JPS6050115A - Method for working surface of cast steel - Google Patents
Method for working surface of cast steelInfo
- Publication number
- JPS6050115A JPS6050115A JP15888583A JP15888583A JPS6050115A JP S6050115 A JPS6050115 A JP S6050115A JP 15888583 A JP15888583 A JP 15888583A JP 15888583 A JP15888583 A JP 15888583A JP S6050115 A JPS6050115 A JP S6050115A
- Authority
- JP
- Japan
- Prior art keywords
- cast steel
- peening
- corrosion resistance
- cast
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/04—Modifying the physical properties of iron or steel by deformation by cold working of the surface
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
この発明は、鋳鋼の表面および表面直下に存在する微小
空孔を封孔して耐食性を付与するに好適な鋳鋼の表面加
工法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a surface processing method for cast steel suitable for sealing micropores existing on and immediately below the surface of cast steel to impart corrosion resistance.
一般に、製品形状に鋳造した鋳鋼品にあっては、鋳造法
の特殊性からその表面および表面直下に鋳造凝固収縮な
どによるミクロ的久陥すなわち微小空孔が存在すること
は本質的に避けがたいことである。In general, in cast steel products cast into product shapes, it is essentially inevitable that micro-defects, that is, micro-pores, will exist on the surface and just below the surface due to casting solidification shrinkage etc. due to the special nature of the casting method. That's true.
そこで、このようなミクロ的欠陥全除去する従来方法と
しては、(イ)鋳鋼LD衣聞を再溶解する方法、(ロ)
鋳鋼の表面を高周波1透導法まfcはレーザビーム照射
法で所定の温度に加熱保持しながら、または鋳鋼全体音
加熱しながら、不活性ガス等の圧力媒体による静水圧を
表面に付加する方法などが知られている。Therefore, conventional methods for completely removing such microscopic defects include (a) a method of remelting the cast steel LD coating, and (b) a method of remelting the cast steel LD coating.
High frequency transmission method (FC) is a method in which hydrostatic pressure is applied to the surface of the cast steel using a pressure medium such as an inert gas while heating the surface of the cast steel to a predetermined temperature using a laser beam irradiation method or soundly heating the entire cast steel. etc. are known.
しかしながら、前者(イ)の方法では、鋳鋼品の全体を
加熱するために複雑形状で且つ薄肉形状のものに対して
寸法変形が生ずるので適用することはできないとともに
、表un欠陥を完全に除去することができないという問
題点を有していた。However, the former method (a) cannot be applied to complex-shaped and thin-walled cast steel products because dimensional deformation occurs because the entire cast steel product is heated, and surface defects cannot be completely removed. The problem was that it could not be done.
一方、後者(ロ)の方法にあっては\高周波誘導法また
はレーザビーム照射法による加熱では複雑形状の鋳鋼品
を均一に加熱することができないとともに、大型の鋳鋼
品に対して適用できない。また、静水圧法で微小空孔を
圧着する方法では、鋳鋼の表面層Fの微小空孔を圧縮に
より圧着することができるが、原則的に表面には塑性変
形が作用しないため表面に露出している微小窒化を圧着
することができない。そのために、この方法では、処理
を施しだ後に圧着されない堀面の微小空孔を表面研削等
の機械的加工で取シ去く必要があるという問題点を有し
ていた。さらに、静水圧法では表面に塑性変形を付与す
ることが少ないため、鋳肌の金属的組織を改良すること
が少ないという問題点を有してい牟。On the other hand, in the latter method (b), heating by high frequency induction method or laser beam irradiation method cannot uniformly heat cast steel products with complex shapes, and cannot be applied to large cast steel products. In addition, in the method of compressing micropores using the hydrostatic pressure method, micropores in the surface layer F of cast steel can be compressed, but as a general rule, plastic deformation does not act on the surface, so the micropores are exposed on the surface. It is not possible to press the micro nitride that is present. Therefore, this method has a problem in that it is necessary to remove micropores on the trench surface that are not pressed after the treatment by mechanical processing such as surface grinding. Furthermore, since the hydrostatic pressure method rarely imparts plastic deformation to the surface, it has the problem that it rarely improves the metallic structure of the casting surface.
この発明は、上記に説明したような従来のこれらの問題
点を解消するためになされたもので、鋳鋼の表面および
表向直下に存在する微小空孔を封孔する手段を講するこ
とによシ、鋳鋼の耐食性を向上させるとともに、鋳鋼の
表面層を金属組織的に改良することができる鋳鋼の表面
加工法を提供することを目的としている。This invention was made in order to solve these conventional problems as explained above, by taking a means to seal the micropores that exist on the surface of cast steel and just below the surface. Another object of the present invention is to provide a surface processing method for cast steel that can improve the corrosion resistance of cast steel and improve the metallographic structure of the surface layer of cast steel.
この発明による鋳鋼の尺面改良法は、鋳鋼の表面層のみ
に衝撃的な圧縮塑性変形を与えることにより、鋳鋼の表
面および表向直下に存在する微小空孔を圧着するととも
に、その圧着部を高温に加熱することによシ拡散接合す
ることを特徴としている。The method for improving the profile of cast steel according to the present invention applies impact compressive plastic deformation only to the surface layer of the cast steel, thereby crimping the micro-pores existing on the surface of the cast steel and just below the surface, and also compressing the crimped portion. It is characterized by diffusion bonding by heating to high temperatures.
鋳造法は溶m金製品形状と同じ鋳型に圧入、凝固するこ
とによシ、複雑形状の鋳鋼品を一挙に製造することがで
きる。さらに最近では、精密鋳造技術の進歩により、機
械加工等の仕上加工を施すことなく鋳造のままで最終製
品全製造するようになってき−Cいる。このように鋳造
法により製造された鋳鋼品にあっては、その表面および
表面直下にはミクロ的欠陥となる微小空孔が存在するこ
とは避けがたいのが現状である。この微小空孔は鋳鋼の
耐食性を劣化させると共に、応力腐食割れにおける応力
集中の起点となることがある。このことを裏付けるため
に含Ni13%Cr系鋳鋼とこれを鍛造した鍛鋼につい
て、高温純水中に対しての耐食性を対比して調べると、
同一の化学組成であるにもかかわらず1.、/JAと鍛
鋼とでは耐食性に大きな差が生ずることが認められる。The casting method can produce complex-shaped cast steel products all at once by press-fitting molten metal into a mold that has the same shape as the product and solidifying it. Furthermore, in recent years, with the advancement of precision casting technology, it has become possible to manufacture all final products as cast without performing finishing processes such as machining. In the case of cast steel products manufactured by such a casting method, it is currently unavoidable that micropores, which become microscopic defects, exist on the surface and just below the surface. These micropores not only deteriorate the corrosion resistance of cast steel, but also may serve as a starting point for stress concentration in stress corrosion cracking. To confirm this, we compared and investigated the corrosion resistance of Ni-containing 13% Cr cast steel and forged steel in high-temperature pure water.
Despite having the same chemical composition, 1. It is recognized that there is a large difference in corrosion resistance between /JA and forged steel.
この原因を探求すると、鋳鋼では本来的に凝固収縮を伴
う鋳造組織であり、表面および表面直下に微小生孔が存
在しているため、このところで応力集中の起点となって
応力腐食削れ(以下、SCCと略称する。)を誘発する
ことになる。さらに詳しくけ、鋳造したままの4鋼を鍛
造した後、焼入し
れ焼もどしたものについて、低ひずみ速度引張試^
験(以下、88RTと略称する。)によシSCC破面率
をめてSCC感受性を調べると、鋳鋼ではSCC破面率
が12%程度であったものが、鍛造した鍛鋼のSCC破
面率は2.5%と約115に減少し、耐SCC性が著し
く向上することがわがる。これは鍛造する際に表面およ
び次曲直下に存在する微小空孔が鍛接されるためである
。Investigating the cause of this problem, we found that cast steel is a cast structure that inherently undergoes solidification shrinkage, and microscopic pores exist on the surface and just below the surface. (abbreviated as SCC). In more detail, after forging the as-cast four steels, quenching and tempering them, we conducted a low strain rate tensile test (hereinafter abbreviated as 88RT) to determine the SCC fracture ratio. When examining SCC susceptibility, cast steel had an SCC fracture rate of about 12%, but forged steel had an SCC fracture rate of 2.5%, which decreased to approximately 115%, significantly improving SCC resistance. I feel angry. This is because, during forging, the micropores that exist on the surface and just below the next bend are forged welded.
しかしながら、実際には@別品を寸法変形することなく
鍛造することができない一方、従来の技術を用いても複
雑形状の鋳鋼に対し微小空孔を完全に除去することがで
きない。そこで、#鋼の表面および表面直下に内在する
微小空孔の性状を調べると11、微小空孔はその径が数
μmのものが大部分でめ9.1μmから最大200μm
までのものが分布している。その形状としては球形に近
いものがほとんどであるが、その中には不定形状のもの
も点在している。一方、微小空孔の内部表面は滑らかな
金属光沢を呈した活性状態であるため、微小空孔の近傍
を圧縮塑性変形して微小空孔を圧着した後、その圧着部
を高温に加熱すれば拡散接合できることが推測される。However, in reality, it is not possible to forge a separate item without dimensional deformation, and it is not possible to completely remove micropores from cast steel with a complex shape even using conventional techniques. Therefore, when we investigated the properties of the micropores that exist on the surface and just below the surface of #steel11, we found that most of the micropores have a diameter of several μm, ranging from 9.1 μm to a maximum of 200 μm.
The items up to this point are distributed. Most of them are close to spherical in shape, but there are also some irregularly shaped ones. On the other hand, the inner surface of the micropores is in an active state with a smooth metallic luster, so if the vicinity of the micropores is compressively deformed and the micropores are crimped, then the crimped part is heated to a high temperature. It is assumed that diffusion bonding is possible.
そこで、発明者らは、鋳鋼の表面および表面直下のみに
圧縮塑性変形を付与する方法として既知のピーニング法
を採用するとともに、ピーニングによシ圧着した圧着部
を鋳鋼の拡散温度以上に加熱することによシ、崗鋼の表
面および表面直下に存在する微小空孔を封孔することが
できることを見出した。Therefore, the inventors adopted a known peening method as a method of imparting compressive plastic deformation only to the surface and just below the surface of cast steel, and also heated the crimped part by peening to a temperature higher than the diffusion temperature of the cast steel. We have found that it is possible to seal micropores that exist on and just below the surface of granite steel.
この発明による鋳鋼の表面加工法は、鋳鋼の表面および
表面直下のミクロ的欠陥を完全に除去して鋳鋼の耐食性
を向上させる方法で必って、鋳鋼の表面にピーニングを
施して圧縮塑性変形によシ微小空孔を圧着した後、高温
に加熱保持した状態でその圧着部を拡散接合することを
特徴としている。The surface processing method for cast steel according to the present invention is a method that completely removes microscopic defects on the surface of cast steel and just below the surface to improve the corrosion resistance of cast steel. The method is characterized in that after the microscopic holes are crimped, the crimped portion is diffusion bonded while being heated and maintained at a high temperature.
このピーニング処理は通常に用いられる鋼の表面硬化ま
7ζは表面に圧縮残留応力を附与するのに用いられる既
知の方法でおって、金属製などのグリッドを高速度で被
加工物の表miに打射し、この衝撃による荷重が仮加工
機の弾性限を起えるために表面や表面直下のわずかのと
ころで塑性変形を生ずるものである。この方法ではグリ
ッド以外にワイヤーを用いることができる。ワイヤーを
用いた場合の方が表面硬化が大きく且つ平面状の被加工
物に対して作業性や塑性加工喰の点で優れている。This peening treatment is a known method used to impart compressive residual stress to the surface of steel, which is commonly used. The impact load causes the temporary processing machine to reach its elastic limit, resulting in plastic deformation on the surface or a small area just below the surface. In this method, wires can be used in addition to grids. When wire is used, the surface hardening is greater and it is superior in terms of workability and plastic workability for flat workpieces.
ピーニングの処理時は、表面を塑性変形させる観点から
長いほど好ましいが、必まシ長時間にわたると、塑性変
形された表面層が硬くなりすぎ、さらに゛ピーニングを
続けるとグリッドの衝撃エネルギーによシ表面層が剥離
するようになる。そのだめピーニングの処理時間は、単
位表面積ICn1”当シ数分以下にすることが望ましい
。またピーニングによシ微小空孔を圧着するには、ピー
ニングによる塑性変形の深さを空孔の径以上にする必要
がちる。しかし、実際のピーニングに際しては、所望の
空孔径以外の大きな欠陥を考慮して、その数倍の塑性変
形の深さを与えることが好ましい。The longer the peening process, the better from the perspective of plastically deforming the surface, but if the peening process continues for a long time, the plastically deformed surface layer will become too hard, and if peening is continued, the impact energy of the grid will cause the peening to become too hard. The surface layer begins to peel off. Therefore, it is desirable that the processing time for peening be less than a few minutes per unit surface area ICn1". Also, in order to compress micropores by peening, the depth of plastic deformation due to peening must be equal to or greater than the diameter of the pores. However, in actual peening, it is preferable to take into account large defects other than the desired pore diameter and give the depth of plastic deformation several times that value.
なお、鋳鋼の鋳造組織は単なる熱処理のみでは微細化で
きないが、このピーニングでは鋳鋼の表面層が塑性変形
されるだめ、その後の拡散処理−焼入れ焼もどし等によ
り鋳造組織が微細化され、その機械的性質を向上させる
ことができる。Note that the cast structure of cast steel cannot be made finer by mere heat treatment, but since the surface layer of the cast steel is plastically deformed by this peening, the cast structure is made finer by the subsequent diffusion treatment, quenching and tempering, etc., and its mechanical properties are improved. properties can be improved.
一方、ピーニングによる圧縮塑性変形はピーニングの処
理時間のみでなくグリッドの径にも影響される。グリッ
ドの径を大きくした方が同一のピーニング時間であって
も、塑性変形量は大きくなる。これはグリッドの材質、
打射のときの空気圧が同一であれば、質量の大きいグリ
ッドはど運動エネルギーが大きいためである。On the other hand, compressive plastic deformation due to peening is affected not only by the peening treatment time but also by the diameter of the grid. Even if the peening time is the same, the amount of plastic deformation increases when the diameter of the grid is increased. This is the material of the grid,
This is because if the air pressure at the time of firing is the same, a grid with a larger mass has a larger kinetic energy.
しかし、あまシ大きなグリッドでは鋳鋼の表面肌を荒す
ことになるのでその径の選定に留意する必要がある。However, if the grid is too large, it will roughen the surface of the cast steel, so care must be taken when selecting the diameter.
ピーニング効果を高め、且′)表面肌の荒れを防止する
には、ピーニングの初期に大きなグリッドを用いて次い
で小さなグリッドで仕上げる方法がある。この方法を順
次に繰シ返えぜば表面肌の荒れを防止することができる
が、実際には作業工数が複雑になシ好ましくない。In order to enhance the peening effect and prevent surface roughening, there is a method of using a large grid at the beginning of peening and then finishing with a small grid. If this method is repeated one after another, it is possible to prevent the surface from becoming rough, but in reality, this is not preferable as it complicates the number of work steps.
次に、鋳鋼表面にピーニング処」!l!を施した後、鋳
鋼を拡散温度以上に加熱して拡散処理する。この拡散処
理は上記ピーニングにより微小空孔を圧着した部分を金
属的に拡散接合させるもので、鋳鋼の表面および表面直
下に存在する機械的圧着欠陥を金属的拡散接合させるも
のであるっこの際の加熱温度は微小空孔が圧着された状
態で拡散接合するに必要な温度であり、高温はど好まし
い。しかし、あまシ高温すぎると、鋳鋼の結晶粒が粗大
化したり、また粒界が優先酸化されるバーニング現象が
起こり、鋳鋼の機械的性質が劣化する。従って、加熱温
度は鋳鋼の拡散温度以上、すなわち1000C以上11
50C以下にすることが望ましい。処理時間については
長いほど拡散接合が十分に行なわれるが、処理温度にも
よるが5時間以上では拡散接合程度が飽和状態となる。Next, peening the cast steel surface! l! After that, the cast steel is heated above the diffusion temperature and subjected to diffusion treatment. This diffusion treatment is to metallically diffusion bond the parts where the micropores have been crimped by the peening process, and it is to metallically diffusion bond the mechanical crimping defects that exist on the surface and just below the surface of the cast steel. The heating temperature is the temperature necessary for diffusion bonding with the micropores pressed together, and a high temperature is preferred. However, if the temperature is too high, the crystal grains of the cast steel become coarse and a burning phenomenon occurs in which the grain boundaries are preferentially oxidized, resulting in deterioration of the mechanical properties of the cast steel. Therefore, the heating temperature is higher than the diffusion temperature of cast steel, that is, 1000C or higher.
It is desirable to keep the temperature below 50C. As for the processing time, the longer the processing time, the more sufficient the diffusion bonding will be, but if it is 5 hours or more, the diffusion bonding will be saturated, although it depends on the processing temperature.
従って、実際には5時間程度で十分でこの発明の目的を
達成することができる。Therefore, in reality, about 5 hours is sufficient to achieve the purpose of the present invention.
以上のように、この発明による′JjJ鋼の表面改良法
は鋳鋼の表面にピーニング処理を施してミクロ的欠陥で
ある微小空孔を圧着した吸、そのtE着部を加熱して拡
散接合させる構成をなすもので、ミクロ的欠陥を完全に
除去することにより耐食性を著しく向上させることがで
きる。As described above, the method for improving the surface of 'JjJ steel according to the present invention involves peening the surface of the cast steel to press the micro-pores, which are micro-defects, and heating the tE bonded area to perform diffusion bonding. Corrosion resistance can be significantly improved by completely removing microscopic defects.
以下、この発明の実施例を詳細に説明する。Examples of the present invention will be described in detail below.
実施例1
まず、3.5NilaCr鋼および5.5NilaCr
鋼を高周波溶解炉により大気雰囲気で溶製した後、その
溶鋼を鋳型に注入、凝固させて、厚さ;100簡、幅:
400+1111、長さ; 300rttsの矩形状鋳
鋼を製造した。Example 1 First, 3.5NilaCr steel and 5.5NilaCr
After melting steel in an atmospheric atmosphere using a high-frequency melting furnace, the molten steel is poured into a mold and solidified to a thickness of 100 mm and a width of 100 mm.
A rectangular cast steel of 400+1111, length; 300 rtts was produced.
次いで、1000 ’CX 5 h rの波数処理を施
した後、950CX2hrの空冷焼入れを施した。Next, after performing a wave number treatment of 1000'CX 5 hr, air cooling quenching of 950CX 2hr was performed.
さらに、3.5Ni13Cr鋳鋼には620CX5hr
の空冷焼もどしを施す一方、5.5Ni13Cr鋳鋼に
は600trX5hrの空冷焼もどしを施して供試材と
した。各々の供試材の化学成分は第1表に示す通υであ
る。Furthermore, 620CX5hr for 3.5Ni13Cr cast steel
On the other hand, the 5.5Ni13Cr cast steel was subjected to air-cooling tempering of 600 tr x 5 hr to prepare a test material. The chemical composition of each sample material is as shown in Table 1.
このようにした得た供試材から第1図に示す5SRT試
験片1を採取して本発明の実施に供した。A 5SRT test piece 1 shown in FIG. 1 was taken from the sample material thus obtained and used in the practice of the present invention.
ピーニング処理は0.7 mm径のグリッドを用いて、
鋳鋼の温度を常温で、グリッドを打射する圧力を7 K
9 f /α2にし、ピーニングの処理時間を2゜秒、
40秒、60秒といろいろに変えて第1図に示すように
R部2を含む試験片の平行部3に施した。この処理時間
とは試験片の単位表面積1cm”当りにグリッドを打射
した時間分いう。次に、ピーニング処理を施した各試1
験片を950Cから1150Cまでの温度範囲で且つ拡
散時間をl b r 。The peening treatment was carried out using a grid with a diameter of 0.7 mm.
The temperature of the cast steel was kept at room temperature, and the pressure for striking the grid was 7K.
9 f/α2, peening processing time 2° seconds,
The test was applied to the parallel portion 3 of the test piece including the R portion 2, as shown in FIG. 1, at various times of 40 seconds and 60 seconds. This treatment time refers to the time it takes to bombard the grid per unit surface area of the test piece (1 cm).
The specimens were subjected to a temperature range of 950C to 1150C and a diffusion time of l b r .
5hr、10hr、20hrとlft k変えテ、、l
!施シた。5hr, 10hr, 20hr and lft k change,,l
! I gave.
このように本発明法をノm用した各1戒、・横片につい
て5SRT試験を行って耐食性を比較した。ここで5S
RT試験は、288Cに保持した状態で約8pの溶存酸
素、約1μS/crnの電導率を有する純水中に各試験
片を浸漬し、その試験片に8゜3X1o−’/sのひず
み速度で行った。各試験片の耐食性は5SRT試験から
めたSCC破面率で評価し、SCC破面率が小さいほど
耐食性が良好であることを示す。なお、比較のために本
発明の構成要素である拡散処理を施さないものについて
も、同様に耐食性試験を行った。As described above, 5SRT tests were conducted on each of the horizontal pieces using the method of the present invention, and the corrosion resistance was compared. 5S here
In the RT test, each test piece is immersed in pure water with dissolved oxygen of about 8 p and an electrical conductivity of about 1 μS/crn while being maintained at 288 C, and the test piece is subjected to a strain rate of 8°3×1o-'/s. I went there. The corrosion resistance of each test piece was evaluated by the SCC fracture ratio obtained from the 5SRT test, and the smaller the SCC fracture ratio, the better the corrosion resistance. For comparison, a similar corrosion resistance test was also conducted on a material that was not subjected to the diffusion treatment, which is a component of the present invention.
この結果は第2表に示す通シである。The results are shown in Table 2.
第 2 表
施したものについては、ピーニングの処理時間が長いほ
ど耐食性を改善する効果が大きいことがわかる。一方、
同一拡散時間について見ると、温度が高いシ・まど耐食
性を改善する効果が太きいように見えるが、SCC破面
率は1050C以上でほぼ一定値を示し、それ以上に製
置を上げても耐食性に付与する効果が少なく、飽和状態
となることがわかる。また、拡散温度が950Cと低い
場合には耐食性を改善する効果は少なかった。It can be seen that the longer the peening treatment time, the greater the effect of improving corrosion resistance on the second surface treated specimens. on the other hand,
Looking at the same diffusion time, it seems that the effect of improving steel/furnace corrosion resistance at high temperatures is greater, but the SCC fracture ratio remains almost constant above 1050C, even if the manufacturing temperature is increased beyond that. It can be seen that the effect on corrosion resistance is small and reaches a saturated state. Further, when the diffusion temperature was as low as 950C, the effect of improving corrosion resistance was small.
拡散温度については、いずれのピーニング処理に対して
も長いほど耐食性を改tJi−j”るが、5時間以上で
はそれほどの効果は期待することができないことが判明
した。Regarding the diffusion temperature, it was found that the longer the peening treatment was applied, the more the corrosion resistance was improved, but no significant effect could be expected when the diffusion temperature was longer than 5 hours.
また、3.5%Ni13%Cr鋳鋼と5.5%Ni13
%Cr鋳鋼とを比較してみると、鋼種による耐食性の差
はほとんど認められなかった。In addition, 3.5%Ni13%Cr cast steel and 5.5%Ni13
%Cr cast steel, there was almost no difference in corrosion resistance depending on the steel type.
なお、この同一の鋼種の鋳鋼に適正な熱処理を施したが
、本発明を適用しなかった鋳鋼については、SCC破面
率が約12%と高く耐食性が劣っている。このような従
来品に本発明を適用すれば、8CC破面率は約3%に低
下し、SCC破面率から見たSCC感受性は約1/4に
低下していることが分かる。換言すれば、この発明によ
る鋳鋼の耐食性は従来品の4倍に改善されることが明ら
かとなった。Although the same type of cast steel was subjected to appropriate heat treatment, the cast steel to which the present invention was not applied had a high SCC fracture ratio of about 12% and poor corrosion resistance. It can be seen that when the present invention is applied to such conventional products, the 8CC fracture surface ratio is reduced to about 3%, and the SCC susceptibility seen from the SCC fracture surface ratio is reduced to about 1/4. In other words, it has been revealed that the corrosion resistance of the cast steel according to the present invention is improved four times that of conventional products.
実施例2
この実施例は第2図に示す如くインターナルポンプ4の
部品たとえば圧力容器低部の高温水側のインペラ5およ
びディフューザー6を3.5%Ni13%Cr鋼で鋳造
して、鋳鋼品を製造した後、この鋳鋼品に本発明法を適
用した場合を示すものである。Embodiment 2 In this embodiment, as shown in FIG. 2, the parts of the internal pump 4, such as the impeller 5 and diffuser 6 on the high-temperature water side of the lower part of the pressure vessel, are cast with 3.5%Ni13%Cr steel. This figure shows the case where the method of the present invention is applied to this cast steel product after manufacturing it.
このような鋳鋼製インペ2および鋳@製ディフューザー
が、原子炉内で1史用される場合、耐食性が悪いと、腐
食損陥を起し、重大な事故につながる危険性がある。そ
こで、これらの鋳鋼品に本発明法を適用して、鋳鋼品の
耐食性が向上することを確認した。When such a cast steel impeller 2 and a cast diffuser are used in a nuclear reactor, if the corrosion resistance is poor, corrosion damage may occur, which may lead to a serious accident. Therefore, by applying the method of the present invention to these cast steel products, it was confirmed that the corrosion resistance of the cast steel products was improved.
まず、実施例1に用いた3、5%Ni1aCr鋼を高周
波溶解炉で溶解した溶鋼で、インターナルポンプのイン
ペラおよびディフューザを鋳造した後、その鋳鋼品を不
活性ガス中でtooocxl 0 h rの拡散処理を
施して炉冷し、次いで950[X5hrの空冷焼入れし
、さらに620tl:’X10 b rの空冷焼もどし
を行った。First, the impeller and diffuser of the internal pump were cast using molten steel made by melting the 3.5% Ni1aCr steel used in Example 1 in a high-frequency melting furnace. It was subjected to a diffusion treatment and cooled in a furnace, then air-cooled and quenched for 950 x 5 hr, and further air-cooled and tempered for 620 tl:' x 10 br.
このようにして製造したインペラ1lljJ m品をグ
ランダで製品寸法に仕上げた後、スンプ法によシ表面欠
陥を調べた。スンプ法は、インペラ鋳鋼品の表面の任意
の位置を10ケ所選んで、微小欠陥が明瞭に見えるよう
に琢磨した後、酢酸セルロースフィルムを貼付して欠陥
部をフィルムに転写し、その上にCr蒸着を施したもの
を走査型電子顕微鏡で観察するものである。このインペ
ラ鋳鋼の表面欠陥は実施例1と同様にほとんど1μmか
ら数10μmのものであシ、数μmT1の欠陥が最も多
く分布していたつ鋳造の凝固過程を考慮すれば、欠陥の
深さは上記のように鋳肌面方向から観察した寸法より大
きくなる場合がある。The impeller manufactured in this way was finished to product dimensions using a grinder, and then surface defects were examined using the Sumpp method. The Sumpu method involves selecting 10 arbitrary locations on the surface of an impeller cast steel product, polishing them so that minute defects are clearly visible, applying a cellulose acetate film to transfer the defects to the film, and applying Cr on top. The vapor-deposited material is observed using a scanning electron microscope. As in Example 1, most of the surface defects in this impeller cast steel range from 1 μm to several tens of μm. Considering the solidification process of casting, in which most defects of several μm T1 were distributed, the depth of the defects is as described above. In some cases, the dimensions are larger than those observed from the direction of the casting surface.
これは鋳造の凝固過程で鋳肌面から内部に向って樹枝状
晶が成長してその樹枝状晶間に細長い微小欠陥が形成さ
れるからである。そこで、インペラ鋳鋼品にピーニング
処理を施するに際しては、上記の観察の結果から塑性変
形深さをず段歩100μmになるようにすればよいが、
製品の重要度および金属組織の改良を考慮して塑性変形
深さが500μm以上になるように実施し/ζ。ピーニ
ング処理は圧力フKgf/cm2で、ダリット径を1.
2mm、0.7rrrmの二種に使い分けて行い、引張
応力が強く作用する部分には1.2m径のグリッドで3
0分間、0.7fi径のグリッドで30分間ピーニング
処理を施し、引張応力の叩出が少ない部分には1.2m
径のグリッドで15分間、0.7mm径のグリッドで1
5分間ピーニング処理を施した。次いでピーニング処理
したインペラ鋳鋼品を不活性ガス中で1050Cに加熱
し5時間保持した後炉冷して拡散処理を施し、さらに不
活lつtガス中でJa n’4品を加熱、保持した後、
不活性ガスを吹付けて南風冷却して鋳鋼品を焼入れし、
さらに(320CXIQhrの焼もどしをおこなった。This is because dendrites grow inward from the casting surface during the solidification process of casting, and elongated micro defects are formed between the dendrites. Therefore, when performing peening treatment on impeller cast steel products, the plastic deformation depth should be set to 100 μm step by step, based on the above observation results.
Taking into account the importance of the product and the improvement of the metallographic structure, the plastic deformation depth was carried out to be 500 μm or more. The peening treatment was performed at a pressure of Kgf/cm2, and the Dalit diameter was reduced to 1.
Two types of grids are used: 2mm and 0.7rrrm, and 3mm grids with a diameter of 1.2m are used in areas where tensile stress is strongly applied.
Peening treatment was performed for 30 minutes using a grid with a diameter of 0.7fi, and peening was performed for 30 minutes using a grid with a diameter of 0.7fi.
diameter grid for 15 minutes, and 0.7 mm diameter grid for 15 minutes.
Peening treatment was performed for 5 minutes. Next, the peened impeller cast steel product was heated to 1050C in an inert gas and held for 5 hours, then cooled in a furnace and subjected to a diffusion treatment, and the Jan'4 product was further heated and held in an inert gas. rear,
The cast steel is quenched by blowing inert gas and cooling with south wind.
Furthermore, tempering of 320CXIQhr was performed.
このように熱処理した後、ホーニングおよびエメーり紙
研磨で表面を仕上げてインペラ鋳鋼品を得た。After heat treatment in this manner, the surface was finished by honing and emery paper polishing to obtain an impeller cast steel product.
このようにして得たインペラ鋳鋼品はその表面および表
面直下に存在していたミクロ的欠陥が完全に除去されて
おシ、耐食性が著しく向上し、且つ機械試験を行ったと
ころ強度および靭性にも優れている。The impeller cast steel product obtained in this way has completely removed the microscopic defects that existed on the surface and just below the surface, and has significantly improved corrosion resistance, and mechanical tests have shown that it has good strength and toughness. Are better.
実施例3
この実施例は5.5%Ni tacr鋼で原子炉の冷却
水浄化系ポンプ部品を鋳造し、実施例2で同様に本発明
法を鋳鋼品に適用した場合である。この場合においても
、実施例と同様に曖れた効果が得られることがわかった
。Example 3 In this example, a pump part for a cooling water purification system of a nuclear reactor was cast using 5.5% Ni tacr steel, and the method of the present invention was similarly applied to the cast steel product in the same manner as in Example 2. In this case as well, it was found that a vague effect could be obtained as in the example.
以上説明したように、この発明による鋳鋼の表面加工法
によれば、鋳鋼表面および表面直下に内在する微小空孔
をピーニングで圧着した後、その圧着部を加熱保持する
ことにより拡散接合して微小空孔を完全に封孔したから
、M別品の耐食性、特に応力腐食割れの感受性を著しく
改善すると共に、鋳鋼品の赤面組織を微細化して機械的
性質たとえば強度、靭性あるいは疲労強度を向上するこAs explained above, according to the surface processing method for cast steel according to the present invention, after peening the micropores existing on the surface of the cast steel and immediately below the surface, the crimped portion is heated and held to perform diffusion bonding and form micropores. Since the pores are completely sealed, the corrosion resistance of the M product, especially the susceptibility to stress corrosion cracking, is significantly improved, and the blush structure of the cast steel product is refined to improve mechanical properties such as strength, toughness, and fatigue strength. child
第1図はこの発明の実施例1に用いた試験片の平面図、
第2図はこの発明の実施例2に供したインターナルポン
プを構成するインペラおよびディフューザ一部品を示す
インターナルポンプの全体概要図である。
1・・・試験片、3・・・平行部、4・・・インターナ
ルポンプ、5・・・インペラ、6・・・ゲインユーザー
。
詐 1目
枇2r;?’IlFIG. 1 is a plan view of a test piece used in Example 1 of this invention;
FIG. 2 is an overall schematic diagram of an internal pump showing an impeller and a diffuser that constitute an internal pump according to a second embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Test piece, 3... Parallel part, 4... Internal pump, 5... Impeller, 6... Gain user. Fraud 1 item 2r;? 'Il
Claims (1)
滅せしめる表面加工法において、前記鋳鋼の表面にピー
ニング処理を施した後、鋳鋼を拡散温度以上に加熱した
ことを特徴とする鋳鋼の表面加工法。 2、ピーニング処理は少なくとも鋳鋼の表面に微小空孔
の大きさ以上の塑性変形を与える特許請求の範囲第1項
記載の鋳鋼の表面加工法。 3、拡散温度を100OC以上、加熱保持時間を1時間
以上、加熱保持する特1’r 請求の範囲第1項記載の
鋳鋼の表面〃l工法。[Scope of Claims] 1. In a surface processing method for eliminating micropores existing on and immediately below the surface of cast steel, the surface of the cast steel is subjected to peening treatment, and then the cast steel is heated to a temperature higher than the diffusion temperature. Characteristic surface processing method for cast steel. 2. The method for surface processing of cast steel according to claim 1, wherein the peening treatment imparts plastic deformation larger than the size of micropores to at least the surface of the cast steel. 3. The cast steel surface construction method according to claim 1, wherein the diffusion temperature is 100OC or higher and the heating and retention time is 1 hour or longer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15888583A JPS6050115A (en) | 1983-08-30 | 1983-08-30 | Method for working surface of cast steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15888583A JPS6050115A (en) | 1983-08-30 | 1983-08-30 | Method for working surface of cast steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6050115A true JPS6050115A (en) | 1985-03-19 |
JPS626728B2 JPS626728B2 (en) | 1987-02-13 |
Family
ID=15681508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15888583A Granted JPS6050115A (en) | 1983-08-30 | 1983-08-30 | Method for working surface of cast steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6050115A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2519190A (en) * | 2012-02-24 | 2015-04-15 | Charles Malcolm Ward-Close | Processing of metal or alloy objects |
KR102021423B1 (en) * | 2018-12-14 | 2019-09-16 | 최형식 | Coolant regeneration and recycling feeder |
-
1983
- 1983-08-30 JP JP15888583A patent/JPS6050115A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2519190A (en) * | 2012-02-24 | 2015-04-15 | Charles Malcolm Ward-Close | Processing of metal or alloy objects |
GB2519190B (en) * | 2012-02-24 | 2016-07-27 | Malcolm Ward-Close Charles | Processing of metal or alloy objects |
KR102021423B1 (en) * | 2018-12-14 | 2019-09-16 | 최형식 | Coolant regeneration and recycling feeder |
Also Published As
Publication number | Publication date |
---|---|
JPS626728B2 (en) | 1987-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5758204B2 (en) | Titanium alloy member and manufacturing method thereof | |
JPS61106739A (en) | Titanium alloy cast product and its heat-treatment | |
JP4304245B2 (en) | Powder metallurgy object with a molded surface | |
US6555250B2 (en) | Ni-plated target diffusion bonded to a backing plate and method of making same | |
CN109112449A (en) | A method of eliminating aluminum alloy die forgings residual stress | |
JPH07150274A (en) | Titanium alloy and its production | |
CN102159742A (en) | Solution heat treatment and overage heat treatment for titanium components | |
Clemens et al. | Characterization of Ti 48Al 2Cr sheet material | |
JPS6050115A (en) | Method for working surface of cast steel | |
JP2008050665A (en) | Method of manufacturing steel casting part made of martensitic stainless steel | |
JPH08502099A (en) | Zirconium-based materials, products for use in nuclear reactor cores made from the same, and methods of making such products | |
CN115232928A (en) | Method for improving mechanical property of laser shock strengthening metal additive part through heat treatment | |
Danninger et al. | Heat treatment and properties of precipitation hardened carbon-free PM tool steels | |
JPS61231150A (en) | Manufacture of ti alloy wire rod | |
RU2250806C1 (en) | Method for making thin sheets of high-strength titanium alloys | |
RU2243833C1 (en) | Method for making thin sheets of high strength titanium alloys | |
CN115572970B (en) | High-performance high-entropy alloy material and preparation method thereof | |
JP2781325B2 (en) | Method for producing medium and high carbon martensitic stainless steel strip having fine carbides | |
CN114700697B (en) | Preparation method of TiAl series layered composite board | |
RU2816186C1 (en) | Flat rolled products from low-alloyed titanium alloy and method of its production | |
CN118527592B (en) | Forging method and application of powder metallurgy tungsten-based high-speed steel | |
WO2024080326A1 (en) | Method for manufacturing high-strength component having exceptional resistance to hydrogen embrittlement | |
JP3003257B2 (en) | Manufacturing method of alloy members | |
JPH02232303A (en) | Manufacture of titanium alloy powder sintered product | |
CN118854198A (en) | Preparation process of titanium foil for inhibiting microcrack formation |