JPS6050900A - X-ray diagnostic apparatus - Google Patents
X-ray diagnostic apparatusInfo
- Publication number
- JPS6050900A JPS6050900A JP58158693A JP15869383A JPS6050900A JP S6050900 A JPS6050900 A JP S6050900A JP 58158693 A JP58158693 A JP 58158693A JP 15869383 A JP15869383 A JP 15869383A JP S6050900 A JPS6050900 A JP S6050900A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- timing
- wave
- radiation
- pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 20
- 238000003745 diagnosis Methods 0.000 claims description 2
- 210000004351 coronary vessel Anatomy 0.000 abstract description 20
- 210000002216 heart Anatomy 0.000 abstract description 14
- 230000005855 radiation Effects 0.000 abstract description 8
- 230000008602 contraction Effects 0.000 abstract description 3
- 239000002872 contrast media Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 239000008280 blood Substances 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 5
- 210000003462 vein Anatomy 0.000 description 3
- 210000000709 aorta Anatomy 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 230000007123 defense Effects 0.000 description 2
- 210000003414 extremity Anatomy 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 210000005240 left ventricle Anatomy 0.000 description 2
- 210000004165 myocardium Anatomy 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000002583 angiography Methods 0.000 description 1
- 238000011888 autopsy Methods 0.000 description 1
- 210000001715 carotid artery Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000002586 coronary angiography Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010247 heart contraction Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 210000005246 left atrium Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000001147 pulmonary artery Anatomy 0.000 description 1
- 210000003492 pulmonary vein Anatomy 0.000 description 1
- 210000002254 renal artery Anatomy 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 210000005245 right atrium Anatomy 0.000 description 1
- 210000005241 right ventricle Anatomy 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/541—Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Heart & Thoracic Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Physiology (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- X-Ray Techniques (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
本発明はxsit診断装置に係り、特にカテーテルを使
うことなく冠動脈を描写することを可能とする循環器用
のX線診断装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an xsit diagnostic device, and more particularly to an X-ray diagnostic device for circulatory organs that makes it possible to depict coronary arteries without using a catheter.
[発明の技術的背II]
心臓を養っている血管である冠動脈は閉塞すると心筋梗
塞となるため、その正常、異常の確認は特に重要であり
、従来より、動脈からカテーテルを挿入し冠動脈に造影
剤を注入してxs+ii彰する冠動脈造影法が普及して
いる。しかし、動脈血管に直接チューブを挿入するカテ
ーテル法は危険性もあり熟練した高度の医療技術を要す
るなど被検者、医師の肉体的、精神的な負担が非常に大
きい。[Technical Background of the Invention II] If a coronary artery, which is a blood vessel that feeds the heart, is occluded, it will cause a myocardial infarction, so it is particularly important to confirm whether it is normal or abnormal. Coronary angiography, which involves injecting a drug and performing XS+II, has become popular. However, catheterization, which involves inserting a tube directly into an arterial blood vessel, is dangerous and requires highly skilled and highly skilled medical techniques, placing an enormous physical and mental burden on the patient and doctor.
一方、近年になって静脈から造影剤を注入し、造影剤の
注入前と注入後のX線像のサブトラクション(差をとる
こと)により、腎動脈や頚動脈の造影を行なう静注サブ
トラクション造影(Ven−ous s ubtrac
t+on A noiooraphy 〜以下「vSA
」と称する)法が開発された。しかし、心臓は常時動い
ているために冠動脈をこのvSA法により描写すること
は殆ど不可能であった。On the other hand, in recent years, intravenous subtraction angiography (Ven) is used to image renal arteries and carotid arteries by injecting a contrast medium through a vein and subtracting (taking the difference) the X-ray images before and after the contrast medium injection. -ous s ubtrac
t+on A noiooraphy ~hereinafter referred to as “vSA
A law has been developed called ``. However, since the heart is constantly in motion, it has been almost impossible to depict coronary arteries using this vSA method.
また、vSA法において、X線は連続して曝射させ透視
画像の取込み手段を心臓の動作タイミングに同期させて
作動させて取込みを行なうようにすることも考えられる
が、この場合、透視画像のコン1ヘラストを良好に保つ
ために充分なX線出力を得るためには、XI!管の容量
を大きくしなければならず、装置の大型化、二1ストア
ツブになってしまう。さらにこの場合は、被検体として
の被検者のX線被曝を増大させるという問題もある。Furthermore, in the vSA method, it is conceivable to emit X-rays continuously and operate the fluoroscopic image capture means in synchronization with the heart's movement timing, but in this case, the fluoroscopic image In order to obtain sufficient X-ray output to maintain Con1 Helast in good condition, XI! The capacity of the tube must be increased, resulting in a larger device and 21 store tubes. Furthermore, in this case, there is also the problem that the X-ray exposure of the subject to be examined is increased.
[発明の目的]
本発明の目的とするところは、VSA法による冠動脈の
描出を可能とするX線診断装置を提供することにある。[Object of the Invention] An object of the present invention is to provide an X-ray diagnostic apparatus that enables depiction of coronary arteries using the VSA method.
[弁明の概要コ
本発明はX線発生装詔より発生し被検体を透過したX線
を検出装置で検出し映像情報を得て診断に供り−るX線
診11i装冒において、被検体から検出した心電図信号
のQR8波のタイミングをR波検出装置で検出し、この
検出に基づきタイミング制御装置で上記X線発生装置を
制御してQR8波のタイミングの所定時間後にX $1
flit射を開始させ且つ次の上記QR8波の前縁(
通常立上り)のタイミンクでX線曝射を停止させること
を特徴としている。[Summary of Defense] The present invention is designed to detect X-rays generated by an X-ray generator and transmitted through a subject using a detection device to obtain image information for diagnosis. The timing of the QR8 wave of the electrocardiogram signal detected from is detected by the R wave detection device, and based on this detection, the timing control device controls the X-ray generator to generate X $1 after a predetermined time of the timing of the QR8 wave.
Start flit radiation and start the leading edge of the next QR8 wave (
It is characterized by stopping the X-ray exposure at the timing of the normal start-up.
[発明の実施例コ 第1図に本発明の一実施例の構成を示す。[Embodiments of the invention] FIG. 1 shows the configuration of an embodiment of the present invention.
寝台天板1の上に載置された被検体(一般に人体)Hに
は、X線管2およびこれを駆動するX線用電源を含むX
線コントローラ3からなるX線発生装置によりX線が照
射される。被検体Hの心臓部分および寝台天板1を透過
したXl!は例えばX線イメージインテンシファイア、
テレビカメラおよび光学系で構成されるX線テレビジョ
ン1m系等からなるX線映像検出装置4により平面像と
して検出され、その出力は電気信号としてデータ処理装
置5に入力される。A subject (generally a human body) H placed on a bed top 1 includes an X-ray tube 2 and an X-ray power source that drives it.
An X-ray generator including a ray controller 3 irradiates X-rays. Xl transmitted through the heart part of the subject H and the bed top 1! For example, an X-ray image intensifier,
The image is detected as a plane image by an X-ray image detection device 4, such as an X-ray television 1m system consisting of a television camera and an optical system, and its output is input to a data processing device 5 as an electrical signal.
一方、被検体Hには心電図電極6(実際には手足に接続
するが図では手首に接続したものだけを示す)を接続し
、心電計7により心電図信号を得る。得られた心電図信
号はR波検出装置8に与えられて心電図波形のQR8波
すなわちR波のタイミングが検出され、このR波のタイ
ミングに基づきタイミング制all !!i 置9でX
線発生のタイミングを制御する@銅ti制御信号が生成
される。この曝射制御信号ににす×線コン1−ローラ4
を制御して被検体1−1にX線を照射するとともにその
X線照射時間を制御する。On the other hand, an electrocardiogram electrode 6 (actually connected to the limbs, but only the one connected to the wrist is shown in the figure) is connected to the subject H, and an electrocardiogram signal is obtained by an electrocardiograph 7. The obtained electrocardiogram signal is given to the R wave detection device 8, which detects the QR8 wave of the electrocardiogram waveform, that is, the timing of the R wave, and based on the timing of this R wave, the timing control is performed. ! i at position 9
A @copper ti control signal is generated that controls the timing of line generation. In response to this exposure control signal,
is controlled to irradiate the subject 1-1 with X-rays and control the X-ray irradiation time.
第2図はこの一合の制御のタイミング関係を詳しく説明
するためのタイミングパルストである。FIG. 2 is a timing pulse chart for explaining in detail the timing relationship of this combination of controls.
12図(a )に示したのは被検体Hより得られる例え
ば標準第2肢誘導の心電図波形の一例である。心電図波
形は各部分が図示のようにP、Q。FIG. 12(a) shows an example of an electrocardiogram waveform of a standard second limb lead obtained from a subject H, for example. Each part of the electrocardiogram waveform is P and Q as shown.
R,S、Tという符号で呼ばれており、QR8の部分は
心臓の収縮の開始時点を表わしている。通常この誘導法
ににるR波1jスパイク状の振幅の大きな輔波どなるた
めタイミングの検出に最も適している。そして、第2図
(b)は同図(a)の心電図信号のR波の立上りを利用
してR波検出装置8により得られる心臓の収縮開始のタ
イミングパルス波形である。このタイミングパルスを得
る技術は既に確立されている。They are called by the symbols R, S, and T, and the QR8 portion represents the point at which the heart begins to contract. Usually, this guidance method is most suitable for timing detection because the R wave 1j is a spike-like wave with a large amplitude. FIG. 2(b) is a timing pulse waveform of the start of cardiac contraction obtained by the R-wave detection device 8 using the rise of the R wave of the electrocardiogram signal shown in FIG. 2(a). The technology for obtaining this timing pulse has already been established.
ところで、冠動脈が最も良く描写できるのは心5−
臓の収縮期ではなく拡張末期である。すなわち、収縮期
には心臓から大動脈へ血液が拍出されるが心筋が収縮し
ているため冠動脈中の血液は少なく描写しにくいのに対
し、心筋が弛緩した拡張期には大動脈から逆に冠動脈へ
と血液が流入して冠動脈中の血液が多くなる。しかも、
拡張が終了し次の収縮が始まるまでの拡張末期には心臓
の動きは心周期中最も少ない。したがって拡張末期にX
線像を得ることにより冠動脈を最も良く(明瞭に且つ正
確に)描写できることになる。しかしながら、心電図信
号から拡張末期のタイミングを直接検出することは回能
である。By the way, the coronary arteries can best be depicted during the end-diastole phase of the heart, not during the systole phase. In other words, during systole, blood is ejected from the heart to the aorta, but because the myocardium is contracting, there is little blood in the coronary arteries, which is difficult to depict, whereas during diastole, when the myocardium is relaxed, blood is ejected from the aorta to the coronary arteries. Blood flows into the coronary arteries, increasing the volume of blood in the coronary arteries. Moreover,
During end-diastole, the period between the end of diastole and the beginning of the next contraction, the heart moves the least during the cardiac cycle. Therefore, at the end of diastole
Obtaining a line image provides the best (clear and accurate) depiction of the coronary arteries. However, directly detecting end-diastolic timing from the electrocardiogram signal is an inconvenience.
第2図(C’)は、R波タイミングから所定時間を秒(
例えば0.5秒)の幅を持つパルス列の波形であり、第
2図(d )はXS+++暉射開始スイッチ10の操作
により発生するXI!II影指令信号の波形である。第
2図(e)は同図(d )のXI!撮影指令信号の撮影
開始(START)から撮影終了(STOP>までの間
同図(C)のパルス列の各パルスの後縁(立ち下り)か
ら次のパルスの前縁6−
(立ち1ニリ)までのパルス幅で発生するパルス列から
なる曝射制御111g月であり、このパルスのタイミン
グでX線が照射される。Figure 2 (C') shows the predetermined time in seconds (seconds) from the R wave timing.
For example, it is a waveform of a pulse train having a width of 0.5 seconds), and FIG. 2(d) shows the waveform of the XI! This is the waveform of the II shadow command signal. Figure 2(e) shows the XI! of Figure 2(d)! From the shooting start (START) of the shooting command signal to the shooting end (STOP>) From the trailing edge (falling) of each pulse of the pulse train in the same figure (C) to the leading edge 6- (rising 1 nil) of the next pulse The exposure control 111g is made up of a pulse train generated with a pulse width of , and X-rays are irradiated at the timing of this pulse.
tく1わら、R波検出装置8で得られたR波タイミング
パルスはタイミング制@装置9に入力され、第2図(C
)のパルス列どなり、このパルス列と外部から一剖開始
スイッチ10の操作による撮影指令信号に間づいて曝射
制御信号が生成され、この信号によりX線」ン]・ロー
ラ3が制御されて第2図(e)に示した時間範囲Xの間
X線が照射される。つまり、心臓の拡張初期の近傍でX
線を照射開始し収縮初期(R波検出タイミング)で照射
停止する。これを各心拍毎に繰り返し、あらかじめ1h
定した時間(または心拍数)の後、XwA撮影指令信号
の消失に伴ってX線照射の繰り返しは停止する(第2図
((1)の5TOP以降)。一般に1く波の間隔は0.
5秒〜1.2秒位で、個人差もあり同一人でも一定とは
限らないので、第2図(C)′c示される所定時間電は
通常R波間隔の平均値の;う0%から80%程度に設定
すればよい。At the same time, the R-wave timing pulse obtained by the R-wave detection device 8 is input to the timing control device 9, and as shown in Fig. 2 (C
), an exposure control signal is generated between this pulse train and an imaging command signal from the external operation of the autopsy start switch 10, and this signal controls the X-ray roller 3. X-rays are irradiated during the time range X shown in Figure (e). In other words, near the early stage of heart expansion,
The ray irradiation is started and the irradiation is stopped at the beginning of contraction (R wave detection timing). Repeat this for each heartbeat for 1 hour in advance.
After a certain time (or heart rate), the XwA imaging command signal disappears and the repetition of X-ray irradiation stops (see Figure 2 (after 5TOP in (1)). Generally, the interval between waves is 0.
It is about 5 seconds to 1.2 seconds, and there are individual differences and it is not necessarily constant even for the same person, so the predetermined time period shown in Fig. 2 (C)'c is usually 0% of the average value of the R wave interval. It may be set to about 80%.
R波間隔は通常その直前のR波間隔に準するため直前の
数心拍分のR波間隔の変化から次期R波間隔を推定して
所定時間tを設定することも可能である。Since the R-wave interval usually follows the immediately preceding R-wave interval, it is also possible to estimate the next R-wave interval from changes in the R-wave interval over the previous several heartbeats and set the predetermined time t.
実際のX線撮影では被検体Hに静脈より造影剤を注入し
その前あるいは直後からX線@11開始スイッチ10に
より撮影指令を与えて第2図(e)のような曝射パルス
によりX線繰り返し照射を行ないX線映像検出装置4で
得られたX線像をデータ処理装置5に取り込む。データ
処理装置5はX線像の映像信号をA/D (アナログ−
デジタル)変換してディジタルメモリに蓄える。血液と
混合された造影剤は静脈→大静脈→右心房→右心室→肺
動脈→肺→肺静脈→左心房→左心室の経路で流れ、未だ
冠動脈に達していない時期までのものは冠動脈を描写す
るにあたっての背景像どなるのでこれをマスク像とする
。次いで造影剤は冠動脈へと流入しその後数心拍で左心
室内の血液に造影剤がなくなると冠動脈へも造影剤は流
れなくなる。In actual X-ray imaging, a contrast agent is injected into the subject H through a vein, and before or immediately after that, an imaging command is given using the X-ray @ 11 start switch 10, and the X-ray is transmitted using an exposure pulse as shown in Figure 2(e). The irradiation is repeated and the X-ray image obtained by the X-ray image detection device 4 is taken into the data processing device 5. The data processing device 5 converts the video signal of the X-ray image into an A/D (analog)
(digital) and stored in digital memory. The contrast agent mixed with blood flows along the route of vein → vena cava → right atrium → right ventricle → pulmonary artery → lung → pulmonary vein → left atrium → left ventricle, and if it has not yet reached the coronary artery, it depicts the coronary artery. Since this is the background image used for this purpose, this will be used as the mask image. The contrast medium then flows into the coronary artery, and after several heartbeats, when the contrast medium disappears from the blood in the left ventricle, the contrast medium also stops flowing into the coronary artery.
この時点ではX線照射を終了する。ディジタルメモリに
蓄えられる名xIil像データは冠動脈に造影剤が注入
された時点のコントラスト像と注入されていないマスク
像であり、これら両画像間のサブトラクション等の処理
を行なえば、冠動脈像はより明瞭に描写される。最終的
に得られた画像はディスプレイ11に表示され、且つ必
要に応じて磁気ディスク、光学ディスク等を用いた画像
ファイル装[12にファイル、保存される。At this point, the X-ray irradiation is finished. The image data stored in the digital memory is a contrast image at the time when the contrast agent was injected into the coronary artery and a mask image without the contrast agent being injected.If processing such as subtraction between these two images is performed, the coronary artery image becomes clearer. is depicted in The finally obtained image is displayed on the display 11 and, if necessary, is saved as a file in an image file device 12 using a magnetic disk, an optical disk, etc.
VSA法では造影剤が+fit W&と混合され造影剤
濃度が薄くなり、S、/N(信号対雑音比)のよい画像
を得るにはX線暉射量を増す必要があるが、本実施例で
は冠動脈血液が流入している時間のみX線を照射するた
め被検体への無駄なX線照射が防11−され被@I!−
を必要最小限とすることができる。In the VSA method, the contrast agent is mixed with +fit W&, resulting in a thin contrast agent concentration, and it is necessary to increase the amount of X-ray radiation to obtain an image with good S,/N (signal-to-noise ratio). Since X-rays are irradiated only during the time when coronary artery blood is flowing in, unnecessary X-ray irradiation to the subject is prevented. −
can be kept to the minimum necessary.
さらに同−X線管容量の場合、実施例のパルス照射を行
なえば必要な時間幅のみのより強いX線照射が可能でX
線像のコン[−ラストをそれだけ上げることができる。Furthermore, in the case of the same X-ray tube capacity, if the pulse irradiation of the embodiment is performed, stronger X-ray irradiation for only the necessary time width is possible.
The contrast of line images can be increased accordingly.
また、本実施例によるX線照射のタイミングすなわち拡
張未明は先に述べたように心臓の動きが一〇−
最も少ない時相に相当し、動きによるX線像の著しいず
れはなく「ぼけ」を最小限にすることができるという利
点もある。Furthermore, as mentioned earlier, the timing of X-ray irradiation according to this embodiment, that is, the extended early morning, corresponds to the time phase when the movement of the heart is least. Another advantage is that it can be minimized.
このようにして、不必要な時間領域では被検体HにX線
を照射することなく必要な時間領域すなわち拡張末期に
のみ充分に強いX線を照射してS/間のよいXII像を
得ることができ、しかも最も動きの少ない心時相のxi
sが得られることから、従来不可能であった冠!l]脈
のVSAによる描写が可能となる。In this way, XII images with a good S/interval can be obtained by irradiating sufficiently strong X-rays only in the necessary time region, that is, the end diastole, without irradiating the subject H with X-rays in unnecessary time regions. xi of the cardiac phase with the least movement.
A crown that was previously impossible because s can be obtained! l] It becomes possible to depict the pulse using VSA.
なお、本発明は上述し且つ図面に示す実施例にのみ限定
されることなく、その要旨を変更しない範囲内で種々変
形して実施することができる。It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, but can be implemented with various modifications without changing the gist thereof.
例えば、上記実施例ではVSA法により冠動脈の像を得
る場合について説明したが、拡張末期において心臓の動
きが少なくなることを利用して心臓あるいはその周辺の
他の部位のxm像を得る場合に本発明を適用しても効果
的である。For example, in the above embodiment, a case was explained in which an image of a coronary artery was obtained using the VSA method, but this method can be used to obtain an It is also effective to apply the invention.
また、VSA法に限らず他のX線撮影、例えばフィルム
撮影等にも心臓およびその周辺を対象と10−
するものであれば本弁明は一応有効である。In addition, this defense is valid not only for the VSA method but also for other X-ray photography, such as film photography, as long as it targets the heart and its surroundings.
[発明の効果1
本発明によれば、従来撮像困難であったVSA法による
冠動脈の描出をも可能とし、心臓およびその周辺の食好
なX線映噸の撮像を実現し得るX線診断装冒を提供する
ことができる。[Effects of the Invention 1] According to the present invention, an X-ray diagnostic device is provided which is capable of depicting coronary arteries using the VSA method, which has been difficult to image in the past, and which can realize convenient X-ray imaging of the heart and its surroundings. can offer blasphemy.
第1図は本発明の一実施例の概略的構成を示す模式的ブ
ロック図、第2図は同実施例を説明するためのタイミン
グヂト一トである。
1・・・寝台天板、2・・・X線管、3・・・X線コン
トローラ、4・・・X線映像検出装置、5・・・データ
処理装置、6・・・心電図電極、7・・・心電計、8・
・・R波検出装置、9・・・タイミング制御装置、10
・・・曝射開始スイッチ、11・・・ディスプレイ、1
2・・・画像ファイル装置。
出願人代理人 弁理士 鈴江武彦
11−
第1図FIG. 1 is a schematic block diagram showing a schematic configuration of an embodiment of the present invention, and FIG. 2 is a timing chart for explaining the embodiment. DESCRIPTION OF SYMBOLS 1... Bed top plate, 2... X-ray tube, 3... X-ray controller, 4... X-ray image detection device, 5... Data processing device, 6... Electrocardiogram electrode, 7 ...electrocardiograph, 8.
...R wave detection device, 9...timing control device, 10
... Exposure start switch, 11... Display, 1
2... Image file device. Applicant's agent Patent attorney Takehiko Suzue 11- Figure 1
Claims (1)
透過したX線を検出する検出装置と、被検体の心電図信
号を検出する心電図信号検出装置と、この心電図信号検
出装置で得た心電図信号のQR8波のタイミングを検出
するR波検出装置と、このR波検出装置で検出されたQ
R8波のタイミングの所定時開後にX1lllを開始さ
せ且つ次の上記QR8波の前縁のタイミングでX11曝
劃を停止させるべく上記X線発生装置を1lilJ I
IIするタイミング制御装置とを具備し、上記検出装置
の検出に基づく映像情報を診断に供することを特徴とす
るX線診断装置。An X-ray generator, a detection device that detects the X-rays generated by the X-ray generator and transmitted through the subject, an electrocardiogram signal detection device that detects the electrocardiogram signal of the subject, and an electrocardiogram signal detected by the electrocardiogram signal detection device. An R wave detection device that detects the timing of the QR8 wave of an electrocardiogram signal, and a Q wave detection device that detects the timing of the QR8 wave of an electrocardiogram signal.
The X-ray generator is set to 1lilJI in order to start X1llll after opening at a predetermined time of the timing of the R8 wave and stop the X11 exposure at the timing of the leading edge of the next QR8 wave.
1. An X-ray diagnostic apparatus comprising a timing control device according to item II, and providing image information based on detection by the detection device for diagnosis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58158693A JPS6050900A (en) | 1983-08-30 | 1983-08-30 | X-ray diagnostic apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58158693A JPS6050900A (en) | 1983-08-30 | 1983-08-30 | X-ray diagnostic apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6050900A true JPS6050900A (en) | 1985-03-20 |
JPH0234439B2 JPH0234439B2 (en) | 1990-08-03 |
Family
ID=15677287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58158693A Granted JPS6050900A (en) | 1983-08-30 | 1983-08-30 | X-ray diagnostic apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6050900A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61115539A (en) * | 1984-11-09 | 1986-06-03 | 株式会社 日立メデイコ | Digital x-ray photographing apparatus |
US4729379A (en) * | 1985-12-27 | 1988-03-08 | Kabushiki Kaisha Toshiba | Digital subtraction-imaging apparatus utilizing cardiac-synchronized subtraction method |
US5526442A (en) * | 1993-10-04 | 1996-06-11 | Hitachi Medical Corporation | X-ray radiography method and system |
US5600701A (en) * | 1993-05-11 | 1997-02-04 | Hitachi Medical Corporation | X-ray imaging system and method therefor |
WO2000018299A1 (en) * | 1998-09-29 | 2000-04-06 | Aaro Kiuru | Method to measure the relative perfusion of the lungs |
EP1093301A1 (en) * | 1999-10-12 | 2001-04-18 | Ge Medical Systems Sa | Method of improving the quality of a fluoroscopic image |
JP2012254359A (en) * | 2007-03-30 | 2012-12-27 | Toshiba Corp | X-ray diagnostic apparatus |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005304905A (en) * | 2004-04-23 | 2005-11-04 | Fuji Photo Film Co Ltd | Radiographing apparatus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53123693A (en) * | 1977-04-01 | 1978-10-28 | Ohio Nuclear | Heart image forming system by ct scanner |
-
1983
- 1983-08-30 JP JP58158693A patent/JPS6050900A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53123693A (en) * | 1977-04-01 | 1978-10-28 | Ohio Nuclear | Heart image forming system by ct scanner |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61115539A (en) * | 1984-11-09 | 1986-06-03 | 株式会社 日立メデイコ | Digital x-ray photographing apparatus |
US4903705A (en) * | 1984-11-09 | 1990-02-27 | Hitachi Medical Corporation | Digital radiography apparatus |
US4729379A (en) * | 1985-12-27 | 1988-03-08 | Kabushiki Kaisha Toshiba | Digital subtraction-imaging apparatus utilizing cardiac-synchronized subtraction method |
US5600701A (en) * | 1993-05-11 | 1997-02-04 | Hitachi Medical Corporation | X-ray imaging system and method therefor |
US5526442A (en) * | 1993-10-04 | 1996-06-11 | Hitachi Medical Corporation | X-ray radiography method and system |
WO2000018299A1 (en) * | 1998-09-29 | 2000-04-06 | Aaro Kiuru | Method to measure the relative perfusion of the lungs |
US6522720B1 (en) | 1998-09-29 | 2003-02-18 | Aaro Kiuru | Method to measure the relative perfusion of the lungs |
EP1093301A1 (en) * | 1999-10-12 | 2001-04-18 | Ge Medical Systems Sa | Method of improving the quality of a fluoroscopic image |
JP2012254359A (en) * | 2007-03-30 | 2012-12-27 | Toshiba Corp | X-ray diagnostic apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0234439B2 (en) | 1990-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4611340A (en) | Apparatus for examining a biological object by using radiation | |
US4903705A (en) | Digital radiography apparatus | |
US7065395B2 (en) | Method and apparatus for cardiac radiological examination in coronary angiography | |
CN101176669B (en) | X-ray diagnostic apparatus and image processing apparatus | |
JP4490014B2 (en) | System and method for dual energy imaging with synchronized image acquisition and cardiac cycle | |
US6324254B1 (en) | Method and x-ray device for picking up x-ray images of a substantially rhythmically moving vessel or organ | |
JP2010522598A (en) | Method and apparatus for acquiring fused X-ray images | |
JP2007000630A (en) | Method and device for imaging moving object | |
US7529342B2 (en) | Device and method for producing images of the heart | |
JP2007502140A5 (en) | ||
JPS60194935A (en) | X-ray vessel image fluoroscopic apparatus | |
JPS6050900A (en) | X-ray diagnostic apparatus | |
van der Werf et al. | The concept of apparent cardiac arrest as a prerequisite for coronary digital subtraction angiography | |
JP2004073490A (en) | Roentgenography apparatus, roentgenography method, and computer readable storage medium | |
JP2007111530A (en) | Method and device for imaging organ | |
JPS61249446A (en) | Method and apparatus for separating movable part from fixed background | |
BOGREN et al. | Intravenous Angiocardiography Using Digital Image Processing: 1. Experience with Axial Projections in Normal Pigs | |
WO2002074163A9 (en) | Method and device for cardiac radiological examination | |
JPH0579333B2 (en) | ||
JP2014030506A (en) | Medical image processor, x-ray photographing device, and medical image processing program | |
JPH0213184A (en) | Digital subtraction device | |
JPH02249534A (en) | X-ray image diagnosis device | |
JP5599143B2 (en) | X-ray imaging device | |
JP3033211B2 (en) | X-ray diagnostic imaging device | |
US20100331675A1 (en) | Process for acquiring a three-dimensional radiological image of an organ in movement |