[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6059771A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS6059771A
JPS6059771A JP58168745A JP16874583A JPS6059771A JP S6059771 A JPS6059771 A JP S6059771A JP 58168745 A JP58168745 A JP 58168745A JP 16874583 A JP16874583 A JP 16874583A JP S6059771 A JPS6059771 A JP S6059771A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
buried layer
type
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58168745A
Other languages
Japanese (ja)
Other versions
JPH0312471B2 (en
Inventor
Hiroshi Iwasaki
博 岩崎
Shintaro Ito
伊東 新太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58168745A priority Critical patent/JPS6059771A/en
Publication of JPS6059771A publication Critical patent/JPS6059771A/en
Publication of JPH0312471B2 publication Critical patent/JPH0312471B2/ja
Granted legal-status Critical Current

Links

Classifications

    • H01L27/0921

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a semiconductor device of C-MOS transistor structure capable of completely preventing a latchup phenomenon by forming the high density first conductive type first buried layer and the second conductive type second buried layer selectively in the first on second conductive type semiconductor substrate. CONSTITUTION:Since the high density region of an N<+> type buried layer 13 exists in a base region in a vertical parasitic parasitic bipolar transistor Tv, its current amplification factor can be reduced sufficiently from 1. Even is the current amplification factor of lateral transistors Tl1, Tl2 increases as compared with 1 due to the non-formation of channel cut layers 22, 23, equivalent parasitic resistance of P-well region 16 and N type epitaxial layer 15 decreases by approximately several tens to hundreds times due to the presence of the layer 13 and a P<+> type buried layer 14. Thus, even when a surge current is externally inputted, a potential difference generated between the base and the emitter of parasitic lateral transistors Tl1, Tl2 becomes extremely low, thereby effectively preventing the latchup.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ラッチアップ」、象の低減された相補型電界
効果トランジスタを(<ifえた。!l鏡、・:、i;
体装置iJ%およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention provides a complementary field effect transistor with reduced latch-up.
The present invention relates to a body device iJ% and a manufacturing method thereof.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

相補型電界効果トランジスタの特にMOS 2’+’−
半導体装置ではいわゆるランチアップ現象しばしば問題
となる。このラッチアンプ現象というのは次のようなも
のである。すなわち、;r「1図に示すようにMO3型
半導体装置では、N形のウェル3内に形成されたNチャ
ネルMO3トランジスタのソース、PレインとなるK(
−拡散層4およびウェル3をそれぞれエミッタおよびベ
ースとし、N形のエピタキシャル/i’J 2およびN
形の半導体基板1をコレクタとする寄生バーチカルパイ
月?−ラトランノスクTvと、1虻拡故層4、P形のウ
ェル、9、N形のエピタキシャル層2をエミッタ、ベー
ス、コレクタとする寄生ラテラルパイ・J?〜ラトラン
ソスメTt1およびウェル3、エピタキシャル層2、P
拡散層5をコレクタ、ベース、エミッタとする寄生ラテ
ラルバイ、?−ラトランノスタTt2とが装置内に形成
される。そして、1\TチャネルMO3側の寄生パイポ
ーラトランクスメと、Pチャネル八40S側の寄生パイ
、J?−ラトランジスタとの電流増幅率の積が1よりも
大きい場合に外部よりザ〜ソ電流などが入力すると、上
記寄生・々イポーラトランノスタがザイリスタ動作をし
、外部嬬子と、装置内部との間に大電流が流れ、ついに
は、装置が破ト(される。このラッチアップ現象は装置
の電源を切る寸で続く。
Complementary field effect transistors, especially MOS 2'+'-
In semiconductor devices, the so-called launch-up phenomenon often becomes a problem. This latch amplifier phenomenon is as follows. That is, ;r "As shown in Figure 1, in the MO3 type semiconductor device, K(
- Using the diffusion layer 4 and the well 3 as emitters and bases, respectively, N-type epitaxial /i'J 2 and N
A parasitic vertical pi moon whose collector is the shaped semiconductor substrate 1? - Parasitic lateral pie J? with ratrannosk Tv, one diffusion layer 4, P-type well, 9, and N-type epitaxial layer 2 as emitter, base, and collector. ~Latransosme Tt1 and well 3, epitaxial layer 2, P
A parasitic lateral bypass with the diffusion layer 5 as the collector, base, and emitter? - latrannosta Tt2 is formed in the device. And the parasitic pi polar trunks on the 1\T channel MO3 side and the parasitic pi on the P channel 840S side, J? - If the product of the current amplification factor with the polar transistor is greater than 1 and a current is input from the outside, the parasitic/polar transistor operates as a zyristor, and the external transistor and the inside of the device A large current flows during this period, and the device is eventually destroyed. This latch-up phenomenon continues until the device is turned off.

なお、図ではウェー・上に形成される絶縁膜を省略して
ケ゛−ト電極cN+ GPを模式的に示す。
In the figure, the insulating film formed on the wafer is omitted and the gate electrode cN+GP is schematically shown.

従来このようなラッチアップ現象の対策として例えばN
形の半導体基板1にN形のエピタキシャル層2よりも高
濃度の基板を用いる場合があった。これにより、寄生ラ
テラルトランジスタの電流増11a率が低下し、ある程
度の効果は見られたがラッチアップを完全に防止するに
1は不十分であった。
Conventionally, as a countermeasure against such latch-up phenomenon, for example, N
In some cases, a substrate having a higher concentration than the N-type epitaxial layer 2 is used as the N-type semiconductor substrate 1 . As a result, the current increase rate 11a of the parasitic lateral transistor was reduced, and although some effect was seen, 1 was insufficient to completely prevent latch-up.

このような対策の他に、例えばPチャネルMO3)ラン
ノスタの形成されたN形のウェル下にこれより高濃度の
N+卯込層を設ける居合もあったが、これも不十分であ
った。(なお、これについてはIBM 、 Tech、
Di s、Bul Ietin、 vol、1(5゜N
o、8january 1974. pp2719−2
720に示されている。) 〔発明の目的〕 この発明は上記の点に鑑みてなされたもので、ラッチア
ンプ現象を完全に防止できる0MO3)・ランジスメ構
造の半導体装置を提供すると共に、その効率的な製造方
法を提供しようとするものである。
In addition to such countermeasures, for example, an N+ layer with a higher concentration than this was provided under the N-type well in which the P-channel MO3) runnostar was formed, but this was also insufficient. (For more information on this, please refer to IBM, Tech,
Dis, Bul Ietin, vol, 1 (5°N
o, 8 January 1974. pp2719-2
720. ) [Objective of the Invention] The present invention has been made in view of the above points, and it is an object of the present invention to provide a semiconductor device with an 0MO3) lunge structure that can completely prevent the latch amplifier phenomenon, and to provide an efficient manufacturing method thereof. That is.

〔発明の概要〕 すなわち、本発明の半導体装置によれば、第14電形あ
るいは第2導電形の半導体基板に速択的に高濃度の第1
導電形の第1埋込層および第2導電形の第2埋込層を設
け、上記基板上に第1導電形のピタキシャル層を形成す
る。そして、上記第2埋込層上に第2導電形のウェル領
域をこの埋込層に電気的に結合するように設け、上記第
1顆込1〜上のエピタキシャル層に第2導電形の第2拡
散層を、上記ウェル領域に第1導電形の第1拡散層をそ
れぞれ第2導電形チヤネルMOSトランソスクのソース
、ドレイン、第1導電形チヤネルMO8)ランノスタの
ソース、ドレインとして形成する。そして、上記エピタ
キシャル層上に所定のダート電極を%’5” )絶縁膜
を介して形成したものである。さらに、上記第2拡散層
が逆バイアスされる向きに電源の接続され上記第1埋込
層と連結した第1導電形の第1電流取出し部を第2導電
形チヤネルMO8)ランジスタ領域に、第1拡散層が逆
バイアスされる向きに電源の接続され上記第2埋込層と
連結した第2導電形の第2電流取出し部を上記第1導電
形チャネルHoS、)ランソスク領域にそれぞれ設ける
ようにすればよシ効果的である。
[Summary of the Invention] That is, according to the semiconductor device of the present invention, a highly concentrated first
A first buried layer of a conductivity type and a second buried layer of a second conductivity type are provided, and a pitaxial layer of the first conductivity type is formed on the substrate. A well region of a second conductivity type is provided on the second buried layer so as to be electrically coupled to the buried layer, and a well region of a second conductivity type is provided on the epitaxial layer above the first condyle 1. Two diffusion layers of the first conductivity type are formed in the well region as the source and drain of the second conductivity type channel MOS transistor, and the source and drain of the first conductivity type channel MO8) lannostar. Then, a predetermined dirt electrode is formed on the epitaxial layer via a %'5'') insulating film.Furthermore, the first buried electrode is connected to a power source in a direction in which the second diffusion layer is reverse biased. A first current extraction portion of the first conductivity type connected to the buried layer is connected to a power source in a direction in which the first diffusion layer is reverse biased to a second conductivity type channel MO8) transistor region and connected to the second buried layer. It is more effective if the second current extraction portions of the second conductivity type are provided in the first conductivity type channel HoS, ) Lansosk regions, respectively.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照してこの発明の一実施例につき述べる。 An embodiment of the present invention will be described below with reference to the drawings.

まず第2図+a)に示すように例えば基板0度1014
〜1015程度の低1.良度P型シリコン基板1ノ上に
拡散マスク用絶縁膜として例えばメ、゛1シ酪化、膜1
2を形成し、Pチャネルトランノスメ形成予定部下に和
尚する部位に開口部を設ける。そして、例えばsb (
アンチモン)或いはAs(ヒ素)を用いて例えば10〜
10 cm 8aの高Ck度のr埋込層13を上記基板
1ノに形成する。この?埋込層13の形成工程中に、上
記開口部上が熱酸化膜12□で覆われる。次にNチャネ
ルトランジスタ形成予定部下に当たる部位の熱酸化膜1
2に開口部を設け、例えばボロンのイオン注入或いはボ
ロンイオンを含むシリカガラス膜(いわゆるBSG膜)
12′を上記基板1ノ上に被着し、基板11内にボロン
を拡散させて例えば1017〜10”m−’程度の不純
物濃度を有する高台□、′2度のP埋込層14を形成す
る。
First, as shown in Figure 2+a), for example, the substrate 0 degree 1014
~1015 low 1. For example, as an insulating film for a diffusion mask on a high-quality P-type silicon substrate 1,
2, and an opening is provided at the site under which the P-channel trannosmation is planned to be formed. And, for example, sb (
For example, using antimony) or As (arsenic),
An r-buried layer 13 with a high Ck degree of 10 cm 8a is formed on the substrate 1. this? During the process of forming the buried layer 13, the above opening is covered with a thermal oxide film 12□. Next, the thermal oxide film 1 is located under the area where the N-channel transistor is to be formed.
2 with an opening, for example, by boron ion implantation or a silica glass film containing boron ions (so-called BSG film).
12' is deposited on the substrate 1, and boron is diffused into the substrate 11 to form a P buried layer 14 having an impurity concentration of, for example, about 1017 to 10''m-' and a height of 2 degrees. do.

次いで上記基板11上に形成されたj1〆を全て除去し
、第2図(b)に示すように、上記基板11上に例えば
層厚がおよそ1〜5μm1比抵抗1〜5Ω、d程度のN
形エピタキンヤル層15を堆積形成する。このエピタキ
シャル成長工程の際に、N+埋込層13およびP埋込層
14中の不純物がN形エピタキシャル層15中に主とし
て上方向に拡散される。
Next, all of the j1 film formed on the substrate 11 is removed, and as shown in FIG.
A shaped epitaxial layer 15 is deposited. During this epitaxial growth step, impurities in N+ buried layer 13 and P buried layer 14 are mainly diffused upward into N type epitaxial layer 15.

尚、上記のN形エピタキシャル層15の層厚、比抵抗等
の条件は一定の目安にすぎず、形成予定の素子の条件に
より適宜変更させるべきものである。
Note that the conditions such as the layer thickness and resistivity of the N-type epitaxial layer 15 described above are merely a guideline, and should be changed as appropriate depending on the conditions of the device to be formed.

次いで、このような半導体ウェハを用いて具体的な素子
の形成を行う。まず、第2図fc)に示すように、上記
ウェハ上に約xoooiの熱酸化jlq 122を形成
し、P埋込層14の上部に当たる部位に、メロンのイオ
ン注入を例えばドース量1〜5×10 国 、加速電圧
150 keVの条件で拐ち込み、例えば1100°〜
1200℃程度の熱拡散処理を行う。これによfi C
IvllO3トランジスタのNチャネルトランジスタ形
成領域としてP埋込層14上にこのP埋込層14を底部
とするようなPウェル領域16を形成する。
Next, specific elements are formed using such a semiconductor wafer. First, as shown in FIG. 2fc), thermally oxidized jlq 122 of about 10 countries, accelerating voltage under the condition of 150 keV, e.g. 1100° ~
A thermal diffusion treatment is performed at approximately 1200°C. This is fi C
A P well region 16 is formed on the P buried layer 14 as an N channel transistor formation region of the IvllO3 transistor, with the P buried layer 14 as the bottom.

次いで、N+埋込層13上のエピタキシャルI’、21
5表面の一部からN形不純物の高t1度で深い拡散を行
いN+埋込層13に連結するN+電流取り出し部18を
形成する。同様にしてPウェル領域16表面の一部から
P形不純物の高濃度で深い拡散を行いP+埋込層14に
連結するP+電流取シ出し部19を形成する。
Next, the epitaxial layer I′, 21 on the N+ buried layer 13 is
N-type impurity is deeply diffused from a part of the surface of 5 at a height of t1 degree to form an N+ current extraction portion 18 connected to the N+ buried layer 13. Similarly, P type impurity is deeply diffused from a part of the surface of the P well region 16 at a high concentration to form a P+ current extraction portion 19 connected to the P+ buried layer 14.

次に上記熱酸化膜122を除去した後第2図(ωに示す
ように、ウェハ上面〈新たに形成した熱酸化膜123上
に例えばシリコン窒化膜など、フィールド酸化用の非酸
化性膜2)を積層形成し、この積層膜を所定形状に・ぐ
ターニングする。
Next, after removing the thermal oxide film 122, as shown in FIG. 2 (ω), the upper surface of the wafer is formed. The laminated film is formed into a laminated film and turned into a predetermined shape.

尚、必要であれば適宜フィールr反転防止用の選択イオ
ン注入(チャネルカットインプラ)をN形エビメキシャ
ル層15表面にはN形不純物で、Pウェル領域16表面
にはP形不純物を用いて施し、それぞれN形チャネルカ
ット層22、P形チャネルカット層23を形成する。そ
して、例えば900℃〜1000℃の低温で、上記非酸
化性膜2ノをマスクとした選択酸化を行い、第2図(e
)に示すように厚い07〜10μm程度の膜厚のフィー
ルド酸化膜24を形成する。
Incidentally, if necessary, selective ion implantation (channel cut implantation) for preventing field r inversion is performed as appropriate using N-type impurities on the surface of the N-type evimexial layer 15 and P-type impurities on the surface of the P well region 16. An N-type channel cut layer 22 and a P-type channel cut layer 23 are formed, respectively. Then, selective oxidation is performed at a low temperature of, for example, 900°C to 1000°C, using the non-oxidizing film 2 as a mask, as shown in FIG.
), a field oxide film 24 having a thickness of approximately 0.7 to 10 μm is formed.

次いで、前記非酸化性膜2ノおよび熱酸化膜123 を
除去し、露出したシリコン表面にケ゛−1・用の熱酸化
Lb! 12gを形成する。さらに適宜トランジスタの
1用値制御のためのイオン注入をIVIOS )ランラ
スタ形成予定部領域に施す。尚、この1用値制御のため
のイオン注入はP形の場合もN形の場合もあり、場合に
よっては同一領域にP形、1・J形の両方のイオン注入
を深さ方向に打ち分けて行う場合もある。
Next, the non-oxidizing film 2 and the thermally oxidized film 123 are removed, and thermally oxidized Lb for Case 1 is applied to the exposed silicon surface. Forms 12g. Further, appropriate ion implantation for controlling the transistor value is performed in the region where the run raster is to be formed. Note that the ion implantation for this 1 value control may be of P type or N type, and in some cases both P type and 1/J type ion implantation may be implanted in the same area in the depth direction. Sometimes it is done by

しかる後に第2図(f)に示すようにウエノ・上面に高
り;3度のN形不純物をドー70したポリシリコンIf
’:¥ t M着しr−ト電極・ぐベースにパターニン
グすることにより、ダーI−電極25p 、25Hをダ
ート用の熱酸化膜12g上に形成する。
After that, as shown in FIG. 2(f), a layer of polysilicon If doped with 3 degrees of N-type impurity is formed on the top surface.
By patterning the M-deposited r-to-electrode base, the dark I-electrodes 25p and 25H are formed on the dirt thermal oxide film 12g.

その後、ケ9−ト電極25P 、25Nの表面を熱酸化
し、熱酸化膜124で覆う。次いで、このダ−) ’I
!li、極25P、25Nとフィールド酸化膜24を用
いたセルフアラインメント(自己整合)技術により、N
形エピタキシャル層15の素子領戟浣例えば?ロンの選
択イオン注入を施し、Pウェル領域161′I:は例え
ばヒ素のイオン注入を施す。そして、熱処理により注入
不純物の活性化を行って、N形エピタキシャル層15に
Pチャネルトランジスタのソース、ドレインとなるp4
−拡散層26P、Pウェル領域16にはNチャネルトラ
ンジスタのソース、ドレインとなる耐拡散層26Nをそ
れぞれ形成する。
Thereafter, the surfaces of the gate electrodes 25P and 25N are thermally oxidized and covered with a thermal oxide film 124. Then this da-) 'I
! N
For example, what is the device area of the shaped epitaxial layer 15? For example, arsenic ion implantation is performed in the P well region 161'I:. Then, the implanted impurity is activated by heat treatment, and the p4 which becomes the source and drain of the P-channel transistor is formed in the N-type epitaxial layer 15.
- In the diffusion layer 26P and the P-well region 16, anti-diffusion layers 26N, which become the source and drain of the N-channel transistor, are formed, respectively.

次いで、第2図fg) K示すようにウェー・の上面に
パシベーション膜27を全面に准積させた後、電極取り
出し用のコンタクトホールを・?ターニングにより設け
る。そして最後に、ウェー・上に金属膜を被着し、パタ
ーニングすることによって、所定の電極29および、配
線を形成し、CMO8型半導体装置が完成する。
Next, as shown in Fig. 2 (fg) K, a passivation film 27 is deposited on the entire surface of the wafer, and then a contact hole for taking out the electrode is made. Provided by turning. Finally, a metal film is deposited on the wafer and patterned to form predetermined electrodes 29 and wiring, completing a CMO8 type semiconductor device.

〔発明の効果〕〔Effect of the invention〕

まず、上記のようにNチャネルMOSトランジスタ側に
P埋込層14、PチャネルMO8トランジスタ側に耐埋
込層13を設けることにより、次のような改善がみられ
る。すなわち、第2図Fg+において従来ラッチアップ
現象に大きく作用していたPチャネルMOSトランジス
タ側のP拡yy I<i 26pをエミッタ、N形エピ
タキシャル層15およびN+埋込層13をペース拡散領
域とし、基板1ノをコレクタとするバーチカル形の寄生
パイ号?−ラトランジスタTvにおけるペース領域に耐
埋込層13の高濃度領域が存在するため、その電流増1
冨率hFEを十分に1より小さくできる。
First, by providing the P buried layer 14 on the N-channel MOS transistor side and the buried anti-buried layer 13 on the P-channel MO8 transistor side as described above, the following improvements can be seen. That is, in FIG. 2 Fg+, the P expansion yy I<i 26p on the P channel MOS transistor side, which conventionally had a large effect on the latch-up phenomenon, is used as the emitter, the N type epitaxial layer 15 and the N+ buried layer 13 are used as the pace diffusion region, Vertical parasitic pi-no. with board 1 as collector? - Since there is a high concentration region of the anti-buried layer 13 in the space region of the transistor Tv, the current increases by 1
The wealth factor hFE can be made sufficiently smaller than 1.

従って、P+拡散層26 pをエミッタ、N形エピタキ
ンヤル層15をベースとし、Pウェル領域16をコレク
タとするラテラル形の寄生バイアj?−ラトランジスタ
Tt2の電流増幅率の方が・9−デカル形の寄生パイ号
?−ラトランソスタTvの電流増幅率よりも高くなり、
このラテラル形の寄生トランジスタTL2がランチアッ
プ現象の原因として支配的となる。
Therefore, a lateral parasitic via j? with the P+ diffusion layer 26 p as the emitter, the N type epitaxial layer 15 as the base, and the P well region 16 as the collector. -Is the current amplification factor of the transistor Tt2 higher than the parasitic pi of the 9-decal type? -It becomes higher than the current amplification factor of Latransostor Tv,
This lateral type parasitic transistor TL2 is the dominant cause of the launch-up phenomenon.

しかしながら、このP+拡散層26Pは拡散深さが浅く
、また通常、例えばリンを用いた高濃度Oty形チャネ
ルカット層22がこのラテラルラ[ユ害生トランソスタ
Tj2のベースに存在するため、この寄生トランジスタ
Tt2の丁攬流増幅率を容易に1以下にすることができ
る。
However, this P+ diffusion layer 26P has a shallow diffusion depth, and since a high concentration Oty type channel cut layer 22 using, for example, phosphorus is normally present at the base of this lateral transaster Tj2, this parasitic transistor Tt2 The current amplification factor can be easily reduced to 1 or less.

一方、NチャネルMO8rランノスメ側には、耐拡散層
26Nをエミッタ、Pウェル領域16をベース、N形エ
ピタキシャル層15をコレクタとする寄生ラテラルトラ
ンジスタTt1が形成されるが、このラテラルトランジ
スタTA、の電流増幅率も上記ラテラルトランジスタT
t2の場合と同様ペースとなる部位に存在するP形チャ
ネルカット層23により、1以下に抑えこむことは容易
である。
On the other hand, a parasitic lateral transistor Tt1 having the anti-diffusion layer 26N as an emitter, the P-well region 16 as a base, and the N-type epitaxial layer 15 as a collector is formed on the N-channel MO8r running side. The amplification factor is also the same as the above lateral transistor T.
As in the case of t2, it is easy to suppress the value to 1 or less due to the P-type channel cut layer 23 existing in the portion serving as the pace.

従って、ラッチアップ現象の発生条件であるNチャネル
MO8)ランジスク側の寄生パイポーラトランジスタと
Pチャネル1.10S トランジスタ側の寄生パイポー
ラトランジスタとの電流増幅率の積が1以上という条件
が満たされず、ラッチ現象を防止できる。
Therefore, the condition for the occurrence of the latch-up phenomenon that the product of the current amplification factors of the parasitic bipolar transistor on the N-channel MO8) transistor side and the parasitic bipolar transistor on the P-channel 1.10S transistor side is not satisfied, Latch phenomenon can be prevented.

また、仮に、チャネルカンl−J脅22 、2 、?を
形成しないことなどにより、チャネルカット、lフ22
,23の効呆が薄く、ラテラルトランノスタ”1 + 
Tt2の電流増幅率が1より大きくなり、上述のラッチ
アップ発生灸件が満たされた場合でちっても、低抵抗の
?埋込Ji13およびP+埋込層14の存在により、P
ウェル領域16およびN形エピタギシャル1層15の等
価的な寄生抵抗が従来よりも1桁〜2桁程度低くなる。
Also, suppose Channel Kan l-J threat 22, 2,? By not forming a channel cut,
, 23's effectiveness is weak, lateral transnosta "1 +
Even if the current amplification factor of Tt2 becomes larger than 1 and the above-mentioned latch-up generation conditions are met, the low resistance? Due to the presence of the buried Ji 13 and the P+ buried layer 14, P
The equivalent parasitic resistance of the well region 16 and the N-type epitaxial layer 15 is lowered by about one to two orders of magnitude than in the prior art.

これにより、サージ電流が外部より入力した場合でも寄
生ラテラルトランジスタTt1.Tt2のベース、エミ
ッタ間に発生する電位差が極めて小さくなり、ラッチア
ップを効果的に防止できる。
As a result, even if a surge current is input from the outside, the parasitic lateral transistor Tt1. The potential difference generated between the base and emitter of Tt2 becomes extremely small, and latch-up can be effectively prevented.

加して、第2図(g)の装置ではN形エピタキシャル居
15およびPウェル領域16内に、N+埋込層13およ
びP+ W地層ノ4に連結し且つそれぞれ正電源−およ
び接地電源に接続された?電流域り出し部18およびP
+電流取り出し部19が形成されている。これにより、
例えばPウェル領域16に注入されたサージ電流は、P
電流域り出し部19からだけでな(、Pウェル領域16
の底部となるように広い領域に渡って形成さItたP+
埋込層14からも吸収され効果的である。
In addition, in the device of FIG. 2(g), in the N-type epitaxial region 15 and the P-well region 16, there are connected to the N+ buried layer 13 and the P+ W layer 4, and to the positive power supply - and the ground power supply, respectively. Was it done? Current area extraction part 18 and P
+A current extraction portion 19 is formed. This results in
For example, the surge current injected into the P well region 16
Not only from the current area extraction portion 19 (, P well region 16
It was formed over a wide area to be the bottom of P+
It is also effectively absorbed from the buried layer 14.

同様のことはPチャネルMO8)ランノスタ側でも言え
、素子領域における等価的な寄生抵抗を極めて小さくで
きる。
The same thing can be said about the P-channel MO8) Runnostar side, and the equivalent parasitic resistance in the element region can be made extremely small.

また、上記実施例に示した製造方法によれば、上記のよ
うに優れたラッチアップ防止機能を有するCMO8型の
半導体装置を能率的に製造できる。
Further, according to the manufacturing method shown in the above embodiment, a CMO8 type semiconductor device having an excellent latch-up prevention function as described above can be efficiently manufactured.

尚、上記実施例では、半導体基板1ノとしてP形のもの
を用いる場合を示したが、例えばN形の半導体基板を用
いて、このN形の基板上にN形のエピタキシャル層を形
成し、以下上記実施例と同様にして装置を製造してもよ
い。
In the above embodiment, a P-type semiconductor substrate 1 is used, but for example, an N-type semiconductor substrate is used, and an N-type epitaxial layer is formed on this N-type substrate. Hereinafter, the device may be manufactured in the same manner as in the above embodiment.

また、上記実施例と各部の導電形を全く逆形にして形成
してもよい。
Further, the conductivity type of each part may be completely reversed to that of the above embodiment.

以上のように本発明によれば、上記のように優れたラッ
チアップ防止機能を有するCMO3型の半導体装置を提
供できると共にその能率的な製造方法を提供することが
できる。
As described above, according to the present invention, it is possible to provide a CMO3 type semiconductor device having an excellent latch-up prevention function as described above, and also to provide an efficient manufacturing method thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置の断面構造を示す図、第2図
は本発明の一実施例に係る半導体装置の断面構造を製造
工程順に示す図である。 11・・・半導体基板、13・・・虻埋込層、14・・
・P+埋込層、15・・・エピタキシャル層、16・・
・Pウェル領域、18・・・N+電電流り出し部、19
・・・P″−電流域)出し部、24・・・フィールド酸
化膜、25F、25N・・・ダート電極、26p・・・
P4−拡散層、26N・・・N” 拡散M、27・・・
パシベーション膜。
FIG. 1 is a diagram showing a cross-sectional structure of a conventional semiconductor device, and FIG. 2 is a diagram showing a cross-sectional structure of a semiconductor device according to an embodiment of the present invention in the order of manufacturing steps. 11... Semiconductor substrate, 13... Horsefly buried layer, 14...
・P+ buried layer, 15... epitaxial layer, 16...
・P well region, 18...N+ current output portion, 19
...P''-current area) output part, 24...field oxide film, 25F, 25N...dirt electrode, 26p...
P4-diffusion layer, 26N...N" Diffusion M, 27...
passivation film.

Claims (5)

【特許請求の範囲】[Claims] (1)半導体基板と、この基板上の異なる領域に形成さ
れた高濃度で第1導電形の第1埋込層および高濃度で第
2導電形の第2埋込層と、上記基板上に形成された第1
導電形のエピタキシャル層と、上記第2埋込層上の上記
エピタキシャル層に第2埋込層と接するように形成され
た第2導電形のウェル領域と、上記第1埋込層上のエピ
タキシャル層内忙形成された高濃度で第1等電形の第1
電流取出し部と、上記ウェル領域内に形成された高濃度
で第2導電形の第21匡流取出し部と、このウェル領域
の表面領域に所定間隔離間して形成された1対の第1導
電形の第1拡散層と、上記第1埋込層上のエピタキシャ
ル層の表面領域−所定間隔離間して形成された1対の第
2導電形の第2拡散層と、上記ウェル領域の第1拡散層
間上にダート絶縁膜を介して形成された第1ダート電極
と、上記エピタキシャル領域の第2拡散層間上にケ゛−
トKAf、汝1i、131を介して形成された第2ゲー
ト電極とを具(オii したことを特徴とする半導体装
置。
(1) A semiconductor substrate, a first buried layer with a high concentration of a first conductivity type, and a second buried layer with a high concentration of a second conductivity type, which are formed in different regions on the substrate; The first formed
an epitaxial layer of a conductivity type, a well region of a second conductivity type formed in the epitaxial layer on the second buried layer so as to be in contact with the second buried layer, and an epitaxial layer on the first buried layer. The first of the first isoelectric type at high concentration was formed internally.
a current extraction section, a high concentration, second conductivity type 21st current extraction section formed in the well region, and a pair of first conductivity formed at a predetermined distance in the surface area of the well region. a pair of second diffusion layers of a second conductivity type formed at a predetermined distance from the surface region of the epitaxial layer on the first buried layer; A first dirt electrode is formed between the diffusion layers via a dirt insulating film, and a dirt electrode is formed between the second diffusion layers in the epitaxial region.
1. A semiconductor device comprising a second gate electrode formed via a gate KAf, a second gate electrode 131,
(2)上記第1導電形の第1電流取出し部は、上記第1
埋込層と連結している仁とを特徴とする特許請求の範囲
第1項記載の半導体装置。
(2) The first current extraction portion of the first conductivity type is the first current extraction portion of the first conductivity type.
2. The semiconductor device according to claim 1, further comprising a layer connected to the buried layer.
(3)上記第2導電形の第2電流取出し部は、上記第2
埋込層と連結していることを特徴とする特許請求の範囲
第1項または第2項、1ピ載の半導体装置。
(3) The second current extraction portion of the second conductivity type is
A 1-pin semiconductor device according to claim 1 or 2, characterized in that the semiconductor device is connected to a buried layer.
(4)上記第1導電形の第1電流取出し部は、上記第2
拡散層が逆バイアスされる向きの電源に接続され、上記
第2導電形の第2電流取出し部は上記第1拡散層が逆バ
イアスされる向きの電源にそれぞれ接続されていること
を特徴とする特許請求の範囲第1項乃至第3項いずれか
記載の半導体装置。
(4) The first current extraction portion of the first conductivity type is connected to the second current extraction portion of the first conductivity type.
The diffusion layer is connected to a power source in a direction in which the diffusion layer is reverse biased, and the second current extraction portions of the second conductivity type are each connected to a power source in a direction in which the first diffusion layer is reverse biased. A semiconductor device according to any one of claims 1 to 3.
(5)半導体基板の互いに異なる領域に高Ga度の第1
導電形の第1埋込層および高濃度の第2尋電形の第2埋
込層を94択的に形成する工程と、。 上記半導体基板上に第1導電形のエピタキシャル層を形
成する工程と、上記第2埋込層上にこの埋込1層を底部
とする第2 ;、7 ffi形の第2ウエル領域を形成
する工程と、上記第1 !+I↓込層上のエピタキシャ
ル層に高濃度で第1導電形の第1電流取出し部を形成す
る工程と、上記第2埋込層上のウェル領域に高濃度で第
2導電形の第2電流取出し部を形成する工程と、上記第
1狸込層上オよび上記ウェル領域上のエビタギシャルn
上の所定の部位にケ゛−ト絶縁膜を介してダート電極を
形成する工程と、これらのり°゛−ト電極マスクの1部
として上記第1埋込層上のエピタキシャル層上に所定間
隔1シ1c間した1対の第2導/Ff形の第2拡散層を
、上記第2埋込層上のウェル領域に所定間隔離間した1
対の第1導電形のm 1拡散層をそれぞれ形成する工程
とを具備したことを特徴とする半導体装+f/、1.の
製造方法。
(5) A first layer with a high Ga content in different regions of the semiconductor substrate.
a step of selectively forming a first buried layer of conductive type and a second buried layer of high concentration second conductive type; forming an epitaxial layer of a first conductivity type on the semiconductor substrate; and forming a second well region of a second conductivity type on the second buried layer with the buried first layer as a bottom. The process and the above 1st! +I↓A step of forming a first current extraction portion of the first conductivity type with a high concentration in the epitaxial layer on the buried layer, and a step of forming a second current of the second conductivity type with a high concentration in the well region on the second buried layer. a step of forming a take-out portion;
A step of forming a dirt electrode at a predetermined location on the upper layer via a gate insulating film, and a step of forming a dirt electrode at a predetermined interval on the epitaxial layer on the first buried layer as a part of the dirt electrode mask. A pair of second conductive/Ff type second diffusion layers spaced apart from each other by a predetermined distance in the well region on the second buried layer.
1. forming a pair of m1 diffusion layers of the first conductivity type; manufacturing method.
JP58168745A 1983-09-13 1983-09-13 Semiconductor device and manufacture thereof Granted JPS6059771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58168745A JPS6059771A (en) 1983-09-13 1983-09-13 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58168745A JPS6059771A (en) 1983-09-13 1983-09-13 Semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6059771A true JPS6059771A (en) 1985-04-06
JPH0312471B2 JPH0312471B2 (en) 1991-02-20

Family

ID=15873625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58168745A Granted JPS6059771A (en) 1983-09-13 1983-09-13 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6059771A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5086006A (en) * 1984-12-11 1992-02-04 Seiko Epson Corporation Semiconductor device and method of production
US5190886A (en) * 1984-12-11 1993-03-02 Seiko Epson Corporation Semiconductor device and method of production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987850A (en) * 1982-11-11 1984-05-21 Matsushita Electronics Corp Semiconductor device
JPS59222957A (en) * 1983-06-02 1984-12-14 Matsushita Electronics Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987850A (en) * 1982-11-11 1984-05-21 Matsushita Electronics Corp Semiconductor device
JPS59222957A (en) * 1983-06-02 1984-12-14 Matsushita Electronics Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5086006A (en) * 1984-12-11 1992-02-04 Seiko Epson Corporation Semiconductor device and method of production
US5190886A (en) * 1984-12-11 1993-03-02 Seiko Epson Corporation Semiconductor device and method of production

Also Published As

Publication number Publication date
JPH0312471B2 (en) 1991-02-20

Similar Documents

Publication Publication Date Title
EP0110313B1 (en) Semiconductor integrated circuit device and a method for manufacturing the same
JP2660056B2 (en) Complementary MOS semiconductor device
JPS6080267A (en) Semiconductor ic device and manufacture thereof
JPH0510828B2 (en)
US4710477A (en) Method for forming latch-up immune, multiple retrograde well high density CMOS FET
JPS6273655A (en) Highly planar integrated circuit structure
JPH0628298B2 (en) CMOS FET and manufacturing method thereof
JP3400891B2 (en) Semiconductor storage device and method of manufacturing the same
JPH0557741B2 (en)
JPS60163452A (en) Integrated circuit with bipolar device and field effect device and method of producing same
JPH09246403A (en) Manufacture of semiconductor device
JPS58170048A (en) Semiconductor device
US5834811A (en) Salicide process for FETs
JPS6072255A (en) Semiconductor ic device and manufacture thereof
JPS6059771A (en) Semiconductor device and manufacture thereof
JPH02101747A (en) Semiconductor integrated circuit and manufacture thereof
GB2314680A (en) Semiconductor device with triple well structure
JPH05102475A (en) Semiconductor device and manufacture thereof
JP3443069B2 (en) Method for manufacturing semiconductor device
JPS6244861B2 (en)
JPS6230363A (en) Semiconductor device
JP3153358B2 (en) Method for manufacturing semiconductor device
US5008724A (en) Semiconductor device
JPH0358172B2 (en)
JP3253712B2 (en) Method for manufacturing semiconductor device