JPS6050443A - Temperature controlling apparatus for thermal analysis - Google Patents
Temperature controlling apparatus for thermal analysisInfo
- Publication number
- JPS6050443A JPS6050443A JP15793883A JP15793883A JPS6050443A JP S6050443 A JPS6050443 A JP S6050443A JP 15793883 A JP15793883 A JP 15793883A JP 15793883 A JP15793883 A JP 15793883A JP S6050443 A JPS6050443 A JP S6050443A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- sample holder
- heat insulating
- insulating container
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/20—Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
- G01N25/48—Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation
- G01N25/4806—Details not adapted to a particular type of sample
- G01N25/4826—Details not adapted to a particular type of sample concerning the heating or cooling arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K17/00—Measuring quantity of heat
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Control Of Temperature (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、示差走査熱量計等に用いられる熱分析用温度
制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature control device for thermal analysis used in a differential scanning calorimeter or the like.
従来の断熱式示差走査熱量計において、温度を下降させ
て試料を熱分析する場合、断熱容器の冷却を介して試料
の温度を下降させていたが、試料ホルダは対称にするこ
とが困難であるため試料と標準試料間に温度差が生じ、
かくて該温度差の基線が変動しやすく、試料の熱分析が
正確にできない不都合が生じた。また試料の温度を下降
させる従来の低湿装置によれば試料の温度の降下速度が
指数的に変化するので、試料の温度を直線的に降下させ
る場合には、低温装置による湿度下降に応じてヒータで
試料の加熱を制御しなければならず、熱分析が正確にで
きない不都合が生じた。In conventional adiabatic differential scanning calorimeters, when thermally analyzing a sample by lowering its temperature, the temperature of the sample is lowered by cooling the adiabatic container, but it is difficult to make the sample holder symmetrical. Therefore, a temperature difference occurs between the sample and the standard sample,
Thus, the base line of the temperature difference was likely to fluctuate, resulting in the inconvenience that thermal analysis of the sample could not be performed accurately. Furthermore, with conventional low-humidity equipment that lowers the temperature of the sample, the rate of drop in sample temperature changes exponentially, so when lowering the sample temperature linearly, the heater The heating of the sample had to be controlled by using a method, which resulted in the inconvenience that thermal analysis could not be performed accurately.
本発明はかかる不都合を無くすことをその目的としたも
ので、断熱容器及び該断熱容器内に収納された試料ホル
ダをそれぞれ導熱部材を介して低湿装置に連結し、該試
料ホルダを7J11熱してプログラム温度制御すると共
に、前記断熱容器を試料ホルダと同一温度になるように
温度制御することを特徴とし、第2発明は、断熱容器及
び該断熱容器内に収納された試料ホルダを外周が断熱材
で被覆された筒状導熱部材及び該部材に挿通された軸状
導熱部材にそれぞれ接続し、該両部材をデユア瓶内の液
体声素に浸漬すると共に前記両部材間の一端閉鎖された
空間を可調整パルプを介して外部に連通し、前記試料ホ
ルダを加熱してグログラム温度制御すると共に、前記断
熱容器を試料ホルダと同一温度になるように湿度制御す
ることを特徴とする。The purpose of the present invention is to eliminate such inconveniences, by connecting an insulating container and a sample holder housed in the insulating container to a low-humidity device via a heat conductive member, heating the sample holder at 7J11, and programming the sample holder. The second invention is characterized in that the temperature is controlled so that the temperature of the insulating container and the sample holder is the same as that of the sample holder. The coated cylindrical heat conductive member and the axial heat conductive member inserted through the member are respectively connected, and both members are immersed in the liquid voice in the Dua bottle, and the space between the two members, which is closed at one end, is opened. It is characterized in that it communicates with the outside via a regulating pulp, and controls the temperature of the sample holder by heating it, and also controls the humidity of the heat-insulating container so that it has the same temperature as the sample holder.
以下本発明の実施例を図面につき説明する。Embodiments of the present invention will be described below with reference to the drawings.
第1図において、(1)は導熱性の試料ホルダで、該試
料ホルダ(1)は試料容器+21及び標準試料容器(3
)を成金させる2つの孔を有し、その間には試料及び標
準試料の温度差を測定する熱電素子(4)が嵌着をれ、
また下部には標準試料容器(試料ホルダ温度)測定用熱
電対(5)が取付けられたもので、断熱容器(6)に対
し断熱部材f71 (81を介して取付けられた導熱性
架台(9)にヒータaαを介して載置j〜た。該断熱容
器(6)は試料の熱を外気に対し遮断するためのもので
、外周にヒータ0υを有し固定された導熱性基盤aりに
載置した。該基盤餞及び前記架台(9)にはそれぞれ下
方に、外周が断熱材α四で被覆された筒状導熱部材αを
及び該部材(141に嵌挿された軸状導熱部材α1を延
設し、該両部材(141(15)をそれぞれ下記の低温
装置(16+に接続して、それぞれ独立して断熱容器(
6)及び試料ホルダtl+を冷却するようにした。In FIG. 1, (1) is a heat-conductive sample holder, which includes a sample container +21 and a standard sample container (3).
), and a thermoelectric element (4) for measuring the temperature difference between the sample and the standard sample is fitted between them.
In addition, a thermocouple (5) for measuring the standard sample container (sample holder temperature) is attached to the lower part, and a heat conductive pedestal (9) is attached to the heat insulating container (6) via the heat insulating member f71 (81). The heat insulating container (6) is for insulating the heat of the sample from the outside air, and has a heater 0υ on the outer periphery and is placed on a fixed heat conductive substrate a. A cylindrical heat conductive member α whose outer periphery was covered with a heat insulating material α4 and a shaft-shaped heat conductive member α1 fitted into the member (141) were placed below the base board and the pedestal (9), respectively. Both members (141 (15)) are connected to the following cryogenic equipment (16+), and each is independently installed in a heat insulating container (141 (15)).
6) and the sample holder tl+ were cooled.
該低温装置aeは液体窒素(17)が充填されたデユア
瓶餞と、前記円筒状導熱部材圓と軸状導熱部材α■間の
上端が閉鎖された空間を外気に対し調節自在に開放する
ニードルパルプa1が介入されたパイプ(20)から成
り、ヒータ[01によシ試料ホルダ(1)を昇温すると
き、あるいはゆっくり冷却するときはニードルバルブ翰
を閉じて該空間内の液面レベルが該部材α40最の下端
になるようにし、急速冷却するときはニードルバルブ(
]9を開放して該空間内の液面レベルがデユア瓶081
の液面レベルと同じにし、その中間のときは、ニードル
パルプσ)を調整して液体窒素Q7)の前記空間内にお
けるレベルが適当な高さになるようにする。The cryogenic device ae includes a dual bottle filled with liquid nitrogen (17), and a needle that adjustably opens a space closed at the upper end between the cylindrical heat conducting member circle and the axial heat conducting member α■ to the outside air. It consists of a pipe (20) in which pulp a1 is inserted, and when the sample holder (1) is heated by a heater [01] or slowly cooled down, the needle valve is closed and the liquid level in the space is lowered. Place the member α40 at the lowest end, and when rapidly cooling, close the needle valve (
]9 is opened and the liquid level in the space is adjusted to 081.
When the level is in between, adjust the needle pulp σ) so that the level of liquid nitrogen Q7) in the space becomes an appropriate level.
前記ヒータαfil(lυ、熱電素子+41及び熱電対
(5)と断熱容器(6)の内壁に取付けた熱電対Ci!
l)はチューブ(221を介して外部に引出し、第2図
示のように熱電素子(4)の出力は増幅器(至)を介し
てレコーダ(2(イ)等に加え、試料及び標準試料の温
度差を記録するようにした。また、該ヒータaαは同図
に示すように熱電対f51が接続された公知のプログラ
ム制御器シ(ト)で制御てれ、かくて、標準試料の温度
がプログラム温度制御器(ハ)で設定されたプログラム
に従って変化するようにした。該ヒータ0υはまた同図
に示すように、18を対([5ルυに接続された公知の
温度制御器(ホ)の出力で制御、でれ、かくて熱電対(
5)とCDの出力の差、したがって試料ホルダ(1)と
断熱容器(6)との温度差が零になるように制御される
ようにした。The heater αfil(lυ, thermoelectric element +41, thermocouple (5), and thermocouple Ci! attached to the inner wall of the heat-insulating container (6)).
l) is drawn out to the outside via a tube (221), and as shown in the second figure, the output of the thermoelectric element (4) is sent to a recorder (2 (a), etc. via an amplifier (to), and the temperature of the sample and standard sample is measured. In addition, the heater aα is controlled by a known program controller seat to which a thermocouple f51 is connected, as shown in the figure, so that the temperature of the standard sample can be adjusted according to the program. The temperature was changed according to the program set by the temperature controller (C).The heater 0υ was also connected to a known temperature controller (H) connected to the heater 18 (5) as shown in the figure. It is controlled by the output of the thermocouple (
5) and the CD, and therefore the temperature difference between the sample holder (1) and the heat insulating container (6), was controlled to be zero.
次にその作動について説明する。Next, its operation will be explained.
導熱部材■と(1ツ間の空間内における液体窒素αηの
液面レベルが所定のレベルになるようにニードルパルプ
01を調整する。The needle pulp 01 is adjusted so that the liquid level of liquid nitrogen αη in the space between the heat conducting member (1) and (1) becomes a predetermined level.
試料ホルダ(1)は架台(9)、軸状導熱部材Q51を
介して液体窒素Q7)に接するので、その温度は導熱抵
抗に応じて急篇托下降しようとするが、その温度は熱電
対(5)により検出され、その出力はプログラム温度制
御器(251に入力し、該制御器(ハ)の出力でヒータ
(101を加熱するので、試料ホルダ(1)の温度はプ
ログラムされた下降速度で変化する。Since the sample holder (1) is in contact with the liquid nitrogen Q7) via the pedestal (9) and the shaft-shaped heat conducting member Q51, its temperature tends to drop rapidly according to the heat conducting resistance, but the temperature is lowered by the thermocouple ( 5), its output is input to the program temperature controller (251), and the output of the controller (c) heats the heater (101), so the temperature of the sample holder (1) is controlled at the programmed rate of descent. Change.
断熱容器+61も基盤α力及び筒状導熱部材(14+を
介して液体窒素αηに接するので、試料ホルダil+と
同様その温度は導熱抵抗に応じて急速に下降しようとす
るが、その温度は熱電対Qυで検出され、その出力は試
料ホルダ(1)の温度を検出する熱電対(5)の出、力
と比較さit、 、両出力が同じになるように湿度制御
器249の出力でヒータαυが加熱されるから、断熱容
器(6)の温度は試料ホルダ(1)と同温度で下降する
。かくて試料ホルダ(1)と断熱容器(6)閤で温度の
出入がなく、シたがって試料ホルダ(1)の形状の非対
称等に基づいて試料及び標準試料間に温度差を生ずるこ
とがなく、その基線が変動しない。Since the heat insulating container +61 also comes into contact with the liquid nitrogen αη via the base α force and the cylindrical heat conducting member (14+), its temperature tends to drop rapidly in accordance with the heat conducting resistance, similar to the sample holder il+, but the temperature is lowered by the thermocouple. The output of the thermocouple (5) that detects the temperature of the sample holder (1) is compared with the output of the thermocouple (5), which detects the temperature of the sample holder (1). is heated, the temperature of the insulated container (6) decreases at the same temperature as that of the sample holder (1).Therefore, there is no temperature change between the sample holder (1) and the insulated container (6). There is no temperature difference between the sample and the standard sample due to the asymmetry of the shape of the sample holder (1), and the baseline thereof does not fluctuate.
試料の冷却速度を速くするときはニードルバルブ(l!
1を全開して前記空間内の液体窒素の液面をデユア瓶u
19内の液面と同レベルにし、試料の温度をゆつく・シ
下降させるとき、あるいは湿度を上げるときはニードル
バルブ(11を遮断方向に調整して該液面が導熱部材Q
41(15)の下菊付近になるようにする。To increase the cooling rate of the sample, use the needle valve (l!
1 fully open to raise the liquid level of liquid nitrogen in the space.
When the liquid level in heat conducting member Q is at the same level as the liquid level in heat conducting member Q, adjust the needle valve (11 in the blocking direction
It should be near the lower chrysanthemum of 41 (15).
試料の温度をゆっくり下降させるとき、あるいは上昇す
るとき前述のような操作をすれば、ヒータ(Itllに
加える電力は少なくてすむと共に液体窒素αDの蒸発量
が少なくてすみ、ヒータ成力が少なくてすむとその分電
力の変動による温度のゆらぎが少なくなり、熱分析にお
ける誤差が少なくなる。If you perform the operations described above when slowly lowering or increasing the temperature of the sample, you will need less power to apply to the heater (Itll), and the amount of liquid nitrogen αD evaporated will be smaller, resulting in less heater power. As a result, temperature fluctuations due to power fluctuations will be reduced, and errors in thermal analysis will be reduced.
また、試料を導熱部材(151を介して液体窒素aηで
冷却すると、その温度が下降するにつれて液体窒素αD
の蒸発量は少なくなるので、導熱部材−とU間の空間の
液体窒素面の液面なデユア瓶賭内の液体窒業a力の液面
に対してよシ上昇し、液試料の温度を直線的に下降させ
て熱分析する場して温度のゆらぎが少なくな゛り熱分析
における誤差が少なくすることができる。In addition, when the sample is cooled with liquid nitrogen aη via the heat conducting member (151), as the temperature decreases, liquid nitrogen αD
Since the amount of evaporation of the liquid nitrogen decreases, the liquid nitrogen level in the space between the heat conducting member and U rises higher than the liquid level in the bottle, increasing the temperature of the liquid sample. When performing thermal analysis by lowering the temperature linearly, fluctuations in temperature are reduced and errors in thermal analysis can be reduced.
このように本発明によるときは、断熱容器及び試料ホル
ダをそれぞれ導熱部材を介して低温装置に連結し、該試
料ホルダを加熱してプログラム湿度制御すると共に前記
断熱容器を試料ホル確に熱分析を行なうことができ、ま
た断熱容器及び試料ホルダをそれぞれ筒状導熱部材及び
軸状導熱部材に接続し、該両部材を液体窒素に浸漬する
と共に両部材間の一端が閉鎖された空間を可調整バルブ
を介して外部に連通させたので、温度のゆらぎを少なく
することができ、熱分析を一層正確に行なうことができ
ると共に液体窒素の消費量を少なくすることができる効
果を有する0As described above, according to the present invention, the heat insulating container and the sample holder are each connected to a low temperature device via a heat conducting member, and the sample holder is heated to control the programmed humidity, and the thermal analysis is performed using the heat insulating container as the sample holder. In addition, the heat insulating container and sample holder are connected to a cylindrical heat conducting member and a shaft heat conducting member, respectively, and both members are immersed in liquid nitrogen, and the space between the two members, which is closed at one end, is closed using an adjustable valve. Because it communicates with the outside through the
第1図は本発明の一実施例の断面図、第2図はその電気
回路図を示す。
fil・・・試料ホルダ (5)・・・熱 電 対(6
)・・・断熱容器 (71(81・・・断熱部材(9)
・・・架 台(101αυ・・・ヒータα2・・・基
盤 (141Q51・・・導熱部拐aQ・・・低温装置
(17>・・・液体窒素0樽・・・デュ ア 瓶 H
・・・二一ドルノくルフ゛(2υ・・・熱 電 対 (
ハ)・・・プログラム温度制御器c2e・・・温度制御
器
外2名
第1図
第2図
cIFIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is an electrical circuit diagram thereof. fil...Sample holder (5)...Thermocouple (6
)...Insulating container (71 (81... Insulating member (9)
... Frame (101αυ...Heater α2...Group
Board (141Q51...Heat conduction part aQ...Cryogenic device (17>...Liquid nitrogen 0 barrel...During bottle H
・・・21 dollar nokuru ゛(2υ...thermocouple (
c)...Program temperature controller c2e...2 people outside the temperature controller Figure 1 Figure 2 cI
Claims (1)
ダをそれぞれ導熱部材を介して低温装置に連結し、該試
料ホルダを7JII然してプログラム湿度制御すると共
に、前記断熱容器を試料ホルダと同一湿度になるように
温度制御することを特徴とする熱分析用温度制御装置。 2、 断熱容器及び該断熱容器内に収納された試料ホル
ダを外周が断熱材で被覆された筒状導熱部材及び該部材
に挿通された軸状導熱部材にそれぞれ接続し、該両部材
をデユア瓶内の液体窒素に浸漬すると共に前記両部月間
のm=温度になるように温度制御することを特徴とする
熱分析用温度制御装置。[Claims] 1. A heat insulating container and a sample holder housed in the heat insulating container are each connected to a low temperature device via a heat conducting member, the sample holder is subjected to program humidity control according to 7JII, and the heat insulating container is A temperature control device for thermal analysis characterized by controlling the temperature so that the humidity is the same as that of the sample holder. 2. Connect a heat insulating container and a sample holder housed in the heat insulating container to a cylindrical heat conducting member whose outer periphery is covered with a heat insulating material and a shaft heat conducting member inserted through the member, and connect both members to a dual bottle. 1. A temperature control device for thermal analysis, characterized in that the device is immersed in liquid nitrogen within the temperature range, and the temperature is controlled so that m=temperature for both parts.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15793883A JPS6050443A (en) | 1983-08-31 | 1983-08-31 | Temperature controlling apparatus for thermal analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15793883A JPS6050443A (en) | 1983-08-31 | 1983-08-31 | Temperature controlling apparatus for thermal analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6050443A true JPS6050443A (en) | 1985-03-20 |
JPH0350979B2 JPH0350979B2 (en) | 1991-08-05 |
Family
ID=15660752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15793883A Granted JPS6050443A (en) | 1983-08-31 | 1983-08-31 | Temperature controlling apparatus for thermal analysis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6050443A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007528991A (en) * | 2003-07-10 | 2007-10-18 | タイアックス エルエルシー | Low thermal inertia scanning adiabatic calorimeter |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5682436A (en) * | 1979-12-08 | 1981-07-06 | Shimadzu Corp | Differential scanning calorimeter |
-
1983
- 1983-08-31 JP JP15793883A patent/JPS6050443A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5682436A (en) * | 1979-12-08 | 1981-07-06 | Shimadzu Corp | Differential scanning calorimeter |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007528991A (en) * | 2003-07-10 | 2007-10-18 | タイアックス エルエルシー | Low thermal inertia scanning adiabatic calorimeter |
Also Published As
Publication number | Publication date |
---|---|
JPH0350979B2 (en) | 1991-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3943767A (en) | Level detector system for cryogenic liquids | |
US4487213A (en) | Mass flow controller apparatus | |
JPH032854Y2 (en) | ||
US3377838A (en) | Apparatus for measuring various transformation characteristics of metallic materials | |
US4050289A (en) | Method for temperature calibration of probes and the like | |
US2861159A (en) | Resistance probe for level control | |
US4461167A (en) | Psychrometer for measuring the humidity of a gas flow | |
US3527081A (en) | Differential scanning calorimeter | |
JPS6050443A (en) | Temperature controlling apparatus for thermal analysis | |
US3307619A (en) | Temperature control system for viscosimeter | |
US4428684A (en) | Apparatus for measuring melting point and boiling point of gas | |
US3022664A (en) | Differential calorimeter | |
Kirkham et al. | The adiabatic measurement of the specific heats of potassium chloride and rubidium chloride at low temperatures | |
JPS6119935B2 (en) | ||
US3442116A (en) | Pour point meter | |
JP2536494B2 (en) | Sample-only heat flux type differential scanning calorimeter | |
JPS58109842A (en) | Apparatus for measuring evaporation weight and evaporation heat value simultaneously | |
US2045466A (en) | Apparatus for heating at con | |
JPS58214847A (en) | Apparatus for controlling temperature | |
US3112398A (en) | Device for cooling the specimen in X-ray diffraction apparatus | |
US3449942A (en) | Isopiestic chromatographic detector | |
JPS6021730Y2 (en) | Low temperature constant temperature device | |
US3498113A (en) | Method and apparatus for determining solute concentrations | |
Cleveland | An improved apparatus for measuring the thermal transmission of textiles | |
JPH0627060A (en) | Heat measuring apparatus |