JPS6057165B2 - cable conductor - Google Patents
cable conductorInfo
- Publication number
- JPS6057165B2 JPS6057165B2 JP53132333A JP13233378A JPS6057165B2 JP S6057165 B2 JPS6057165 B2 JP S6057165B2 JP 53132333 A JP53132333 A JP 53132333A JP 13233378 A JP13233378 A JP 13233378A JP S6057165 B2 JPS6057165 B2 JP S6057165B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- conductor
- cupric oxide
- cable conductor
- oxide film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Non-Insulated Conductors (AREA)
- Insulated Conductors (AREA)
- Processes Specially Adapted For Manufacturing Cables (AREA)
Description
【発明の詳細な説明】
この発明は電力ケーブルに用いられる大サイズ導体の改
良、特に分割圧縮整型撚線導体の改良に関するものてあ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in large-sized conductors used in power cables, and in particular to improvements in split compression shaped stranded conductors.
近年送電容量の増加にともなつて、電力ケーブルの導体
のサイズは大きくなり、5000〜6000Troiの
ものが実用化されつゝある。In recent years, with the increase in power transmission capacity, the size of the conductor of power cables has increased, and cables with a diameter of 5,000 to 6,000 Troi are being put into practical use.
この場合、表皮効果、近接効果などによる交流損が大き
な問題となり、この対策として多分割導体、素線絶縁な
どが考えられてきた。In this case, alternating current loss due to skin effect, proximity effect, etc. becomes a major problem, and multi-segmented conductors, wire insulation, etc. have been considered as countermeasures.
第1図に導体断面積と表皮効果係数との関係を示したが
、導体が大サイズになる程素線絶縁の効果が著るしいこ
とが判つた。FIG. 1 shows the relationship between the conductor cross-sectional area and the skin effect coefficient, and it was found that the larger the conductor size, the more significant the effect of wire insulation becomes.
ところで、この素線絶縁にはこれまでエナメルコーティ
ングを用いることが考えられ、近接効果、表皮効果にも
有効であることは認められたが、このエナメルコーティ
ングによる素線絶縁は所定の特性を得るためには、コー
ティング材料の選定とともに34〜64μmという比較
的肉厚の皮膜として被覆しなければならないため、素線
の仕上り外径が大きくなりひいてはこれをより合わせた
導体外径が大きくなる。By the way, it has been thought to use enamel coating to insulate this wire, and it has been recognized that it is effective against the proximity effect and skin effect, but it is difficult to insulate wire with this enamel coating in order to obtain the specified characteristics. In order to do this, it is necessary to select a coating material and apply a coating with a relatively thick film of 34 to 64 μm, which increases the finished outer diameter of the strands and, in turn, increases the outer diameter of the twisted conductor.
これは例えば2500粛のケーブル導体の場合、エナメ
ルの使用により外径が約3Tfgn(300m!i相当
)増加し、更に素線にエナメルをコーティングする工程
に手数がかかり、価格も高くなる。又、スリーブ圧着接
続の場合には、接続部分のエナメル皮膜を完全に除去す
る必要があり、この除去作業は薬品を用いるため非常に
手数がかかる。For example, in the case of a cable conductor of 2,500 mm, the outer diameter increases by about 3 Tfgn (equivalent to 300 m!i) due to the use of enamel, and the process of coating the wire with enamel takes time and increases the price. In addition, in the case of sleeve crimping connection, it is necessary to completely remove the enamel film on the connection part, and this removal work uses chemicals and is very time-consuming.
一方、熔接接続の場合にはマンホール内で作業するとき
に、エナメルの熱分解による有害ガスを多量に発生する
結果大がかりな排ガス装置を必・要とする。更にエナメ
ル皮膜による素線絶縁では、ステンレステープ巻および
内部遮蔽層と内部の導体とが絶縁されるため、通常のケ
ーブルでは発生しない異常電圧により放電が生じ、エナ
メル皮膜の熱分解劣化を起すおそれがある。On the other hand, in the case of welded connections, when working inside a manhole, a large amount of harmful gas is generated due to thermal decomposition of the enamel, resulting in the need for a large-scale exhaust gas system. Furthermore, with wire insulation using enamel coating, the stainless steel tape wrapping and internal shielding layer are insulated from the internal conductor, so there is a risk that abnormal voltages that do not occur in normal cables may cause electrical discharge, leading to thermal decomposition deterioration of the enamel coating. be.
などの理由により実用化されるには至らなかつた。この
発明は特にケーブル導体として銅素線を用い、分割圧縮
整型撚線導体とするとともに半導電領域の酸化第二銅皮
膜による素線絶縁が前述のエナメル皮膜による素線絶縁
の欠点を解消し、表皮効果、近接効果に有効なケーブル
導体を提供することに成功したものである。For these reasons, it was not put into practical use. In particular, this invention uses a copper wire as a cable conductor, makes it a split compression shaped stranded wire conductor, and insulates the wire with a cupric oxide film in the semiconducting region, which eliminates the drawbacks of the wire insulation with an enamel film described above. , we succeeded in providing a cable conductor that is effective against skin effect and proximity effect.
即ち、酸化第二銅の体積抵抗率が半導電領域の値である
ことが、本発明の目的である表皮効果の低減、および本
発明の対象である分割、圧縮整型された撚線導体という
構造との関係において特に実効性がある。In other words, the volume resistivity of cupric oxide is in the semiconducting region, which is the object of the present invention to reduce the skin effect, and the object of the present invention is the stranded wire conductor that has been split and compressed. It is particularly effective in relation to structure.
つまり、分割部分を構成する大きさが順次小さくなつて
いく各扇形部分は酸化第二銅によつて互いに絶縁されて
いて、かつ一定長(通常20〜30C!n)のピッチで
より合わされていて、かつこの各扇形部分はその外周、
内周が上記酸化第二銅の半導電抵抗で被覆されているこ
とによつて銅素線の長手方向抵抗に比べ素線間の抵抗が
十分大きくなるので、銅素線が電気的に独立した状態と
みなせ、かつ素線がより線構造となつているので、上記
各扇形部分は等価的にほぼ均一なインダクタンス分を持
つことができるので、分割部分について各扇形部分に均
一に電流が流れて、表皮効果の低減が効果的にできる。In other words, the fan-shaped parts that make up the divided parts are insulated from each other by cupric oxide, and are twisted together at a pitch of a fixed length (usually 20 to 30 C!n). , and each fan-shaped part of this is its outer periphery,
Since the inner periphery is coated with the cupric oxide semiconducting resistor, the resistance between the strands is sufficiently larger than the resistance in the longitudinal direction of the copper strands, so the copper strands are electrically independent. Since the strands have a stranded wire structure, each of the sector-shaped parts described above can equivalently have an approximately uniform inductance, so current flows uniformly to each sector-shaped part of the divided part. , the skin effect can be effectively reduced.
この半導電領域の抵抗値であつても本願発明の対象であ
る上述した構造において導体を構成する各銅素線間では
その電位差が1mV程度と低いも.のであるから、この
電圧に対し絶縁できるのに十分な抵抗値である。導体に
高電圧が印加されても、電位分担が微少であるから異常
電圧、充電電流に起因する放電の発生が防げる。以上を
満足するためには体積抵抗率はたとえ膜ζ厚を考慮して
もρ=101〜1σΩ.C77!程度であれば十分であ
る。Even with the resistance value of this semiconducting region, the potential difference between each copper wire constituting the conductor in the above-mentioned structure, which is the object of the present invention, is as low as about 1 mV. Therefore, the resistance value is sufficient to insulate against this voltage. Even if a high voltage is applied to the conductor, the potential sharing is small, so the occurrence of discharge due to abnormal voltage or charging current can be prevented. In order to satisfy the above requirements, the volume resistivity must be ρ=101 to 1σΩ even if the film ζ thickness is taken into account. C77! It is sufficient if it is of a certain extent.
更に上記におい−て述べたごとく、本発明では放電が生
じないが、従来のエナメル皮膜による絶縁はエナメル皮
膜の体積抵抗率p″がρ″=1013〜・1015Ω.
Cmと高く被覆厚も厚く、容量分布となり電圧分担が高
くなるため、導体を構成する素線間で放電が生じ、導体
の接触抵抗が零となり、皮膜を設けた意味がなくなり、
劣化ガス(例えば0Fケーブルの場合C2H2等)が発
生し、絶縁油を劣化させたり、同様に絶縁体を劣化させ
たりしたが、本願発明における半導電領域の抵抗を有す
る酸化第二銅皮膜ではこのようなことは起らない。Furthermore, as mentioned above, no discharge occurs in the present invention, but in the conventional insulation using an enamel film, the volume resistivity p'' of the enamel film is ρ''=1013 to 1015 Ω.
Cm is high and the coating thickness is thick, resulting in capacitance distribution and high voltage sharing, so discharge occurs between the strands that make up the conductor, the contact resistance of the conductor becomes zero, and there is no point in providing a coating.
Degrading gases (for example, C2H2, etc. in the case of 0F cables) are generated and deteriorate the insulating oil and the insulator as well, but the cupric oxide film of the present invention having a resistance in the semi-conducting range can overcome this problem. Nothing like that happens.
本発明で用いられる素線絶縁は第2図に見る如く、銅素
線12に酸化第二銅皮膜14を設けて素線絶縁線10を
構成しており、たとえば銅素線12を30(代)以上に
加熱して、その表面に酸化第二銅の皮膜14を形成する
か、他の化学酸化の手ノ法、例えば亜塩素酸ナトリウム
と力性ソーダの酸化剤混合液中に銅素線を浸漬させるこ
とにより、表面酸化を行ない酸化第二銅皮膜を形成した
銅素線即ち素線絶縁線を得ることができる。このように
銅素線上に酸化第二銅皮膜を形成す・る手段は極めて簡
単で、その皮膜厚も薄く、強じんで他の銅素線と一体化
しており、機械的な摩擦、屈曲などで剥離するおそれも
なく化学的にも安定て熱的にも強く、しかも素線絶縁に
充分な性能を有する体積抵抗率度〜1σΩ.Cmを有す
るものであり、半導電性であるために従来通りの導体遮
蔽設計ができる。As shown in FIG. 2, the wire insulation used in the present invention comprises a copper wire 12 coated with a cupric oxide film 14 to form a wire insulated wire 10. ) or above to form a cupric oxide film 14 on the surface, or use other chemical oxidation techniques, such as placing the copper wire in an oxidizing agent mixture of sodium chlorite and hydric soda. By immersing the copper wire, it is possible to obtain a copper wire, that is, a wire insulated wire, whose surface is oxidized and a cupric oxide film is formed. The method of forming a cupric oxide film on a copper wire is extremely simple, the film is thin, and it is strong and integrated with other copper wires, so it is not susceptible to mechanical friction, bending, etc. It is chemically stable and thermally strong without fear of peeling, and has a volume resistivity of ~1σΩ, which has sufficient performance for strand insulation. Cm and is semiconductive, allowing conventional conductor shielding design.
これに対し、酸化第一銅皮膜は1CP〜1σΩ.Cj!
の体積抵抗率て機械的にも弱く、化学的にも不安定て耐
熱性も悪く、素線絶縁に好ましい表面抵抗を有するもの
は得られないので素線絶縁に採用することができず、又
、通常酸化銅皮膜と称されている酸化第一銅皮膜を包含
する皮膜はこれまた前述の如き好ましくない特性を有す
るところから素線絶縁には採用し得ない。On the other hand, the cuprous oxide film has a resistance of 1CP to 1σΩ. Cj!
Its volume resistivity is mechanically weak, chemically unstable, and has poor heat resistance, and it cannot be used for wire insulation because it cannot obtain a surface resistance suitable for wire insulation. Coatings including cuprous oxide coatings, which are commonly referred to as copper oxide coatings, also have the aforementioned unfavorable properties and cannot be used for wire insulation.
本発明ではこのような酸化第二銅皮膜を設けた銅素線を
用い、例えば第3図に見られるように、ケーブル導体を
構成するものである。In the present invention, a copper wire provided with such a cupric oxide film is used to construct a cable conductor, as shown in FIG. 3, for example.
即ち複数本の銅素線を撚り合わせて圧縮整型してセグメ
ント20を構成しているが、この各セグメント20の表
面より第2層22の銅素線は酸化第二銅皮膜を有する絶
縁素線10よりなり、表面第1層26及び内層24は通
常の銅素線からなるものである。なお、図ではセグメン
トの数が6ケであるが、これに限られるものではない。
又、酸化第二銅皮膜を有する素線はセグメント20の表
面以外でも各セグメントて互に同じ撚線層の位置に配置
しておればよく、又、例えば全体を酸化第二銅皮膜を有
する素線としてもよいことは勿論である。上記のように
本発明は銅素線を用いたケーブル導体の構造が分割導体
であり、かつ酸化第二銅皮膜による素線絶縁線を各セグ
メントに少くも一層同じ撚線層の位置に導体中に配設し
てあることにより、近接効果を小さくおさえることがで
きる外、特に他に考えられる素線絶縁とは異なり、薄く
て安定でしかも製造容易な酸化第二銅皮膜による素線を
用いた効果として接続に際し、酸化第二銅皮膜が弱酸性
液もしくは機械的手段て容易に皮膜を除去することがで
きるので、溶接接続が容易であり、特に素線絶縁が表層
近くにある場合は接続時における素線の酸化皮膜は、そ
の皮膜を除去するのに効率が良く皮膜厚も約0.5〜1
μm(すなわち50.3〜3.0pm)という薄さであ
るので、仕上り導体径が太くならず、絶縁油に対しても
安定で、体積抵抗率101〜103Ω.Crflであつ
て前述のエナメル素線絶縁に於けるが如き各種の欠点を
生ずることなく、これにより初めて素線絶縁の実用化を
推進することができる。That is, a plurality of copper wires are twisted together and compressed to form a segment 20, and from the surface of each segment 20, the copper wires of the second layer 22 are insulating elements having a cupric oxide film. The first surface layer 26 and the inner layer 24 are made of ordinary copper wire. Note that although the number of segments is six in the figure, it is not limited to this.
Furthermore, the wires having a cupric oxide film may be arranged in the same twisted wire layer position in each segment other than the surface of the segment 20; Of course, it may also be a line. As described above, the structure of the cable conductor using copper bare wire is a split conductor, and the bare wire insulated wire with cupric oxide film is placed in each segment at least at the same strand layer position in the conductor. In addition to being able to suppress the proximity effect to a small extent by disposing the insulating material in As an effect, when making a connection, the cupric oxide film can be easily removed using a weak acid solution or mechanical means, so welding connections are easy, especially when the wire insulation is near the surface layer. The oxide film on the strands of wire is very efficient to remove, and the film thickness is about 0.5 to 1.
Because it is as thin as μm (i.e., 50.3 to 3.0 pm), the finished conductor diameter does not become too thick, it is stable against insulating oil, and has a volume resistivity of 101 to 103 Ω. With Crfl, it is possible to promote the practical application of wire insulation for the first time without causing the various drawbacks of the enameled wire insulation described above.
【図面の簡単な説明】
第1図は表皮効果係数と導体断面積との関係図、第2図
は本発明に用いられる絶縁素線の断面図、第3図は本発
明によるケーブル導体の一実施”例の構造を示す断面図
である。
10・・・・・・絶縁素線、12・・・・・素線、14
・・・・・・酸化第二銅皮膜層、20・・・・セグメン
ト、24・・内層、22・・・・・・第2層(CLlO
皮膜付)。[Brief explanation of the drawings] Fig. 1 is a diagram showing the relationship between the skin effect coefficient and the conductor cross-sectional area, Fig. 2 is a sectional view of an insulated wire used in the present invention, and Fig. 3 is a diagram showing the relationship between the skin effect coefficient and the conductor cross-sectional area. It is a sectional view showing the structure of an example of implementation. 10... Insulated strand, 12... Element wire, 14
...... Cupric oxide film layer, 20 ... Segment, 24 ... Inner layer, 22 ... Second layer (CLlO
With film).
Claims (1)
線導体に於て、その各セグメントに酸化第二銅による絶
縁皮膜が設けられている素線を少くも1層、互に同一撚
層になる位置に配設したことを特徴とするケーブル導体
。 2 銅素線をより合わせて構成している分割圧縮整型撚
線導体に於て、酸化第二銅による絶縁皮膜が設けられて
いる素線を前記分割圧縮整型撚線導体の表面層に配置し
たことを特徴とする特許請求の範囲第1項記載のケーブ
ル導体。[Scope of Claims] 1. In a split compression shaped stranded wire conductor constructed by twisting copper wires, each segment of the wires is provided with an insulating film made of cupric oxide. A cable conductor characterized in that the cable conductor is arranged in one layer in a position where the layers are twisted in the same way. 2. In a split compression shaped stranded wire conductor constructed by twisting copper wires, a wire provided with an insulating film made of cupric oxide is applied to the surface layer of the split compression shaped stranded wire conductor. 2. A cable conductor according to claim 1, characterized in that the cable conductor is arranged as follows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53132333A JPS6057165B2 (en) | 1978-10-27 | 1978-10-27 | cable conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53132333A JPS6057165B2 (en) | 1978-10-27 | 1978-10-27 | cable conductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54153288A JPS54153288A (en) | 1979-12-03 |
JPS6057165B2 true JPS6057165B2 (en) | 1985-12-13 |
Family
ID=15078863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53132333A Expired JPS6057165B2 (en) | 1978-10-27 | 1978-10-27 | cable conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6057165B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6119460Y2 (en) * | 1980-02-07 | 1986-06-12 | ||
JPS5919611B2 (en) * | 1980-09-24 | 1984-05-08 | 株式会社フジクラ | Manufacturing method of copper oxide film stranded wire conductor |
JPS58139611U (en) * | 1982-03-16 | 1983-09-20 | 古河電気工業株式会社 | Bare wire insulated conductor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5040708A (en) * | 1973-08-10 | 1975-04-14 |
-
1978
- 1978-10-27 JP JP53132333A patent/JPS6057165B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5040708A (en) * | 1973-08-10 | 1975-04-14 |
Also Published As
Publication number | Publication date |
---|---|
JPS54153288A (en) | 1979-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0945163A (en) | Preparation of sector conductor for cable for electrical energy | |
JPS5996605A (en) | Insulated wire | |
JPS6057165B2 (en) | cable conductor | |
JPH0581931A (en) | Slender body insulated by insulating jacket | |
JP4927794B2 (en) | Superconducting cable former connection method and superconducting cable former connection structure | |
JPH0258724B2 (en) | ||
JP3795203B2 (en) | DC power coaxial cable | |
RU184466U1 (en) | ONBOARD WIRE | |
JPH0349111A (en) | Electric sheathed wire and manufacture thereof | |
JP2585591B2 (en) | Optical fiber composite single core power cable | |
JPH11111071A (en) | Submarine power cable | |
JPS6193508A (en) | Cable conductor | |
CN220420292U (en) | Termite-proof rat-proof cross-linked polyethylene insulated ultra-high voltage power cable | |
JPS5846839B2 (en) | How to connect cable conductors | |
JPH01128310A (en) | Formation of oil-filled cable connection part | |
JPH0438426Y2 (en) | ||
JPH09288917A (en) | Plastic power cable | |
US3598899A (en) | Conductor for underground transmission of electric power | |
JPH06187849A (en) | High-temperature superconducting cable | |
JPH0229613Y2 (en) | ||
JPS5836443B2 (en) | power cable | |
JPH1131421A (en) | Power cable for bulk power transmission | |
JPH11306882A (en) | Electric power cable and manufacture thereof | |
JPH0137815B2 (en) | ||
JPH0349112A (en) | Electric sheathed wire and manufacture thereof |