[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6056262A - Surface acoustic wave accelerometer - Google Patents

Surface acoustic wave accelerometer

Info

Publication number
JPS6056262A
JPS6056262A JP16431183A JP16431183A JPS6056262A JP S6056262 A JPS6056262 A JP S6056262A JP 16431183 A JP16431183 A JP 16431183A JP 16431183 A JP16431183 A JP 16431183A JP S6056262 A JPS6056262 A JP S6056262A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
electrodes
acceleration
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16431183A
Other languages
Japanese (ja)
Inventor
Hideo Funahashi
舟橋 秀夫
Kenji Nitta
新田 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP16431183A priority Critical patent/JPS6056262A/en
Publication of JPS6056262A publication Critical patent/JPS6056262A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • G01P15/0975Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements by acoustic surface wave resonators or delay lines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To reduce the number of parts, by forming a comb shaped electrode to one surface of one cantilevered plate while constituting a surface acoustic wave oscillation from said electrode and an active circuit. CONSTITUTION:A pair of comb shaped electrodes 9, 10 are formed to a cantilevered plate 8 through a piezoelectric element and a surface acoustic wave oscillator is formed of said comb shaped electrodes 9, 10 and an active circuit 11. When acceleration is applied to the cantilevered plate 8, the cantilevered plate 8 is bent and an interval L is changed between the electrodes 9, 10 to change oscillation frequency. Therefore, by detecting the change in oscillation frequency is, for example, by a frequency discriminator 13, acceleration applied to the cantilevered plate 8 can be known. Because a surface acoustic wave is utilized as mentioned above, the electrodes 9, 10 may be formed to at least one surface of one cantilevered plate 8 and the number of parts can be reduced.

Description

【発明の詳細な説明】 この発明は表面弾性波を利用した加速度剖に[桿する。[Detailed description of the invention] This invention applies to acceleration analysis using surface acoustic waves.

加速度の検出方式にはサーボ形、圧電形、振i?iυ形
等が考えられている。この発明は振動形加速度検出器の
改良に関するものである。
Acceleration detection methods include servo type, piezoelectric type, and vibration type. iυ forms etc. are being considered. This invention relates to improvements in vibrating acceleration detectors.

〈従来技術〉 第1図に従来の振動形加速度検出器の構造を示す。図中
1は一対の圧電振動子を示す。この−玄:jの圧電振動
子は例えば水晶等が用いられる。一対の圧電振動子1は
一端が支持体3に固定され、他端が互に結合され、その
結合点に重り4が取付けられる。圧電振動子1の表と裏
には電極2が破着され、これら電極2にそれぞれ発振回
路5a 、 5bが接続され、圧電振動子1の状態に対
比、した周ン&数fa、 fbて発振回路5a 、 5
bが発振するようにイ11.成されている。つ捷り重り
4に加わる加速度かセロであるとき、発振回路5a 、
 5bの発振周波数fa、 fbばfa=fbとなるよ
うに設定され、周波θ差検出器6においてfa−fbを
検出し、fa−fb−0のとia 力り速度セロて、f
a−fbNOのときその値に応じて加速度を検出する。
<Prior Art> Figure 1 shows the structure of a conventional vibrating acceleration detector. In the figure, 1 indicates a pair of piezoelectric vibrators. For example, a crystal or the like is used as this piezoelectric vibrator. One end of the pair of piezoelectric vibrators 1 is fixed to a support 3, the other ends are connected to each other, and a weight 4 is attached to the connection point. Electrodes 2 are bonded to the front and back sides of the piezoelectric vibrator 1, and oscillation circuits 5a and 5b are connected to these electrodes 2, respectively, and oscillates at a frequency fa and fb that are compared to the state of the piezoelectric vibrator 1. Circuits 5a, 5
a11 so that b oscillates. has been completed. When the acceleration applied to the switching weight 4 is zero, the oscillation circuit 5a,
The oscillation frequencies fa and fb of 5b are set so that fa=fb, and the frequency θ difference detector 6 detects fa-fb, and the ia of fa-fb-0 is set so that fa=fb.
When a-fbNO, acceleration is detected according to the value.

例えは図示するように重り4に矢印7て示す方向の加速
度か加わると一方の振動子1には引張り応力が働き、他
方の振動子1には圧縮応力か働く、このとき、振動子に
水晶のA′Tカット板を用いX軸方向に力が加わるよう
に振動子の数句は方向を運ぶと、水晶振動子の厚さと孔
度の変化から引張り応力か与えられた4か、動子汀発孔
回路5aの発振j−1」波数fa、が1a<ムる。また
他方の括。
For example, as shown in the figure, when acceleration in the direction shown by the arrow 7 is applied to the weight 4, tensile stress acts on one vibrator 1, and compressive stress acts on the other vibrator 1. At this time, the crystal Using an A'T-cut plate of The wave number fa of the oscillation j-1 of the shore oscillation circuit 5a is 1a<mu. Also the other bracket.

動子には圧ゐ応力か働くため発振回路5bの発振局波数
が低下する。従ってその差fa −fbにより与えられ
た加速度を検出することができる。
Since pressure stress acts on the rotor, the oscillation local wave number of the oscillation circuit 5b decreases. Therefore, the acceleration given by the difference fa-fb can be detected.

〈従来の欠点〉 第1図((示した従来の振動形加速度検出器によれば、
2枚の圧電振動子を必要とし部品の数が多くなる欠点が
ある。また2枚の圧電振動子を使って加速度がゼロのと
きfa−fb−oとなるようにルら整することと、引張
シ応力と圧縮応力が与えられたとき対称に発振周波数が
変化するように調整しなければならないため、その調整
か面fl]である。
<Conventional disadvantages> Fig. 1 (According to the conventional vibrating acceleration detector shown in
There is a drawback that two piezoelectric vibrators are required and the number of parts increases. In addition, by using two piezoelectric vibrators, we arranged the arrangement so that it becomes fa-fb-o when acceleration is zero, and so that the oscillation frequency changes symmetrically when tensile stress and compressive stress are applied. Therefore, the adjustment is plane fl].

つまシ&動子1にはわずかな厚みの差を有し、その厚み
の差から発振回路5aと5bの発振J^」波数に差が生
じ、上記した条件に調整することは面倒な調整作業が要
求される。
The knob and mover 1 have a slight difference in thickness, and this difference in thickness causes a difference in the oscillation wave numbers of the oscillation circuits 5a and 5b, and adjusting to the above conditions is a troublesome adjustment work. is required.

〈発明の目的〉 この発明ではvう整作業を必要とすることなく、また部
品の数を少なくすることができる表m]iJ中性波加速
度検出器を提供しようとするものである。
<Object of the Invention> The present invention aims to provide a neutral wave acceleration detector that does not require any cleaning work and can reduce the number of parts.

〈発明の概要〉 この発明では1枚の片持板の少なくとも一方の面に圧電
機を介して櫛形電極を形成し、この電極と能動回路とに
より表面弾性波発振器を<r’T成し、電極の対向間隔
に対応した周波数で発振器を発振させるように構成し、
発振周波か・の変化がら片持板に加わる加速度を検出す
るようにしたものである。
<Summary of the Invention> In this invention, a comb-shaped electrode is formed on at least one surface of one cantilever plate via a piezoelectric machine, and a surface acoustic wave oscillator is formed by <r'T by this electrode and an active circuit. The oscillator is configured to oscillate at a frequency corresponding to the spacing between the electrodes,
The acceleration applied to the cantilever plate is detected based on changes in the oscillation frequency.

従ってこの発明によれは部品点数を少なくすることかで
きることと、一つの発振器で構成することができるから
発振器オh互間の周波数を調整するような作業か不要と
なり、量ハhにyPi Lだ構造となる。
Therefore, according to this invention, the number of parts can be reduced, and since it can be configured with one oscillator, there is no need to adjust the frequency between the oscillators, and the amount of yPi L can be reduced. It becomes a structure.

〈発明の実施例〉 第2図及び第3図にこの発明の一実施例を示す。<Embodiments of the invention> An embodiment of the present invention is shown in FIGS. 2 and 3.

力2図は正面図、第3因は側面1スを示す。この発明に
おいては片持板8に圧電イカ。を介して一対の櫛形′「
b、極9及o:1aを形J戎し、この′電極9及び]0
と能動回路11とにより表面弾性波発振器を+(l成し
、この表面弾性波発振器の発振周波数の変化がら片り板
8に加わる加速度を検出するように朴″、成したもので
ある。
The force 2 figure shows the front view, and the 3rd factor shows the side view 1. In this invention, the cantilever plate 8 includes a piezoelectric squid. Through a pair of combs′
b, electrodes 9 and o: 1a are shaped like J, and these 'electrodes 9 and ]0
The active circuit 11 forms a surface acoustic wave oscillator, and the change in the oscillation frequency of the surface acoustic wave oscillator is used to detect the acceleration applied to the strip plate 8.

片持板8はこれ自体が圧電機でもよく、捷だガラスのよ
うな絶縁材でもよい。片持板8自体が例えば水晶のよう
な圧電機の場合は板8の一力の面に直接一対の電極9及
び10を被着形成すれはよいまた片持板8がガラスのよ
うな絶縁相の場合はその表面に例えば酸化亜鉛(ZnO
)のような圧電性薄膜12を被着形成し、この圧電性肋
膜12の上面に11′L極9及び10を被着形成する。
The cantilever plate 8 itself may be a piezoelectric machine or may be made of an insulating material such as frozen glass. If the cantilever plate 8 itself is made of a piezoelectric material such as a crystal, it is preferable to form a pair of electrodes 9 and 10 directly on one side of the plate 8.Also, if the cantilever plate 8 is made of an insulating material such as glass, For example, zinc oxide (ZnO
A piezoelectric thin film 12 as shown in FIG.

電極9と10の配列方向は片持板8の延長方向とし、片
持板8が支点を中心にたわむとき電極9と100間の間
隔りが変化するように構成する。
The electrodes 9 and 10 are arranged in the direction in which the cantilever plate 8 extends, and the spacing between the electrodes 9 and 100 changes when the cantilever plate 8 bends about the fulcrum.

電極9と10の間に能動回路11を12)続する。この
能動回路11はこの例では増幅器の場合を示す。
An active circuit 11 is connected 12) between electrodes 9 and 10. This active circuit 11 is an amplifier in this example.

〈発明の動作〉 上記した構成によれば能動回路11の入力側に生じたわ
ずかな電気信号か能動回路11で増幅されて一方の電極
9に与えられる。電極9に’電気駆動信号が与えられる
と圧πを性薄膜12に弾性表面波が発生し、と・の弾、
性表面波が他方の電極10に達すると、電極10に電気
信号が発生する。
<Operation of the Invention> According to the above-described configuration, a slight electrical signal generated on the input side of the active circuit 11 is amplified by the active circuit 11 and applied to one electrode 9. When an electric drive signal is applied to the electrode 9, a surface acoustic wave is generated in the thin film 12 under pressure π, and a bullet,
When the surface waves reach the other electrode 10, an electrical signal is generated at the electrode 10.

このよってして能動回路11の入力と出カΔh″1子間
は弾性表面波の伝描路によって結合され、ツ?i:還ル
ープによって構成され発振状態となる。この発振周波数
fは ■ f−L ・ (1) となる。
As a result, the input and output Δh'' of the active circuit 11 are coupled by the propagation path of the surface acoustic wave, and are constituted by a return loop, resulting in an oscillation state.The oscillation frequency f is −L・(1).

ここでVは表面弾性波の伝播速度、Lは電極9と10の
間隔である。
Here, V is the propagation velocity of the surface acoustic wave, and L is the distance between the electrodes 9 and 10.

表面弾性波発振器の発振周波数が第1式で規定されるか
ら片持板8に加速度が与えられ、片描板8がたわんで電
極9と10の間の間隔りか変化すると発振周波数fが変
化する。従ってこの発振周波数の変化を例えば周波数弁
別:’=:r 13により検出うることてよυ片持板8
に加わった加速度を知ることができる。
Since the oscillation frequency of the surface acoustic wave oscillator is defined by the first equation, acceleration is applied to the cantilever plate 8, and when the cantilever plate 8 is bent and the distance between the electrodes 9 and 10 changes, the oscillation frequency f changes. Therefore, this change in oscillation frequency can be detected by, for example, frequency discrimination:'=:r13.
You can find out the acceleration applied to.

〈発明の他の実施例〉 第4図はこの発明の他の実施例を示す。この例では片持
板8の表と矢の双方に′電極9,1o及び9′。
<Another Embodiment of the Invention> FIG. 4 shows another embodiment of the invention. In this example, 'electrodes 9, 1o and 9' are provided on both the front and arrow sides of the cantilever plate 8.

10’を形成し、これら二組の電極と能動回路11゜1
1’によって一対の表面弾性波発振器を構成し、この一
対の表面弾性波発振器の発振周波数の差を周波数差検出
回路14により検出し、周波数の差から加速度を検出す
るように構成した場合を示す。
10', these two sets of electrodes and the active circuit 11°1
1' constitutes a pair of surface acoustic wave oscillators, the frequency difference detection circuit 14 detects the difference in oscillation frequency between the pair of surface acoustic wave oscillators, and the acceleration is detected from the frequency difference. .

つまり片持板8に加速度が与えられると、一方の面に形
成した例えば電極9及び10のm]の間隔りは犬となり
、他方の電極9’ 、 10’の間の間隔L′は小さく
なる。従ってこれら電極9.]oと9’、10’及び能
動回路11 、11’によって構成される一対の発振器
の発振周波数faとfbは低下と上昇の互に逆方向に変
化する。よってこの周波数の差を周波数差検出回路14
により検出することにより加速度を知ることができる。
In other words, when acceleration is applied to the cantilever plate 8, the distance between the electrodes 9 and 10 formed on one surface becomes dog, and the distance L' between the electrodes 9' and 10' on the other side becomes smaller. . Therefore, these electrodes 9. ] The oscillation frequencies fa and fb of the pair of oscillators constituted by the active circuits 11 and 11' change in opposite directions, decreasing and increasing. Therefore, this frequency difference is detected by the frequency difference detection circuit 14.
Acceleration can be known by detecting it.

ここでこの第4図の実施例によれば次のような大きな利
点が得られる。つ1り二つの表面弾性波発振器の発振周
波数の差をめて、その差の値から加速度を知るものであ
るから、二つの発振器の発振周波数が例えば温度変化等
によりドリフトしたとしても、発振周波数のドリフトは
発振器相互においてほぼ等しく、また同一方向に偏移す
る。
According to the embodiment shown in FIG. 4, the following great advantages can be obtained. This method calculates the difference in the oscillation frequencies of two surface acoustic wave oscillators and determines the acceleration from the value of the difference. Therefore, even if the oscillation frequencies of the two oscillators drift due to temperature changes, for example, the oscillation frequency cannot be changed. The drifts of the oscillators are approximately equal and deviate in the same direction.

よって二つの発振器の発振周波数の差をめることKより
発振周波数のドリフトは相殺され、ドリフトによる測定
誤差を除去するととがてきる。よって温度補正機能を持
つ表面弾性波加速度計を得ることができる。
Therefore, by calculating the difference between the oscillation frequencies of the two oscillators, the drift in the oscillation frequency is canceled out, and measurement errors due to the drift can be eliminated. Therefore, a surface acoustic wave accelerometer having a temperature correction function can be obtained.

〈発明の効果〉 以上説明したよってこの発明によれは表面弾性波を利用
したから1枚の片持板8の少くとも一方の面に電極9,
10を形成すれはよく、部品点数か少なくて済むことと
、片面だけで蒸着作業を行うことができるから製造か容
易となり、量産に適U、コストダウンが期待できる。
<Effects of the Invention> As explained above, since the present invention utilizes surface acoustic waves, an electrode 9 is provided on at least one surface of one cantilever plate 8.
10 is easy to form, the number of parts is small, and the vapor deposition can be performed on only one side, making it easy to manufacture, suitable for mass production, and expected to reduce costs.

1だ第4図で説明したように片持板8の両面に電極9,
10及び9’ 、 10’を形成し、これら二組の電極
により一対の表面弾性波発振器を構成し、この二つの表
面弾性波発振器の発振周波数の差から加速度をめるよう
に構成した場合には、温度変動による1jlll定誤差
を除去した加速度検出器を?!Jることかできる。よっ
て精度の高い加速度計を提供できる。
1. As explained in FIG. 4, electrodes 9,
10, 9', and 10' are formed, and these two sets of electrodes constitute a pair of surface acoustic wave oscillators, and the acceleration is calculated from the difference in the oscillation frequency of these two surface acoustic wave oscillators. What is the acceleration detector that removes the constant error of 1jllll due to temperature fluctuation? ! I can do J. Therefore, a highly accurate accelerometer can be provided.

更に片持板8としてガラスのような非圧電機を用いるこ
とができるから片持板8のセ料を選択する自由度が増し
、よって表面弾性波用の材料としてバネ性に優れた材料
を自由に選択でさ、性能のよい表面弾性波加速度計を得
ることができる0然も招料のコストも低減できる効果も
得られる。このように製造上においてもまた実用する上
でも頗る大きな効果が得られる。゛
Furthermore, since a non-piezoelectric material such as glass can be used as the cantilever plate 8, the degree of freedom in selecting the material for the cantilever plate 8 is increased, and therefore, the material with excellent spring properties can be used as the material for surface acoustic waves. If selected, it is possible to obtain a surface acoustic wave accelerometer with good performance, and also to reduce the cost. In this way, significant effects can be obtained both in manufacturing and in practical use.゛

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の振動形加速度検出器の構造を説明するた
めの仙]面(2)、第2[匈はこの発明の一実施例を示
す正面図、第3図は鞄2図のOl、」面図、第4図はこ
の発明の他の実施例を示す正面図である。 8:片持板、9.10:表面弾性波発振器を構成する電
極、11:表面弾性板発振器を(1j;成する能動回路
、12:圧電a台膜。 特許出願人 日本航空電子工業株式会社代理人 草野 
卓 左 1 図 オ 2 図 井 3 図 7i74 又
Fig. 1 is a side view (2) for explaining the structure of a conventional vibrating acceleration detector, Fig. 3 is a front view showing an embodiment of the present invention, and Fig. FIG. 4 is a front view showing another embodiment of the present invention. 8: Cantilever plate, 9.10: Electrode constituting the surface acoustic wave oscillator, 11: Active circuit constituting the surface acoustic wave oscillator (1j; 12: Piezoelectric a-base membrane. Patent applicant: Japan Aviation Electronics Industry, Ltd.) Agent Kusano
Table left 1 Figure o 2 Figure well 3 Figure 7i74 Also

Claims (1)

【特許請求の範囲】[Claims] (1)片持板の表と裏の少なくとも一方に一対の1′西
]形電極を形成し、この電極間の間隔に対応しプこ周波
数で発振する表面弾性波発振器を構成し、この表面弾性
波発振器の発振周波数から上言己片持板に加えられる加
速度を検出するようにした表面弾性波加速度計。
(1) A pair of 1′ west]-shaped electrodes are formed on at least one of the front and back sides of the cantilever plate, a surface acoustic wave oscillator that oscillates at a frequency corresponding to the spacing between the electrodes is configured, and the surface A surface acoustic wave accelerometer that detects the acceleration applied to the cantilever plate from the oscillation frequency of an elastic wave oscillator.
JP16431183A 1983-09-07 1983-09-07 Surface acoustic wave accelerometer Pending JPS6056262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16431183A JPS6056262A (en) 1983-09-07 1983-09-07 Surface acoustic wave accelerometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16431183A JPS6056262A (en) 1983-09-07 1983-09-07 Surface acoustic wave accelerometer

Publications (1)

Publication Number Publication Date
JPS6056262A true JPS6056262A (en) 1985-04-01

Family

ID=15790722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16431183A Pending JPS6056262A (en) 1983-09-07 1983-09-07 Surface acoustic wave accelerometer

Country Status (1)

Country Link
JP (1) JPS6056262A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7380454B2 (en) * 2005-12-20 2008-06-03 Honeywell International Inc. Load beam for surface acoustic wave accelerometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7380454B2 (en) * 2005-12-20 2008-06-03 Honeywell International Inc. Load beam for surface acoustic wave accelerometer

Similar Documents

Publication Publication Date Title
JP4757026B2 (en) Acceleration sensor characteristic adjustment method
US3479536A (en) Piezoelectric force transducer
US4306456A (en) Elastic wave accelerometer
US4594898A (en) Force sensors
US4479385A (en) Double resonator cantilever accelerometer
US5020370A (en) Vibrating beam force-frequency transducer and pendulous accelerator comprising application thereof
JPH0599676A (en) Gyroscope
JP5375624B2 (en) Acceleration sensor and acceleration detection device
CA2263995C (en) Angular velocity detector
US7194906B2 (en) Acceleration sensor having resonators with reduced height
US6803698B2 (en) Acceleration sensor
JP3072354B2 (en) Transducer accelerometer
US5265473A (en) Oscillator type accelerometer
US4503715A (en) Load sensors
GB2117115A (en) Surface acoustic wave accelerometer
JPS6056262A (en) Surface acoustic wave accelerometer
JP3368723B2 (en) Vibrating gyro
JP3049305B2 (en) Resonator accelerometer
JP4867858B2 (en) SAW sensor
JP2004077351A (en) Angular velocity sensor
JPS60192206A (en) Vibration type angular velocity meter
JP3425506B2 (en) Surface acoustic wave gyroscope
JP3139212B2 (en) Acceleration sensor
JPH08285708A (en) Pressure sensor
JP3425505B2 (en) Surface acoustic wave gyroscope