JPS6049672A - Semiconductor integrated circuit device - Google Patents
Semiconductor integrated circuit deviceInfo
- Publication number
- JPS6049672A JPS6049672A JP15733583A JP15733583A JPS6049672A JP S6049672 A JPS6049672 A JP S6049672A JP 15733583 A JP15733583 A JP 15733583A JP 15733583 A JP15733583 A JP 15733583A JP S6049672 A JPS6049672 A JP S6049672A
- Authority
- JP
- Japan
- Prior art keywords
- density
- insulating film
- region
- active region
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 13
- 239000012535 impurity Substances 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 16
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 8
- 239000000377 silicon dioxide Substances 0.000 abstract description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 5
- 239000010410 layer Substances 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 4
- 239000010703 silicon Substances 0.000 abstract description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 3
- 239000011229 interlayer Substances 0.000 abstract description 3
- -1 Arsenic ions Chemical class 0.000 abstract description 2
- 229910052785 arsenic Inorganic materials 0.000 abstract description 2
- 229910052796 boron Inorganic materials 0.000 abstract description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000002513 implantation Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 241000293849 Cordylanthus Species 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
Classifications
-
- H01L27/088—
Abstract
Description
【発明の詳細な説明】
本発明は半導体集積回路装置にかがり、とくに回路素子
間の絶縁分離に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor integrated circuit devices, and particularly to insulation isolation between circuit elements.
従来の千尋体集積回路、特に絶縁ゲート型集積回路に於
て半導体基板の活性領域に形成された回路素子間を絶縁
分離するためにフィールド領域が設けられる。集積回路
の高密度化のためにはフィールド領域の微細化も重要な
昧題であり、今までに種々の絶縁分離法が検討・考案さ
れている。例えば従来のフィールド酸化膜の局部酸化で
発生するバーズビークを無くするために、半導体基板の
フィールド領域に溝を形成し、その溝の部分に絶縁物を
埋め込む等の方法が種々検討されている。BACKGROUND OF THE INVENTION Field regions are provided for insulating and separating circuit elements formed in an active region of a semiconductor substrate in conventional single-channel integrated circuits, particularly insulated gate integrated circuits. In order to increase the density of integrated circuits, miniaturization of the field area is also an important issue, and various isolation methods have been studied and devised so far. For example, in order to eliminate bird's beaks caused by local oxidation of conventional field oxide films, various methods have been studied, such as forming a groove in the field region of a semiconductor substrate and filling the groove with an insulator.
しかしながら現在まで検討されている方法は半導体基板
に溝を形成する工程が必要であったり製造工程が極めて
複雑であり、量産性の観点からみれば問題がある。However, the methods that have been studied up to now require a step of forming grooves in the semiconductor substrate, and the manufacturing process is extremely complicated, which poses problems from the viewpoint of mass production.
不発明の目的は集積回路装置の高密度化のために、量産
に適したフィールド領域と活性領域の構造全提供する事
にある。The object of the invention is to provide a complete field region and active region structure suitable for mass production in order to increase the density of integrated circuit devices.
本発明の半導体集積回路装置は、−導電型の不純物を所
定の密度で含有する半導体基板の一生表面上のフィール
ド領域に形成されたフィールド絶縁膜と、活性領域に形
成された複数個の回路素子間を接続するために前記フィ
ールド絶縁膜上に伸びて形成された導電層と全有する半
導体集積回路装置に於て、活性領域の前記−導電型の不
純物実効密度が基板表面から所定の深さに亘って前記所
定の密度よりも小さく、かつ該不純物小密度領域は前記
フィールド絶縁膜と自己整合で形成されている事を特徴
とする。The semiconductor integrated circuit device of the present invention includes a field insulating film formed in a field region on the surface of a semiconductor substrate containing conductivity type impurities at a predetermined density, and a plurality of circuit elements formed in an active region. In a semiconductor integrated circuit device having a conductive layer extending over the field insulating film to connect between The impurity density region is lower than the predetermined density, and the low impurity density region is formed in self-alignment with the field insulating film.
つぎに本発明について図面音用いて説明する。Next, the present invention will be explained with reference to the drawings.
本発明ll/)実旋例iNチャネル型MO8集積回路装
置で説明する。第1図に示すようにボロンを1×101
60m−3含有するシリコン基板1のフィールド領域上
に厚い二酸化シリコン膜3が被着形成されている。この
二酸化シリコン膜3は従来通常やられている局部酸化法
で形成されたものではないために、バーズビークが発生
していない。また活性領域20基板中にはN型不純物が
小密度でドープされてお5、MOS)ランジスタ形成の
ために程良いP型の実効密度となるようもともとのP型
不純物密度全打消している。もともとのP型不純物密度
は寄生MOSトランジスタの閾値電圧を考慮して決めら
れており、従ってフィールド領域の基板中にl′i、特
にはP型の不純物はドープされていない、また上記N型
不純物は活性領域からはみ出さないようフィールド絶縁
膜3と自己整合でドープされておす、横方向にも拡散し
ないよう考慮がなされている。このように本発明に於て
はフィールド領域の巾Wはフィールド絶縁膜3のパター
ニング精度で決定される。The present invention will be explained using an actual example of an iN channel type MO8 integrated circuit device. Boron is 1×101 as shown in Figure 1.
A thick silicon dioxide film 3 is deposited on the field area of a silicon substrate 1 containing 60 m<-3>. Since this silicon dioxide film 3 is not formed by the conventional local oxidation method, no bird's beak occurs. In addition, the substrate of the active region 20 is doped with N-type impurities at a small density, and the original P-type impurity density is completely canceled out to obtain an effective P-type density suitable for forming a MOS transistor. The original P-type impurity density is determined in consideration of the threshold voltage of the parasitic MOS transistor, so l'i, especially P-type impurities, are not doped into the substrate in the field region, and the above-mentioned N-type impurities are not doped. It is doped in self-alignment with the field insulating film 3 so that it does not protrude from the active region, and consideration is given to prevent it from diffusing laterally as well. In this way, in the present invention, the width W of the field region is determined by the patterning accuracy of the field insulating film 3.
つぎに本発明の製造工程を図面を用いて説明する。ボロ
ン原子klX1016/cm3 の密度で含有するシリ
コン基板1會熱酸化する事にょ夛膜厚0.5μmの二酸
化シリコン3を形成する。その後7オトエ、チング法に
よシ将来活性領域となるべき部分の二酸化シリコン全除
去する。ここで残された二酸化シリコン3は将来フィー
ルド絶縁膜となる。Next, the manufacturing process of the present invention will be explained using the drawings. A silicon substrate containing boron atoms at a density of klX1016/cm3 is thermally oxidized to form a silicon dioxide film 3 having a thickness of 0.5 μm. After that, seven etchings later, the silicon dioxide in the area that will become an active region in the future is completely removed using the etch method. The silicon dioxide 3 left here will become a field insulating film in the future.
高密度化のためにフィールド絶縁膜の巾は出来るだけ小
さい方が望ましい、従って二酸化シリコンのエツチング
工程は異方性ドライエッチ巾を使用する事によジサイド
エッチを無くして寸法精度を上げる等の配慮がとられる
。It is desirable that the width of the field insulating film be as small as possible in order to achieve high density. Therefore, in the silicon dioxide etching process, it is possible to eliminate diside etching and improve dimensional accuracy by using an anisotropic dry etch width. Consideration will be taken.
この後、活性領域に将来MO8)ランジスタを形成する
のに程良い不純物密度となるよう、リン全イオン注入法
によシ導入する・この時リンのプロファイルが基板中で
均一となる様工夫を要する。After this, phosphorus is introduced by total ion implantation method so that the impurity density is suitable for forming future MO8) transistors in the active region. At this time, it is necessary to take measures to make the phosphorus profile uniform throughout the substrate. .
注入エネルギーを一定ステップ毎に変えてそれぞれのエ
ネルギーで同量打込めば均一のプロファイルが得られる
拳
このようにして基板固有のP型不純物密度1×10 /
cmi、はぼ均一に 9X1015/cm3の密度とな
るよう注入されたリンにょフドーピング補償することに
よシ、実効不純物密度lXl015/Cm3 のP型活
性領域2を得る事が出来る。この時第2図に示すように
二酸化シリコン3のフォトエツチング工程で用いたフォ
トレジスト4を残した−1までイオン注入のマスクとし
て用いると高エネルギー注入のマスクとして最適である
。例えばリン注入の最高注入エネルギー’に600Ke
Vとすれば活性領域の深さは07μ程度となる・更に深
い活性領域を必要とする時には、必要に 5一
応じて注入エネルギーを高くすれば良い。注入時には基
板シリコン原子の散乱にょ勺リンは横方向にも入るが、
600KeVの場合その人り込みは実質的には0.1μ
程度である。イオン注入した後は熱拡散によシリンが横
方向に拡散するのを防止するために活性化のための熱処
理のみにとどめる。By changing the implantation energy at regular steps and implanting the same amount with each energy, a uniform profile can be obtained.In this way, the P-type impurity density unique to the substrate is 1
By compensating the implanted phosphorus doping so that cmi has a substantially uniform density of 9X1015/cm3, a P-type active region 2 with an effective impurity density of lX1015/Cm3 can be obtained. At this time, as shown in FIG. 2, if the photoresist 4 used in the photoetching step of silicon dioxide 3 is used as a mask for ion implantation until the remaining -1 is used as a mask for high energy implantation, it is most suitable as a mask for high energy implantation. For example, the maximum implantation energy of phosphorus implantation is 600Ke.
If V, the depth of the active region will be approximately 0.7 μm. If a deeper active region is required, the implantation energy may be increased as necessary. During implantation, the scattered phosphorus from the substrate silicon atoms also enters the lateral direction;
In the case of 600KeV, the crowd is practically 0.1μ
That's about it. After ion implantation, only heat treatment for activation is performed to prevent lateral diffusion of silane due to thermal diffusion.
このようにしてフィールド絶縁膜の巾を例えば1μmと
すればフィールド領域の巾Wはリンの入力込みを考慮に
入れて0.8μ程度となる。In this manner, if the width of the field insulating film is, for example, 1 μm, the width W of the field region will be about 0.8 μm, taking into account the input of phosphorus.
この後の製造工程は通常の順序と同じである。The subsequent manufacturing steps are the same as the normal order.
ゲート絶縁膜5を形成し更に多結晶シリコンのゲート電
極6全形成する。このゲート電極6をマスクとしてンー
ス、ドレイン領域7形成のためのヒ素イオン注入を行う
(第3図)、更に層間絶縁膜8′f:被着形成し、電極
開孔を開孔した後金属配線層9を設ける。この製造工程
を通して活性領域の横方向の拡がりを防ぐために、熱処
理工程は可能なかぎり低温、短時間とする。トランジス
タの閾値電圧調整のための不純物ドープは必要に応じて
ゲート電極6形成の前に行う。A gate insulating film 5 is formed, and then a gate electrode 6 of polycrystalline silicon is entirely formed. Using this gate electrode 6 as a mask, arsenic ions are implanted to form a drain region 7 (Fig. 3). Furthermore, an interlayer insulating film 8'f is deposited, and after electrode openings are formed, metal wiring is performed. A layer 9 is provided. In order to prevent lateral expansion of the active region throughout this manufacturing process, the heat treatment process is performed at as low a temperature as possible and for a short time. Impurity doping for adjusting the threshold voltage of the transistor is performed before forming the gate electrode 6, if necessary.
6−
本発明に於ては前述したように基板1と同導伝型の活性
領域2の実効不純物密度は基板1のもともと有していた
固有の不純物密度よりも小さい。6- In the present invention, as described above, the effective impurity density of the active region 2 of the same conductivity type as the substrate 1 is smaller than the inherent impurity density that the substrate 1 originally had.
また活性領域2中への反対導伝型不純物の注入は厚いフ
ィールド絶縁膜3が形成された後に行われるために、フ
ィールド絶縁膜形成時のような高温。Further, since the opposite conductivity type impurity is implanted into the active region 2 after the thick field insulating film 3 is formed, the implantation is performed at a high temperature similar to that during the formation of the field insulating film.
長時間の熱処理工程は無く、従って活性領域である不純
物小密度領域2のフィールド絶縁膜3の端からの拡が9
は実質的には無視できる程小さく両者は自己整合して形
成されている。不発明では従来のようなチャンネルスト
ッパ用不純物の活性領域へのしみ出し拡散や、バーズビ
ークによる活性領域の実効面積の縮小化等の欠点は無く
、高密度集積回路の実現に極めて有効である。また製造
工程が簡単となり量産に適している。There is no long-time heat treatment process, so the spread of the low impurity density region 2, which is the active region, from the edge of the field insulating film 3 is reduced to 9.
is so small that it can be virtually ignored, and both are formed in self-alignment. In the present invention, there are no drawbacks such as the diffusion of channel stopper impurities into the active region and the reduction in the effective area of the active region due to bird's beak, as in the prior art, and it is extremely effective in realizing high-density integrated circuits. In addition, the manufacturing process is simple and suitable for mass production.
なお、Nチャネル型金例に説明したが、Pチャネル型お
よび0MO8型の集積回路装置に関しても適用可能であ
る事は言うまでもない。It should be noted that, although the explanation has been given using an N-channel type metal example, it goes without saying that it is also applicable to P-channel type and 0MO8 type integrated circuit devices.
第1図は本発明の詳細な説明するための断面図、第2図
、第3図は各々その製造方法を説明するための工程順断
面図である。
図中、1・・・・・・シリコン基板、2・・・・・・活
性領域、3・・・・・・フィールド絶縁膜、4・・・・
・・フォトレジスト、5・・・・・・ゲート絶縁膜、6
・・・・・・ゲート電極、7・・・・・・ソース、ドレ
イン領域、8・・・・・・層間絶縁膜、9・・・・・・
金属配線層、である・
第1図
第3図FIG. 1 is a sectional view for explaining the present invention in detail, and FIGS. 2 and 3 are step-by-step sectional views for explaining the manufacturing method thereof. In the figure, 1... silicon substrate, 2... active region, 3... field insulating film, 4...
...Photoresist, 5...Gate insulating film, 6
...Gate electrode, 7...Source, drain region, 8...Interlayer insulating film, 9...
Metal wiring layer, Fig. 1 Fig. 3
Claims (1)
成されたフィールド絶縁膜と、活性領域と、該フィルド
絶縁膜上に伸びて形成された導電層とを有する半導体集
積しIw!装置に於て、前記活性領域の一導伝型不純物
の実効密度が前記半導体基板表面から所定の深さに亘っ
て他の前記半導体基板の部分の不純物密度よりも小さく
、かつ該不純物の実効密度が小さい領域は前記フィール
ド絶縁膜と自己整合的に形成されている事を特徴とする
半導体集積回路装置。Iw! is a semiconductor integrated circuit having a field insulating film formed in a field region on the surface of a one-dimensional semiconductor substrate, an active region, and a conductive layer extending over the field insulating film. In the device, the effective density of one conductivity type impurity in the active region is lower than the impurity density in other parts of the semiconductor substrate over a predetermined depth from the surface of the semiconductor substrate, and the effective density of the impurity is A semiconductor integrated circuit device characterized in that a region having a small field insulating film is formed in self-alignment with the field insulating film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15733583A JPS6049672A (en) | 1983-08-29 | 1983-08-29 | Semiconductor integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15733583A JPS6049672A (en) | 1983-08-29 | 1983-08-29 | Semiconductor integrated circuit device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6049672A true JPS6049672A (en) | 1985-03-18 |
JPH055183B2 JPH055183B2 (en) | 1993-01-21 |
Family
ID=15647440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15733583A Granted JPS6049672A (en) | 1983-08-29 | 1983-08-29 | Semiconductor integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6049672A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02236879A (en) * | 1989-03-09 | 1990-09-19 | Fujitsu Ltd | Magnetic disk device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5055274A (en) * | 1973-09-12 | 1975-05-15 |
-
1983
- 1983-08-29 JP JP15733583A patent/JPS6049672A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5055274A (en) * | 1973-09-12 | 1975-05-15 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02236879A (en) * | 1989-03-09 | 1990-09-19 | Fujitsu Ltd | Magnetic disk device |
Also Published As
Publication number | Publication date |
---|---|
JPH055183B2 (en) | 1993-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4523213A (en) | MOS Semiconductor device and method of manufacturing the same | |
US4637124A (en) | Process for fabricating semiconductor integrated circuit device | |
JP2513402B2 (en) | Structure of semiconductor device and manufacturing method | |
US4488348A (en) | Method for making a self-aligned vertically stacked gate MOS device | |
JPS6055665A (en) | Manufacture of semiconductor device | |
US6008100A (en) | Metal-oxide semiconductor field effect transistor device fabrication process | |
JPH0457337A (en) | Semiconductor device and manufacture thereof | |
JPH11284178A (en) | Insulating gate transistor, its manufacture and semiconductor integrated circuit device | |
JPH09223797A (en) | Manufacture of semiconductor device | |
JP2845186B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS6049672A (en) | Semiconductor integrated circuit device | |
JPS6160589B2 (en) | ||
JPH0423329A (en) | Manufacture of semiconductor device | |
JP3038857B2 (en) | Method for manufacturing semiconductor device | |
JP2845934B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
JPH0491481A (en) | Mis field effect transistor | |
JPH07254645A (en) | Fabrication of semiconductor device | |
JP2000357792A (en) | Manufacture of semiconductor device | |
JP2808620B2 (en) | Method for manufacturing semiconductor device | |
JPS6039868A (en) | Manufacture of semiconductor device | |
JP2953915B2 (en) | Semiconductor integrated circuit device and method of manufacturing the same | |
JPH053135B2 (en) | ||
JPS60226168A (en) | Complementary mos semiconductor device | |
JPS6156448A (en) | Manufacture of complementary semiconductor device | |
KR19990003214A (en) | Manufacturing Method of Asymmetric CMOS Transistor |