクロレイン吸収塔、メタクロレイン放散塔の
外套又は伝熱コイルなどの系への組み込みは該吸収塔、
該放散塔の必要操作温度範囲を保持することがてきる限
度において行えば良いのであつて第2図示のままにする
必要はなく、必要に応じて省略、追加することができる
。また反応混合ガスの凝縮を第2図の様に高低2段階の
温度レベルで行うのではなく、1段階の温度レベルで実
施する場合には第2図の内、第2段.凝縮器11、ライ
ン12,13,15,16、冷却器1牡熱交換器23を
省略して第1段凝縮器5の塔頂ガスライン10を直接メ
タクロレイン吸収塔17へ導けば良い。
The heat exchangers 21, 23, 24, the heaters 22, 25, the cooler 18 are incorporated into a system such as a methacrolein absorption tower, a methacrolein diffusion tower jacket or a heat transfer coil, etc.
It is sufficient to carry out the operation within a range that can maintain the necessary operating temperature range of the stripping tower, and there is no need to leave it as shown in the second figure, and it can be omitted or added as necessary. In addition, if the reaction mixture gas is condensed at one temperature level instead of at two high and low temperature levels as shown in Figure 2, the second stage of Figure 2 is used. The condenser 11, lines 12, 13, 15, 16, cooler 1 and heat exchanger 23 may be omitted, and the top gas line 10 of the first stage condenser 5 may be directly led to the methacrolein absorption tower 17.

一般的に凝縮器の操作温度の選定は該凝縮器付属の冷却
器8,14の冷媒として通常の冷却水が使用し得る温度
範囲を選定するのが望ましく、かつ、極力低い温度範囲
で操作することにより、凝縮液中のメタクリル酸の重合
防止、並びにライン16(又はライン10)を通して第
2段(又は第1段)凝縮器塔頂ガスと共にメタクロレイ
ン吸収塔17へ同伴される水蒸気量が減少し、その分だ
け、メタクロレイン吸収塔17および冷却器18での冷
却負荷が軽減され、経済性の面から有利であるが、凝縮
器操作温度を過度に低くすることにより用いる冷媒との
平均温度差が小さくなり冷却器8,14の伝熱面積が著
しく大きくなる不都合が生じる。
Generally, when selecting the operating temperature of a condenser, it is desirable to select a temperature range in which normal cooling water can be used as a refrigerant in the coolers 8 and 14 attached to the condenser, and to operate the condenser in a temperature range as low as possible. This prevents polymerization of methacrylic acid in the condensate, and reduces the amount of water vapor entrained to the methacrolein absorption tower 17 through line 16 (or line 10) together with the second stage (or first stage) condenser top gas. However, the cooling load on the methacrolein absorption tower 17 and the cooler 18 is reduced accordingly, which is advantageous from an economic point of view, but by lowering the condenser operating temperature too much, the average temperature with the refrigerant used As the difference becomes smaller, the heat transfer area of the coolers 8 and 14 becomes significantly larger, resulting in a disadvantage.

このため1段凝縮器のみを用いる場合には30℃以上8
0℃以下が望ましく、2段階の凝縮器を用いる場合には
第1段凝縮器を30℃以上、80゜C以下、第2段凝縮
器を第1段凝縮器操作温度範囲以下てかつ10℃以上5
0′Cを越えない温度範囲で選ふのが望ましい。従つて
単段凝縮器を用いるか2段凝集器を用いるかは凝縮器付
属の冷却器8,14の所要伝熱面積、メタクロレイン吸
収塔、冷却器28での冷却負荷など総合的に勘案する必
要があソー概に優劣は決められない。本発明の凝縮器5
および11、メタクロレイン吸収塔17、メタクロレイ
ン放散塔31の操作圧力はイソフチレン等および/また
はメタクロレイン気相酸化反応器3の操作圧力との関連
で決まるか、ライン16又はライン27に昇圧用圧縮機
を装置する必要のない範囲で実施することが望ましく、
操作圧力としては0〜7atg(ゲージ圧)、望ましく
は0.5〜4atgの範囲で行うのが良い。
For this reason, when using only a single-stage condenser, it is necessary to
The temperature is preferably 0°C or lower, and when using a two-stage condenser, the temperature of the first stage condenser is 30°C or higher and 80°C or lower, and the temperature of the second stage condenser is lower than the operating temperature range of the first stage condenser and 10°C. Above 5
It is desirable to select a temperature within a temperature range that does not exceed 0'C. Therefore, whether to use a single-stage condenser or a two-stage condenser is determined by comprehensively considering the required heat transfer area of the coolers 8 and 14 attached to the condenser, the cooling load on the methacrolein absorption tower, and the cooler 28. It is not possible to determine the superiority or inferiority of necessity. Condenser 5 of the present invention
and 11, the operating pressure of the methacrolein absorption tower 17 and the methacrolein stripping tower 31 is determined in relation to the operating pressure of the isophthylene etc. and/or methacrolein gas phase oxidation reactor 3, or the pressure boosting pressure is supplied to the line 16 or line 27. It is desirable to implement this to the extent that it is not necessary to install a machine.
The operating pressure is preferably 0 to 7 atg (gauge pressure), preferably 0.5 to 4 atg.

以下、本発明を実施例により説明するが、本発明はこれ
等に限定されるものではない。実施例1 メタクロレイン1.6諸量%、メタクリル酸1.57容
積%、酢酸0.52容積%、スチーム42.75容積%
および酸素、窒素、一酸化炭素、二酸化炭素などの非凝
縮性ガス53.5溶積%を含有する310℃の反応混合
ガス4528NeIhrを磁製ラシヒリング充填塔形式
の第1段凝縮器5へ供給する。
EXAMPLES The present invention will be explained below with reference to examples, but the present invention is not limited to these examples. Example 1 Methacrolein 1.6% by volume, methacrylic acid 1.57% by volume, acetic acid 0.52% by volume, steam 42.75% by volume
A reaction mixture gas of 4528 NeIhr at 310°C containing 53.5 volume % of non-condensable gases such as oxygen, nitrogen, carbon monoxide, and carbon dioxide is supplied to the first stage condenser 5 in the form of a porcelain Raschig ring packed column. .

第1段目の凝縮液の温度が45〜50℃の時、第1段凝
縮液は1698y1hr生成し、その液中のメタクリル
酸濃度は15.24重量%、メタクロレインは0.18
重量%、酢酸は3.3踵量%である。また、第1段凝縮
器5塔頂から出るガス中にはメタクロレインが2.6熔
積%、メタクリル酸0.13容積%、スチーム8.部容
積%含まれ、全量として2723Ne1hrのガスが磁
製ラシヒリング充填塔形式の第2段凝縮器11へ供給さ
れた。
When the temperature of the first stage condensate is 45-50℃, the first stage condensate is produced for 1698y1hr, the methacrylic acid concentration in the liquid is 15.24% by weight, and the methacrolein is 0.18%.
% by weight, acetic acid is 3.3% by weight. In addition, the gas exiting from the top of the first stage condenser 5 contains 2.6% by volume of methacrolein, 0.13% by volume of methacrylic acid, and 8% by volume of steam. A total of 2723 Ne1 hr of gas was supplied to the second stage condenser 11 in the form of a porcelain Raschig ring packed column.

第2段目の凝縮液温度が32〜35℃の時、第2段凝縮
液は94.66y1hr生成し、その液中のメタクリル
酸濃度は10.1踵量%、メタクロレインは0.74重
量%、酢酸は4.56踵量%であつた。また第2段凝縮
器11塔頂から出るガス中にはメタクロレインが2.7
熔積%、メタクリル酸が0.0熔積%、スチーム4.6
2容積%含まれ、全量として2619NeIhrのガス
をステンレス製ラシヒリング充填塔形式のメタクロレイ
ン吸収塔17の塔底部へ供給する。メタクロレイン吸収
塔17の塔頂からはメタクロレインの吸収溶剤としてメ
タクリル酸15.1重量%、酢酸3.4鍾量%、メタク
ロレイン0.0鍾量%含有するメタクロレイン放散塔3
1の缶出液の1部を8〜10℃に冷却し6378gIh
rの流量で供給した。メタクロレイン吸収塔17の塔底
部からはメタノクロレイン3.55重量%、メタクリル
酸14.46重量%、酢酸3.4唾量%を含むメタクロ
レイン吸収液6689y1hrを得た。メタクロレイン
吸収塔17の塔頂からはメタクロレイン60ppmを含
むガス2451Ne1hrを得た。このメタクロレイン
吸収塔7は塔径55Tfr!n、充填高さ6TrLで、
外套管を施し、操作温度を5〜15℃に保持した。この
様にして得た第1段凝縮液および第2段凝縮液、メタク
ロレイン吸収液は、メタクロレイン放散塔31の中段、
塔頂へ夫々供給した。メタクロレイン放散塔31フの塔
底へは窒素ガス69△ノ1hrを供給し、塔頂よリメタ
クロレイン8.4熔積%、スチーム10.喀積%を含む
メタクロレイン放散ガス847N′Ihrを得、280
℃に加熱して酸化反応器3の入口部へ循環した。メタク
ロレイン放散塔31の塔底よりメタクリル酸15.1重
量%、酢酸3.4鍾量%、メタクロレイン0.02重量
%を含む缶出液8183qIhrを得、1部6378y
1hrをメタクロレイン吸収溶媒として循環使用し、残
り1805y1hrを製品として抜出した。メタクロレ
イン放散塔は塔径55mm、充填高さ3mでステンレス
製ラシヒリング充填塔で外套管を施し60〜70℃の温
度範囲に保持した。実施例2実施例1において第2段凝
縮器11を省略し、第1段凝縮器5の塔頂ガスを直接メ
タクロレイン吸収塔17の下部へ供給し、メタクロレイ
ン吸収塔17の充填長さを6.57nに変更した以外は
実施例1と全く同じに操作した結果、メタクロレイン吸
収塔17塔頂のガス中にメタクロレインが65ppm含
有され、メタクロレイン吸収塔の塔底からメタクロレイ
ン3.5踵量%、メタクリル酸14.41重量%、酢酸
3.34重量%を含むメタクロレイン吸収塔6778y
Ihrを得た。
When the second stage condensate temperature is 32-35℃, the second stage condensate is produced for 94.66y1hr, the methacrylic acid concentration in the liquid is 10.1% by weight, and methacrolein is 0.74wt. %, and acetic acid was 4.56% by heel weight. In addition, the gas coming out from the top of the second stage condenser 11 contains 2.7% methacrolein.
% melt, methacrylic acid 0.0 mol %, steam 4.6
A gas containing 2% by volume and a total amount of 2619 NeIhr is supplied to the bottom of the methacrolein absorption tower 17 in the form of a stainless steel Raschig ring packed column. From the top of the methacrolein absorption tower 17, a methacrolein stripping tower 3 containing 15.1% by weight of methacrylic acid, 3.4% by weight of acetic acid, and 0.0% by weight of methacrolein as an absorption solvent for methacrolein is passed.
A part of the bottom liquid from Step 1 was cooled to 8 to 10°C to produce 6378gIh.
It was supplied at a flow rate of r. From the bottom of the methacrolein absorption tower 17, 6689y1hr of methacrolein absorption liquid containing 3.55% by weight of methanochlorein, 14.46% by weight of methacrylic acid, and 3.4% by weight of acetic acid was obtained. From the top of the methacrolein absorption tower 17, 2451 Ne1 hr of gas containing 60 ppm of methacrolein was obtained. This methacrolein absorption tower 7 has a tower diameter of 55 Tfr! n, filling height 6TrL,
A mantle was applied and the operating temperature was maintained at 5-15°C. The first-stage condensate, second-stage condensate, and methacrolein absorption liquid obtained in this way are stored in the middle stage of the methacrolein stripping tower 31,
Each was supplied to the top of the tower. Nitrogen gas of 69△/hr was supplied to the bottom of the methacrolein stripping tower 31F, and from the top of the tower, 8.4% by volume of methacrolein and 10% of steam were supplied. Obtained 847 N'Ihr of methacrolein diffused gas containing % volume, 280
℃ and circulated to the inlet of the oxidation reactor 3. From the bottom of the methacrolein stripping tower 31, 8183 qIhr of bottoms containing 15.1% by weight of methacrylic acid, 3.4% by weight of acetic acid, and 0.02% by weight of methacrolein was obtained, and one portion was 6378y.
1 hr was recycled and used as a methacrolein absorption solvent, and the remaining 1805 y1 hr was extracted as a product. The methacrolein stripping tower was a stainless steel Raschig ring packed tower with a tower diameter of 55 mm and a filling height of 3 m, and was provided with a jacket tube, and was maintained at a temperature in the range of 60 to 70°C. Example 2 In Example 1, the second stage condenser 11 is omitted, and the top gas of the first stage condenser 5 is directly supplied to the lower part of the methacrolein absorption tower 17, so that the filling length of the methacrolein absorption tower 17 is reduced. As a result of operating in exactly the same manner as in Example 1 except for changing to 6.57n, 65 ppm of methacrolein was contained in the gas at the top of methacrolein absorption tower 17, and 3.5 ppm of methacrolein was collected from the bottom of the methacrolein absorption tower. Methacrolein absorption tower 6778y containing 14.41% by weight of methacrylic acid and 3.34% by weight of acetic acid
I got Ihr.

その他の部分の組成および流量は実施例1の結果とほぼ
同一結果であつた。
The composition and flow rate of other parts were almost the same as those of Example 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はメタクリル酸水溶液におけるメタクロレインの
ヘンリー定数を示したものである。
FIG. 1 shows the Henry's constant of methacrolein in an aqueous methacrylic acid solution.

Claims (1)

【特許請求の範囲】 1 メタクロレインおよび/または反応条件下でメタク
ロレインを生成する化合物と分子状酸素を酸化触媒の存
在下に高温において気相反応させて得られるメタクリル
酸単量体を含むガス状反応混合物からメタクロレインと
メタクリル酸を分離する方法において、先ず反応器から
出たガス状反応混合物を凝縮器に導き、該凝縮器で予め
凝縮蓄積させた凝縮液の一部と該ガス状反応混合物とを
100℃以下の温度で直接向流接触させることにより、
反応混合物中の水、メタクリル酸を凝縮させ、メタクロ
レインの大部分と非凝縮性ガス体とを反応混合物から分
離し、次にこのガスを30℃以下の温度で操作されるメ
タクロレイン吸収塔の底部に導き、メタクリル酸を5重
量%以上含有する水溶液を該吸収塔の頂部から供給し、
ガス中のメタクロレインを吸収し、メタクロレイン吸収
塔底から得られたメタクロレインを含有するメタクリル
酸水溶液は30〜1000Cの温度で操作されるメタク
ロレイン放散塔頂部へ、また反応器出口ガス状反応混合
物を凝縮して得られた凝縮液は、該塔中段又は塔頂部へ
供給され、該塔底部から窒素、空気等の不活性ガスを供
給することにより、各供給液中に含有するメタクロレイ
ンを該塔頂部から分とを特徴とするメタクロレインおよ
びメタクリル酸の分離方法。 2 凝縮器で予め凝縮蓄積させた凝縮液の一部と該ガス
状反応混合物とを100℃以下の温度で直接向流接触さ
せる操作が1段階または多段階である特許請求の範囲第
1項記載の方法。 3 メタクロレイン放散塔底部より得られるメタクリル
酸水溶液の一部をメタクロレイン吸収塔の吸収溶媒とし
て用いる特許請求の範囲第1項記載の方法。 4 メタクロレイン放散塔頂部より得られるメタクロレ
インを含有するガス状混合物を酸化反応器入口に循環さ
せる特許請求の範囲第1項記載の方法。
[Claims] 1. A gas containing a methacrylic acid monomer obtained by subjecting methacrolein and/or a compound that produces methacrolein under reaction conditions to a gas phase reaction at high temperature in the presence of an oxidation catalyst with molecular oxygen. In a method for separating methacrolein and methacrylic acid from a gaseous reaction mixture, the gaseous reaction mixture discharged from the reactor is first introduced into a condenser, and a part of the condensate that has been condensed and accumulated in the condenser is mixed with the gaseous reaction mixture. By direct countercurrent contact with the mixture at a temperature of 100°C or less,
The water and methacrylic acid in the reaction mixture are condensed, the majority of methacrolein and non-condensable gaseous bodies are separated from the reaction mixture, and this gas is then transferred to a methacrolein absorption tower operated at a temperature below 30°C. and supplying an aqueous solution containing 5% by weight or more of methacrylic acid from the top of the absorption tower,
The methacrolein-containing aqueous methacrylic acid solution obtained from the bottom of the methacrolein absorption tower after absorbing methacrolein in the gas is transferred to the top of the methacrolein stripping tower operated at a temperature of 30 to 1000C, and is then transferred to the gaseous reaction at the exit of the reactor. The condensate obtained by condensing the mixture is supplied to the middle stage or the top of the column, and by supplying an inert gas such as nitrogen or air from the bottom of the column, the methacrolein contained in each feed solution is removed. A method for separating methacrolein and methacrylic acid from the top of the column. 2. Claim 1, wherein the operation of bringing a part of the condensate pre-condensed and accumulated in a condenser into direct countercurrent contact with the gaseous reaction mixture at a temperature of 100° C. or less is one step or multiple steps. the method of. 3. The method according to claim 1, wherein a part of the methacrylic acid aqueous solution obtained from the bottom of the methacrolein stripping tower is used as an absorption solvent in the methacrolein absorption tower. 4. The method according to claim 1, wherein the gaseous mixture containing methacrolein obtained from the top of the methacrolein stripping column is circulated to the inlet of the oxidation reactor.
JP11704077A 1977-09-28 1977-09-28 Method for separating methacrolein and methacrylic acid Expired JPS6059891B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11704077A JPS6059891B2 (en) 1977-09-28 1977-09-28 Method for separating methacrolein and methacrylic acid
NL7809746A NL7809746A (en) 1977-09-28 1978-09-26 ISOLATING METHACROLEIN AND / OR METHACRYLIC ACID FROM AQUATIC SOLUTIONS.
FR7827689A FR2404619A1 (en) 1977-09-28 1978-09-27 PROCESS FOR SEPARATION OF METHACROLEIN AND / OR METHACRYLIC ACID FROM AQUEOUS SOLUTIONS CONTAINING THEM
DE19782842092 DE2842092A1 (en) 1977-09-28 1978-09-27 PROCESS FOR SEPARATING METHACROLEIN AND / OR METHACRYLIC ACID FROM METHACRYLIC ACID-CONTAINING GASEOUS REACTION MIXTURES
GB7838561A GB2004886B (en) 1977-09-28 1978-09-28 Separation of methacrolien or meth-acrylic acid from a gaseous mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11704077A JPS6059891B2 (en) 1977-09-28 1977-09-28 Method for separating methacrolein and methacrylic acid

Publications (2)

Publication Number Publication Date
JPS5452027A JPS5452027A (en) 1979-04-24
JPS6059891B2 true JPS6059891B2 (en) 1985-12-27

Family

ID=14701940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11704077A Expired JPS6059891B2 (en) 1977-09-28 1977-09-28 Method for separating methacrolein and methacrylic acid

Country Status (5)

Country Link
JP (1) JPS6059891B2 (en)
DE (1) DE2842092A1 (en)
FR (1) FR2404619A1 (en)
GB (1) GB2004886B (en)
NL (1) NL7809746A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234519A (en) * 1979-01-26 1980-11-18 Halcon Research And Development Corp. Recovery of methacrolein
JPS58126831A (en) * 1982-01-22 1983-07-28 Nippon Shokubai Kagaku Kogyo Co Ltd Collection of methacrylic acid
US4554054A (en) * 1983-12-09 1985-11-19 Rohm And Haas Company Methacrylic acid separation
JP2504777B2 (en) * 1987-06-27 1996-06-05 三井東圧化学株式会社 Method of quenching reaction gas
CA1316545C (en) * 1987-06-27 1993-04-20 Morimasa Kuragano Quenching process of reaction product gas containing methacrylic acid and treatment method of quenched liquid
CA1307004C (en) * 1988-06-03 1992-09-01 Syoichi Matsumoto Process for recovering methacrolein
DE4026732A1 (en) * 1990-08-24 1992-02-27 Huels Chemische Werke Ag METHOD FOR CLEANING AN OXIDATION EXHAUST GAS WITH ENERGY RECOVERY
JP3289303B2 (en) * 1992-03-06 2002-06-04 住友化学工業株式会社 Acrolein manufacturing method
DE4225321A1 (en) * 1992-07-31 1994-02-03 Basf Ag Process for the separation of methacrolein from a gaseous mixture
JP3279491B2 (en) * 1996-12-16 2002-04-30 株式会社日本触媒 Method for producing (meth) acrylic acid
JP4056429B2 (en) 2003-06-05 2008-03-05 株式会社日本触媒 Method for producing (meth) acrylic acid
US7799946B2 (en) * 2007-02-14 2010-09-21 Saudi Basic Industries Corporation Process for separating methacrolein from methacrylic acid in a gas phase product from the partial oxidation of isobutene
EP3945088A1 (en) 2020-07-30 2022-02-02 Röhm GmbH Process for minimising the loss of activity in reaction steps carried out in circulation
EP3945086B1 (en) 2020-07-30 2022-10-26 Röhm GmbH C-4 based method for preparing mma with recovery and recycling of methacrolein
CN113413626A (en) * 2021-08-24 2021-09-21 山东蓝湾新材料有限公司 Quenching absorption tower for preparing acrylic acid by tower top gas recirculation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB953763A (en) * 1962-02-06 1964-04-02 Distillers Co Yeast Ltd Improvements in and relating to the production of unsaturated aliphatic acids
FR1393175A (en) * 1963-05-18 1965-03-19 Distillers Co Yeast Ltd Process for the production of unsaturated aliphatic acids
FR1535061A (en) * 1966-08-09 1968-08-02 Knapsack Ag Process for separating acrylic acid from reaction gases obtained by oxidation of propylene or acrolein
US3433840A (en) * 1966-12-29 1969-03-18 Sumitomo Chemical Co Process for recovering acrolein by quenching,absorption and plural distillation
US3513632A (en) * 1968-12-18 1970-05-26 Union Carbide Corp Separation of acrylic acid and acrolein
JPS5148609A (en) * 1974-10-23 1976-04-26 Asahi Glass Co Ltd NIDANSANKANYORUISOPUCHIRENKARANO METAKU

Also Published As

Publication number Publication date
DE2842092C2 (en) 1990-06-13
DE2842092A1 (en) 1979-04-05
FR2404619B1 (en) 1983-09-02
NL7809746A (en) 1979-03-30
GB2004886B (en) 1982-03-10
FR2404619A1 (en) 1979-04-27
GB2004886A (en) 1979-04-11
JPS5452027A (en) 1979-04-24

Similar Documents

Publication Publication Date Title
JP2778878B2 (en) Method for producing ethylene oxide
US4147885A (en) Process for producing acrylic acid from propylene
JPS6059891B2 (en) Method for separating methacrolein and methacrylic acid
US4618709A (en) Waste water treatment in the production of methacrylic acid
JP5393713B2 (en) Method for producing (meth) acrylic acid
US20110064627A1 (en) A quench column apparatus for separating methacrolein from methacrylic acid in a gas phase product from the partial oxidation of isobutene
EP0009545B1 (en) Acrylic acid recovery with recycle quench
US4925981A (en) Method of isolating methacrylic acid
JPH0276835A (en) Method for recovering methacrolein
MXPA06010637A (en) Utilization of acetic acid reaction heat in other process plants.
JPH01149778A (en) Improvement in ethylene oxide process
JPS5957902A (en) Manufacture of sulfur trioxide, sulfuric acid and fuming su-lfuric acid
JP2857993B2 (en) Method for continuous production of aqueous formaldehyde solution
US5597454A (en) Process for producing urea
JPH0138775B2 (en)
JP2769214B2 (en) Recovery method for isobutane and methacrolein
JPS6312458B2 (en)
JP4948158B2 (en) System for obtaining (meth) acrylic acid solution and method for producing (meth) acrylic acid
KR820002008B1 (en) Separation of mehacrolein and/or methacrylic acid from aqueous solution containing trem
JPS6160061B2 (en)
US4191710A (en) Treatment of methacrolein-containing gases
JPH02256625A (en) Method for separating and recovering isobutane or propane
JP5153137B2 (en) Method for producing (meth) acrylic acid
JPH03176439A (en) Recovering of isobutane and methacrolein
JPS6031815B2 (en) Recovery method of methacrolein