JPS6050415A - Ultrasonic wave apparatus for searching abnormal bodies buried in sea bottom - Google Patents
Ultrasonic wave apparatus for searching abnormal bodies buried in sea bottomInfo
- Publication number
- JPS6050415A JPS6050415A JP15800883A JP15800883A JPS6050415A JP S6050415 A JPS6050415 A JP S6050415A JP 15800883 A JP15800883 A JP 15800883A JP 15800883 A JP15800883 A JP 15800883A JP S6050415 A JPS6050415 A JP S6050415A
- Authority
- JP
- Japan
- Prior art keywords
- array
- wave
- ultrasonic waves
- monopulse
- transmitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Testing Or Calibration Of Command Recording Devices (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
この発明(」、海底部Aゝ) tlq底下に沈埋してい
る(戊雷−11+バ(弾などの沈J115¥常物探査装
置に関し、11jにしノパルス超音波を用い、かつ凹面
配置9日スアレイ送受波ブノ式をmmいて?3痕分解能
化し、この1ス受波器を2次元的に機械的走査をするこ
とに、J、〕で三次元)′L体反則データを取1qシ、
受波系に画像処I!11回路を右して画1象の忠実11
を向]さL!、caRTに三次元画像を表示しうる、対
7こ物の形状をjf5確に探査づる装置に関づるもので
ある。Detailed Description of the Invention This invention relates to a device for detecting sunk J115 ordinary objects such as bullets buried under the bottom of the seabed. , and by converting the concave surface arrangement 9-day square array transmitting/receiving Beno type into ?3-track resolution, and mechanically scanning this 1-wave receiver in 2-dimensional manner, J. Take 1q of data,
Image processing I in the receiving system! 11 circuit to the right, image 1 image fidelity 11
] Sa L! This relates to a device that can display three-dimensional images on caRT and accurately explore the shape of objects.
現在、伎か国の)0庁jjq I或にJヅいて間雷残存
fllj域が残存し、多数の(幾雷がいJ、だにこれr
−、) j971・・■に残存していると(1「定され
ている。At present, there are still a number of areas left in the world, and there are a large number of
-,)j971...■It is determined that (1) remains in ■.
これらのTI+j域で海中の土木工事をIT % 5
”8含、施工の安全のlこめ1幾雷の探査を行ない、(
;■雷かり・CIしていないことをルイ「かめCからJ
−事をtjなうことに4νつ′Cいる。従来、7N底下
に埋設しくいるjAW雷の探査法として磁気探査法が用
いられ(1’る]〕′1、この方式では海底磁気異常物
の有無の判定はできるが、(幾雷かその他の金属物体な
のか判別ひきないため、潜水夫によつ−C潜水探査を行
い、更に磁気検査によるjTL 1!1Qを行っている
。しかし機雷による磁場の強さは地磁気との関連でばら
つきが人ぎいため。非常に小さい磁気反応までも機雷の
可能性があるものとして潜水探査を行なっている。イの
結果、これら作業に要づる時間、費用は膨大なものとな
ってJ5す、ひいては工事を遅延させるほどの影響を生
じている。港湾の入水深化に伴つC潜水夫による作業内
容および1ヤ業mが人さ4T制約を受(〕ること力日ら
現状の探査法では充分な安全14確保は達成されづ゛、
しかも非効率かつ不経流なりのどなる。したがって潜水
探査に替わる自動化、省力化された向−1−から)仝隔
探査しうる装置の開発実用化が要請されでいる1、
本発明は、こうした港湾工事や尚洋工事従事者の強い要
望にこたえるために発明されたものである。Undersea civil engineering work in these TI+j areas IT% 5
``Conducted 1 million lightning surveys to ensure construction safety.''
; ■Louie: ``Turtle C to J
-It takes 4ν'C to do something. Conventionally, magnetic surveying has been used as a method for detecting AW lightning buried beneath the 7N ocean floor. In order to determine whether or not it is a metal object, a diver conducts a -C diving exploration, and a magnetic test is conducted to determine the jTL 1!1Q.However, the strength of the magnetic field from a mine varies in relation to the earth's magnetism. Because of the danger, underwater exploration is carried out on the assumption that even the smallest magnetic reaction may be a mine.As a result, the time and cost required for these operations are enormous, and J5, and even the construction work, are being carried out. Due to the deepening of the water entering the port, the amount of work performed by C divers and the 4T limit for each diver's work have increased, and Rikihi believes that the current exploration method is not safe enough. 14 has not been achieved,
Moreover, it is inefficient and wasteful. Therefore, there is a demand for the development and practical application of equipment capable of remote exploration, which can be automated and labor-saving as an alternative to underwater exploration. It was invented to respond.
第1図はこの発明の)j4成を示で電気回路系統図の実
施例を示し、1は電限誘ン9型迄波器アレーr2にDノ
パルス駆動電流を供給づるための畠J−「電源装置であ
り、)ス波器゛アレイ2はこのEノパルス駆動゛市流を
モノパルス超音波に変操りる1幾能をbつ電気音費変j
β器である。3は海底のλ・j象物り目ら反QJ して
帰着した送波器アレイ2力日らのモノパルス超音波を電
気信号に変換づる受波器アレイ(ある。Fig. 1 shows an example of an electrical circuit system diagram of the present invention. It is a power supply device, and the wave device array 2 converts this E-no-pulse drive into monopulse ultrasonic waves.
It is a beta organ. 3 is a transmitter array that returns from the λ j quasiform on the ocean floor (QJ) and a receiver array that converts Rikihi's monopulse ultrasonic waves into electrical signals.
受波器アレイ3の出ツノは微弱な電気(g号Cあるから
、高周波」(′1幅器4により増幅し、倹汲器5(・検
、戊シた4変、31− C(3ensitivily
下1m0COnlrol)回路6に入力して超音波伝)
ヱ距自11の11′1大に1′1′イfう拡散減衰を補
償する。SYC回路64通′ンた信局1.L対故増幅器
7により対数1綿さIL、更にSTG回路8にJ、って
γtり底土砂中の超高波の減餐jO失を補1jt する
。以−Lの増幅器4・−8TC回路8によ−)C処理さ
れたアナ[コグ侶舅(、工△′1つ変換器9によりディ
ジタル信月に変換され、フィシタルメ−Lす(1又△M
)10に記憶される。The output of the receiver array 3 is a weak electric current (because there is a high frequency signal).
Lower 1m0Conlrol) Input to circuit 6 and transmit ultrasonic wave)
11'1 of the distance 11 is increased by 1'1' to compensate for the diffusion attenuation. Communication station with 64 SYC circuits 1. The logarithmic power amplifier 7 supplies the logarithm 1 IL, and the STG circuit 8 supplies J to compensate for the loss of ultrahigh waves jO in the γt bottom sediment. The amplifiers 4 and 8 of the TC circuit 8 convert the analog signal processed by the converter 9 into a digital signal, and M
)10.
一方、11 +J、位貿検出器てあり、水平方向のXY
アドレスと深1立方向位同の7アドレスを検出しC制御
装防12に入力してA /” D変換器9の出力データ
をメモリ10上の対応覆るアドレスに書き込むにうに制
御づる。また、13は任意の値にδΩ定される基準面レ
ベルであり、割り算回路14にJ、リメ七り10から読
み出したデータを基準面レベル13で割り樟することに
よりレベル変化を強調し゛C対象物のレベルを顕著とな
るようにりる。On the other hand, 11 +J, there is a position detector, horizontal direction XY
It detects seven addresses that are the same as the address in the vertical direction and inputs them to the C control device 12 to control the output data of the A/''D converter 9 to be written to the corresponding address on the memory 10. 13 is a reference plane level that is set to an arbitrary value δΩ, and by dividing the data read out from the divider circuit 14 by the reference plane level 13, the level change is emphasized. The level will become noticeable.
この割り算した結果のデータはディジタルメモリ15に
記1愁され、読み出したュータを比較回路1Gにより所
定レベルと比較して、そのレベルとの大小比較によって
1ビツトデータとしC串了化りる。これによって対象物
の画像の境界線を明確化する。比較器16によりm子化
された1−タ(Jディジタルメモリ17に記憶され、読
み出したデータは積算回路18によつζ゛測定アドレス
を中心として、その上下左右27アドレスのデータを加
算し、対象物イ」近に存在り−る小石などの孤立した雑
音成分を除去する。この積算回路18により吊子平均化
処理されたデータは、デジタルメモリ19に記憶され、
各メモリ10,15,17.19に記憶されているデー
タは、切開器20にJ、り汀、恒に切換えられてCRT
装置2゛1に読・7)出される。。The data resulting from this division is stored in the digital memory 15, and the readout data is compared with a predetermined level by a comparator circuit 1G, and is converted into 1-bit data by comparison with the level. This clarifies the boundary line of the image of the object. The 1-data data (stored in the J digital memory 17 and read out) converted into m data by the comparator 16 is added by the integrating circuit 18 to the data of 27 addresses above, below, to the left, and to the right, centering on the ζ゛ measurement address. Isolated noise components such as pebbles existing near the object A are removed.The data subjected to the hanging-averaging process by the integrating circuit 18 is stored in the digital memory 19,
The data stored in each memory 10, 15, 17.
It is read/7) output to the device 2-1. .
CRT装RY 21 テLt対象物1111”l<:+
X−Y、’ X−Z、’+”7断層陰ψ】三次元XYZ
データによる子次元画像をカラー表示覆る。CRT device RY 21 TeLt object 1111”l<:+
X-Y,'X-Z,'+"7 fault shadow ψ] Three-dimensional XYZ
Color display overlays the child dimension image by data.
第2図は、第1図の高圧電源装置1から発生づる〔ノバ
ルス超音波と、従来の1−一ンパースト超音波とを比較
した図Cあり(a)図がしノパルス超音波、(b )図
が1−−ンバースト超酋;1ノどのでれぞれのAシロス
ニ1−プ波形である。(a)図にJ5い−(、Taがパ
ルス幅22であり、甲−波彫り41F)51波艮だl′
Jのパルス幅である。これに対し、(b)図においては
パルス幅1川)23は振動子を駆動する関係から10波
長以上必凹とし、パルス幅1N)23はモノパルスのパ
ルス幅「a22と比較して10倍以上となる。従って、
(1))図に承り従来の超音波放射方式よりも(a)図
にJ、るEノパルス方式の方がパルス幅を短くてさ、重
1自分解能力を向1ニすることができる1゜
第3図は第1図の送受波器アレイ2,33の構j2−図
を示し、少数個の電磁誘導型送波器2aが固定板24に
一列に取f寸(プられて送波器アレイ2を構成している
。また受波器3atJ固定板2/Iに一列に複数個敗色
(ブられて受波器アレイ3を形成している。この)X波
器アレイ2ど受波器アレイ3どは図のように互いに直交
づるようにクロス状に配置されており、また、対象物に
対して両者の超音波じ−ムが焦点を結ぶように送波器2
a及び妥・波器3aの高ざがそれそ゛れ凹面状となるよ
うに固定板24に取イ;J Lノられている。Figure 2 shows the power generated from the high-voltage power supply 1 in Figure 1 (Figure C is a comparison of Novals ultrasonic waves and conventional 1-1 impulse ultrasonic waves). The figure shows the waveforms of each A-silo snip at each point in the 1-in-burst super wave. (a) The figure shows J5 (, Ta has a pulse width of 22, and A-wave carving is 41F) 51 waves.
This is the pulse width of J. On the other hand, in the figure (b), the pulse width 1N) 23 must be recessed with at least 10 wavelengths in order to drive the oscillator, and the pulse width 1N) 23 is the monopulse pulse width 10 times or more compared to a22. Therefore,
(1)) As shown in the figure, the Enopulse method (see Figure 1) has a shorter pulse width than the conventional ultrasonic emission method, and can improve self-analysis ability. 3 shows a diagram of the structure of the transducer array 2, 33 in FIG. A plurality of X-ray receivers are arranged in a line on the fixed plate 2/I to form the receiver array 3. As shown in the figure, the transmitter arrays 3 are arranged in a cross shape so that they are perpendicular to each other, and the transmitter 2 is arranged so that their ultrasonic beams are focused on the object.
The heights of the transducers 3a and 3a are arranged on the fixed plate 24 so that they are each concave.
第4図は本発明に係る探査及び画商表示を示υ図であり
、(a)図において送受波器アレイ2゜3からの超音波
ヒーム25が対象物26に対して焦点が結ばれている。FIG. 4 is a diagram showing the exploration and art dealer display according to the present invention, and in FIG. 4 (a) the ultrasonic beam 25 from the transducer array 2°3 is focused on the object 26. .
送受波器アレイ2,3は対象物26を二次元的に探査で
きるJ、うにXYの水平面を(幾械的に走査できる。な
お、27(よ探杏可能深疫、28はXY面、29はX7
而、30は77面である。また、(b ) (c )
、(d )図(J第1図のCRT装fa21に画像表示
づ−る方法を示し、(b)図はYZ平平面4. X軸方
向に切ったY7断層画像を示したl?]であり、X軸の
汀怠の位置でのYZ画1り・31を表示覆る。(c)l
:Lt1+、+、XY平面をZ軸方向で切ったx)ノ断
層画像を示し、Z軸の汀、弧でのXYii!ii像32
を表示づる。((1)図は×7丁面をYIl111方向
に切ったX 71I7i層両像を示し、)”kllの任
意の位置でのx7画像33を表示づる。?+17−>(
、(+1 )、(c )、((+ >図にり対象物の1
1弧の位置rの33方向…i層像をC1マ下装置によっ
て表示づることができる。 次にこね9して行<jつC
さた室内実験によって、この発明の装同力X tN底沈
理5T帛物IA″査に従来の肢首J、りし有効(、J)
るか実1111されたのでその1α要を述へる。使用し
た実験共動け、直径100mmの電磁誘導型)ス波器6
11!Jを、受波?5+ ニiei 仔/I 0111
111(7) 円板振動子16 tl!J ’s’用い
、でれそれタ■]ス状に取付り、超1゛1波じ−11の
焦!、″、1/)・2.5mの信置になるように凹面状
に配直しくある。予備実験の結果、)X波高L「が90
FIll −nl−1500V、 t<ル)、幅40
us、中越周波VV 25. K11’7 (’超音波
ビームの指向性131崖減゛1!角約:31α、水中分
解幅は焦点匝#t2.5mで25cmであ−)た。The transducer arrays 2 and 3 can scan the target object 26 two-dimensionally, and can geometrically scan the XY horizontal plane. is X7
Therefore, 30 has 77 sides. Also, (b) (c)
, (d) shows a method of displaying images on the CRT device fa21 in Fig. 1, and (b) shows a Y7 tomographic image cut in the YZ plane 4. Yes, it covers YZ picture 1/31 at the position of lag on the X axis.(c)l
:Lt1+, +, shows a tomographic image of ii statue 32
Display. ((1) The figure shows both images of the X71I7i layer cut in the YIl111 direction on the
, (+1 ), (c ), ((+ > 1 of the object in the figure
Images of the i-layer in 33 directions at the position r of one arc can be displayed by the C1 machining device. Next, knead 9 and line <j C
In addition, laboratory experiments showed that the present invention's loading force X tN bottom sedimentation 5T fabric IA'' test was effective compared to the conventional limb J, rishi (,J)
Since 1111 has been published, I will explain the main points. The experiment used was an electromagnetic induction wave device 6 with a diameter of 100 mm.
11! Did you receive J? 5+ Niiei child/I 0111
111(7) Disc oscillator 16 tl! J 's' is used, it is attached in a Tas shape, and the heat is super 1゛1 wave - 11! ,'',1/)・2.5m.As a result of preliminary experiments, )X wave height L'' is 90
Fill-nl-1500V, t<le), width 40
us, Chuetsu Frequency VV 25. K11'7 ('Directivity of ultrasonic beam 131 cliff decrease'1! Angle approximately: 31α, underwater resolution width was 25 cm at focal point #t 2.5 m).
画像処理はレベル変化の強調境界線の明確化、雑音除去
装置を有し、画像表示は画素数30X30×30個で1
素子5cmの分解能を有している。この装置を使用して
、実験水槽に模擬機雷として1971缶(600φX
900 mm)を水中に吊り下げ、焦点距離2.5mに
対象物がくるように送受波器を設置して探査実験を行っ
た。実験は対象物が水平状態、7度、20麿、3芝〕度
11i’i斜した状態でX’l/、XZ、Y7平而の三
方向断層画像をめた。The image processing is equipped with a noise removal device that clarifies the emphasis boundary line of the level change, and the image display is made up of 30 x 30 x 30 pixels.
The element has a resolution of 5 cm. Using this device, 1971 cans (600φX
900 mm) was suspended in water, and a transducer was installed so that the target object was at a focal length of 2.5 m, and an exploration experiment was conducted. In the experiment, three-way tomographic images of X'l/, XZ, and Y7 were taken with the object horizontal and tilted at 7 degrees, 20 degrees, and 3 degrees and 11 degrees.
その結果、二方向断層画像は(Jは実物の形状を映像化
していることかやかった。1hに顕茗イTこと(J、従
来技術では探査不可能イし傾斜角10度以上11むいた
物体ても忠実に画像化されていることである。また、X
Y、XZ、ととちにYZjj向からみた画像も観察てさ
−ることbど、従来の合波探査ではみられないことであ
り、画期的な成果であるといえる。As a result, the two-way tomographic image (J) was easy to visualize the shape of the actual object. Even objects that are
Images seen from the Y, XZ, and YZjj directions were also observed, which is something that cannot be seen in conventional combined wave exploration, and can be said to be a groundbreaking result.
更に、11σ底十に沈埋し−Cいる機雷探査の(桑擬実
験として、水槽下に砂を入れ、ドラム缶を砂表面から2
5cmの位置にJ!]l!設して探査実験を打つlこ。Furthermore, as a simulated experiment for the exploration of 11σ mines buried at the bottom of
J at 5cm position! ]l! Set up and conduct exploration experiments.
その結果、超?)波減衰定数の人へ4丁砂中の探査にし
かかわらマI“、画@処理することによ−)て二方向断
層画像を1!7ることができた3、また、従来挾11:
j Pは7f11底下50cm以下に埋設している物体
(51探知不「1」能といわれでいるが、この火照u
1(v、”によれi、r’ )#7底下25 cmに埋
っている物体も明瞭に探知(さることがわかつIζ0
以上の実験の結果、傾斜物体や海底に浅く埋没している
物体を適確に探知できることがわかり、イlj Ii:
(沈埋異1:;物探査作業の能率向上に資づることがで
きる等この発明の装置はいままでにない刊1jとを右し
、実用効果の大なる装げruることか実611されIこ
。As a result, super? ) Despite the exploration of the wave attenuation constant in the sand, we were able to obtain a two-way tomographic image of 1!7 by processing the images 3, and the conventional 11:
j P is an object buried below 50 cm below the bottom of 7f11 (it is said that 51 undetectable "1" ability, but this fire u
1 (v, "by i, r') #7 Objects buried 25 cm below the bottom can be clearly detected. It turns out that it can be detected accurately, and Ilj Ii:
(Sinking difference 1: ; The device of this invention can contribute to improving the efficiency of object exploration work, etc.), and has a great practical effect. child.
第5図[Jこの発明の装置を用いC海底トに埋7.シし
Cいる(幾?lr、砲爆弾など析11代)先月■巽7;
; ’l勿を14−°査する際の実施例を示した図であ
−)(’、(il)lソ団探査船にこの発明の装置を搭
載して釘i;tbながl)高波探査をりる場合を示して
いる。(り)図は水深が深く、送受波器を船底に吊り下
げできない場合C′、架台に送受波器を設置し、尚底面
−1−にこの架台を沈下させて探査づる場合を示してい
る。Figure 5 [J Using the device of this invention C buried in the seabed 7. Shishi C is here (how many? lr, gun bomb analysis 11th generation) last month ■ Tatsumi 7;
This is a diagram showing an example of a 14-degree survey of the Earth. This shows the case of high wave exploration. (ri) Figure C' shows a case where the water is deep and the transducer cannot be hung on the bottom of the ship, C', and a case where the transducer is installed on a pedestal and the pedestal is lowered to the bottom surface -1- for exploration. .
(a)図において、探査船34の甲板には送受波器アレ
イ2,3が取イリけられている。送波器ア1ノイ2から
元画される超音波ビーム36(J海底37に沈埋してい
る異小物38によって反QJされ受波器アレイ3がこの
反射ビームを受(ブて本イヰ35によってCRTに表示
し探査を行なう。(1))図にあっては、架台40を異
常物38の上方に位置覆るように海底37に設置づる。In the figure (a), the transducer arrays 2 and 3 are removed on the deck of the exploration vessel 34. The ultrasonic beam 36 originally transmitted from the transmitter A1 and Noy2 (J) is reflected by a foreign object 38 buried in the seabed 37, and the receiver array 3 receives this reflected beam. (1)) In the figure, a pedestal 40 is installed on the seabed 37 so as to be positioned above and over the abnormal object 38.
架台40に(、i送受波器アレイ2.3がXY方向に移
動可能と<iるように取イリtプらけてJjす、本体3
5とは信号や駆動装置用動ツノN源を送るためのクープ
ル39によって接続されている。The main body 3 is mounted on the pedestal 40 so that the transducer array 2.3 is movable in the X and Y directions.
5 is connected by a couple 39 for sending signals and a moving horn N source for the drive device.
以上説明したように、本発明の装置を従来の磁気探査法
とイノ1用して使用づれば、磁気探査では不可能であっ
た(幾雷、砲爆弾等海底沈埋眉常物の形状を)白確に三
方向断面像C表示づることがでさ、潜水夫にJ、る確認
探査は不必要と4丁って探査作業の効率が向上し、かつ
安全対策上右利となる。なお本装置は機雷、砲焦弾等の
海底沈埋異常物探査のみならり゛、沈船、沈木その他の
海底沈埋物や、河川、湖沼等の水中土木工事で土砂に叩
没しでいる物体形状を探査づる施:「答叩シスjLとし
ζ刊IIIづることがひさる。As explained above, if the device of the present invention is used in combination with the conventional magnetic survey method and Inno1, it will be possible to detect the shapes of common items sunk on the seabed, such as thunderbolts and bombs, which were impossible with magnetic survey. Since it is possible to accurately display cross-sectional images in three directions, there is no need for the diver to conduct a confirmation survey, which improves the efficiency of the survey work and is beneficial in terms of safety measures. This device is not only used to detect abnormal objects buried under the sea, such as mines and scorched shells, but also to detect sunken ships, sunken trees, and other objects buried under the sea, as well as the shape of objects that have been knocked into the earth and sand during underwater civil engineering works in rivers, lakes, and other areas. Exploration Zuruse: ``Answering system jL and ζ issue III Zuruga Hisaru.
図面はこの発明の実施例を示し、第1図はこの発明の電
気回路系統図、第2図は本発明にJ、るしノパルス超音
波の特性を、従来のh−レバースト〃j音波と比較した
図、第3図は本発明による送受波器jルイの4M 71
図、第4図は本発明装置を用いた?3波探査ど画1(J
+表示法を示した図、第5ン図13L木発明装置を用い
て)Iη底下沈埋異常物を17杏づる1:xlの実施例
を示したものである。
1 高月二電源装置 2 )ス波器ノルイ3 受波器ア
レイ 4 増幅器
5j 検波器 G、13SrC回(“H(7タ・j数」
1′1幅器 9 △/[)変(久;器10.15.−1
7.19 γrジタルメ[す11位置検出器 12制9
1I装「り
13基準面レベル 14割り算回路
1G比較回路 18積樟回路
20切換器 21 CR1−装置
22パルス幅’T’ a 23パルス幅−11〕24固
定板 25超音波ビーム
26対象物 27探査iiJ能深度
2 g X Y而 29X7面
30Y7而 31Y7両像
32 X Y画1τ! 33XZ画像
34探査船 35本体
36超音波ビーム 37海底
38向底沈埋異常物 39グープル
40架台
第51
(0,)
図
(b)
・°「]ン38.・The drawings show an embodiment of the present invention, FIG. 1 is an electric circuit system diagram of the present invention, and FIG. 2 is a comparison of the characteristics of the inventive pulsed ultrasonic wave with the conventional h-Leverst sonic wave. Figure 3 shows the transducer J Louis 4M71 according to the present invention.
Figure 4 shows the use of the device of the present invention. 3 wave exploration picture 1 (J
+A figure showing the display method, Fig. 5 shows an example of 1:xl in which 17 Iη submerged abnormal objects are collected using the wood invention device. 1 Takatsuki 2 power supply device 2) Wave wave device Nori 3 Wave receiver array 4 Amplifier 5j Detector G, 13SrC times (“H (7ta・j number”)
1'1 width vessel 9 △/[) change (ku; vessel 10.15.-1
7.19 γr digital meter 11 position detector 12 system 9
1I equipment 13 Reference plane level 14 Divide circuit 1G comparison circuit 18 Multilayer circuit 20 Switch 21 CR1-device 22 Pulse width 'T' a 23 Pulse width -11] 24 Fixed plate 25 Ultrasonic beam 26 Target object 27 Exploration iiJ depth 2 g Figure (b) ・°"]n38.・
Claims (1)
電磁誘導型送波器群を凹面型に配列した送波器アレイと
送波器群からの超音波を受波し電気信号に変換する複数
個の受波器群を凹面型でかつ前記jZ波器アレイど直交
づ−るように配列した受波器アレイと、?fa底の対象
物に対して前記送J3.波器アレイを2次元平面十に走
査し、送波器アレイからのモノパルス超音波を対象物に
送出し−C1その反射波を受波器アレイで受【プ反用デ
ータを1りる反0=1データ出力手段と、反Q・jデー
タを強調づる装置や対に2物の輪>11を強調でる装置
及び雑合成分を除去覆る装置を含む反射データ処理手段
と、前記反射データ出ツノ手段及び反射データ処理手段
のデータを記憶づる記憶手段と、記憶手段からデータを
読み出し対象物に関Jる2次元1’17i層像や3次元
台体画像を表示づる対象物表示手段どを14uえたこと
を特徴とゾる超音波向底沈即異沼物ノ?査装置。[Claims] A transmitter array in which a plurality of electromagnetic induction transmitter groups that transmit monopulse ultrasonic waves with a short pulse width are arranged in a concave shape, and a transmitter array that receives ultrasonic waves from the transmitter group. A receiver array in which a plurality of receiver groups for converting into electrical signals are arranged in a concave shape and perpendicular to the JZ waver array; The above-mentioned feed J3. The transducer array is scanned over a two-dimensional plane, and the monopulse ultrasonic waves from the transducer array are sent to the target object. =1 data output means, a reflection data processing means including a device for emphasizing the anti-Q·j data, a device for emphasizing the ring of two objects >11, and a device for removing and covering miscellaneous components; storage means for storing data of the means and reflection data processing means; and object display means 14u for reading data from the storage means and displaying a two-dimensional 1'17i layer image or a three-dimensional frame image related to the object. What is the characteristic of the ultrasonic waves that sink to the bottom? inspection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15800883A JPS6050415A (en) | 1983-08-31 | 1983-08-31 | Ultrasonic wave apparatus for searching abnormal bodies buried in sea bottom |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15800883A JPS6050415A (en) | 1983-08-31 | 1983-08-31 | Ultrasonic wave apparatus for searching abnormal bodies buried in sea bottom |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6050415A true JPS6050415A (en) | 1985-03-20 |
JPH0581872B2 JPH0581872B2 (en) | 1993-11-16 |
Family
ID=15662237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15800883A Granted JPS6050415A (en) | 1983-08-31 | 1983-08-31 | Ultrasonic wave apparatus for searching abnormal bodies buried in sea bottom |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6050415A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03155717A (en) * | 1989-11-14 | 1991-07-03 | Sumika Color Kk | Green film for agriculture |
JP2003506693A (en) * | 1999-08-09 | 2003-02-18 | クロス マッチ テクノロジーズ, インコーポレイテッド | Piezo film fingerprint scanner |
US6690617B2 (en) * | 2001-05-18 | 2004-02-10 | Gas Research Institute | Application of sonic signals to detect buried, underground utilities |
JP2016212042A (en) * | 2015-05-13 | 2016-12-15 | 国立大学法人 東京大学 | Information collection method using sound of deposition layer under water bottom and information collection device using sound of deposition layer under water bottom |
CN107037434A (en) * | 2017-04-24 | 2017-08-11 | 南京航空航天大学 | Based on the imaging method with difference beam Monopulse estimation |
-
1983
- 1983-08-31 JP JP15800883A patent/JPS6050415A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03155717A (en) * | 1989-11-14 | 1991-07-03 | Sumika Color Kk | Green film for agriculture |
JP2003506693A (en) * | 1999-08-09 | 2003-02-18 | クロス マッチ テクノロジーズ, インコーポレイテッド | Piezo film fingerprint scanner |
US6690617B2 (en) * | 2001-05-18 | 2004-02-10 | Gas Research Institute | Application of sonic signals to detect buried, underground utilities |
JP2016212042A (en) * | 2015-05-13 | 2016-12-15 | 国立大学法人 東京大学 | Information collection method using sound of deposition layer under water bottom and information collection device using sound of deposition layer under water bottom |
CN107037434A (en) * | 2017-04-24 | 2017-08-11 | 南京航空航天大学 | Based on the imaging method with difference beam Monopulse estimation |
Also Published As
Publication number | Publication date |
---|---|
JPH0581872B2 (en) | 1993-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4974213A (en) | Passive active underwater sound detection apparatus | |
US5309408A (en) | Sonar system | |
US10203403B2 (en) | Low-cost underwater acoustic system for real-time three-dimensional imaging | |
RU2724156C1 (en) | Device for external flaw detection of underwater vertical hydraulic structures | |
Bull et al. | Design of a 3D Chirp sub-bottom imaging system | |
US20210141072A1 (en) | Method of recording sonar data | |
CN107764833A (en) | A kind of apparatus and method that defects detection is washed away for dam underwater vertical face | |
CN105629249A (en) | Multi-beam side-scan sonar device | |
JPS6050415A (en) | Ultrasonic wave apparatus for searching abnormal bodies buried in sea bottom | |
EP3171200B1 (en) | Low-cost underwater acoustic system for real-time three-dimensional imaging | |
Pinto et al. | Real-and synthetic-array signal processing of buried targets | |
CN114563420A (en) | Underwater structure ultrasonic detection method and device integrating visual-acoustic technology | |
Boehme et al. | Acoustic backscattering at low grazing angles from the ocean bottom | |
Kennedy et al. | A rail system for circular synthetic aperture sonar imaging and acoustic target strength measurements: Design/operation/preliminary results | |
Mindell et al. | A high-frequency, narrow-beam sub bottom profiler for archaeological applications | |
CN213813947U (en) | Offshore wind power foundation submarine cable access end detection system | |
Leenhardt | Side scanning sonar-a theoretical study | |
RU2050559C1 (en) | Active sonar for detection of objects near bottom, on bottom and in near-surface layer of bottom | |
Bjørnø | Developments in sonar technologies and their applications | |
Jantti | Trials and experimental results of the ECHOS XD multibeam echo sounder | |
JP2001174543A (en) | Active sonar device and active sonar method | |
JPH0156395B2 (en) | ||
Dutkiewicz et al. | Synthetic aperture sonar for sub-bottom imaging | |
Singh et al. | In-situ attitude calibration for high resolution bathymetric surveys with underwater robotic vehicles | |
RU2719730C1 (en) | Receiving sonar channel |