JPS6048239B2 - wastewater treatment equipment - Google Patents
wastewater treatment equipmentInfo
- Publication number
- JPS6048239B2 JPS6048239B2 JP20237582A JP20237582A JPS6048239B2 JP S6048239 B2 JPS6048239 B2 JP S6048239B2 JP 20237582 A JP20237582 A JP 20237582A JP 20237582 A JP20237582 A JP 20237582A JP S6048239 B2 JPS6048239 B2 JP S6048239B2
- Authority
- JP
- Japan
- Prior art keywords
- tank
- wastewater
- denitrification
- sludge
- denitrification tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
【発明の詳細な説明】 本発明は活性汚泥による廃水処理装置に関す’る。[Detailed description of the invention] The present invention relates to a wastewater treatment device using activated sludge.
活性汚泥による廃水処理技術は徐々に普及しつつある
が、いずれの処理技術によつても廃水中の窒素及びリン
の除去率が極めて低く一般には前者は30%後者は10
%程度である。Wastewater treatment technology using activated sludge is gradually becoming popular, but the removal rate of nitrogen and phosphorus from wastewater is extremely low with any treatment technology, generally 30% for the former and 10% for the latter.
It is about %.
そのため、従来からの活性汚泥法によつて処理された処
理水が一旦河川などに放流されると、例えば藻類がこれ
ら残存窒素及びリンを栄養源としつつ、太陽光線と空気
中の炭酸ガスとを利用して多量に繁殖し、河川などの汚
染促進物質となつていた。Therefore, once treated water treated by the conventional activated sludge method is discharged into a river etc., algae, for example, use the residual nitrogen and phosphorus as nutrients, while absorbing sunlight and carbon dioxide in the air. They were used to breed in large numbers and became a pollutant in rivers and other areas.
本発明は、活性汚泥中の細菌の硝化、脱窒作用を利用し
て廃水中から高効率でしかも水素供与体としての有機化
合物を添加することを要せす安価に窒素を連続的に除去
し得る廃水処理装置を提供しようとするものてある。The present invention utilizes the nitrification and denitrification effects of bacteria in activated sludge to continuously remove nitrogen from wastewater with high efficiency and at low cost, without requiring the addition of organic compounds as hydrogen donors. Some companies are trying to provide a wastewater treatment system that can obtain the desired results.
囚処理条件:本発明は有機態窒素及びアンモニア態窒素
(NルーN)を硝酸態窒素(NO。Treatment conditions: The present invention converts organic nitrogen and ammonia nitrogen (N-N) into nitrate nitrogen (NO).
−N)に変換する硝化工程と、この硝酸態窒素(NO。
−N)を窒素(N。)に変換する脱窒工程という生物学
的培養条件をまつたく異にする2つの生物反応を含んて
いる。それ故、本発明の廃水処理条件を、(1)硝化工
程、(2)脱窒工程及び(3)廃水−汚泥混合液の循環
速度の3つに分けて以下に述べる。なお、下記実験にお
いてNO。−Nについては硝酸プルシン法(日本下水道
協会編:下水試験方法)にもとづいて、NH3−Nにつ
いてはインドフェノール法J.ROdier;Anal
ysisOfwater,Pa朋116,(1975)
,JOhnwily&SOn,NewyOrkにもと−
づいて測定した。(1)硝化工程:この工程ては、活性
汚泥濃度が高くかつ好気的条件てあることか好ましい。-N) and the nitrification process to convert it into nitrate nitrogen (NO.
-N) to nitrogen (N), a denitrification process that involves two biological reactions that require completely different biological culture conditions. Therefore, the wastewater treatment conditions of the present invention will be described below, divided into three parts: (1) nitrification process, (2) denitrification process, and (3) circulation speed of the wastewater-sludge mixture. In addition, NO in the following experiment. -N is based on the nitrate pursin method (edited by Japan Sewage Works Association: Sewage Test Methods), and NH3-N is based on the indophenol method J. ROdier;Anal
ysisOfwater, Paho 116, (1975)
, JOhnwily & SOn, Newy Ork -
It was then measured. (1) Nitrification step: This step preferably has a high activated sludge concentration and is under aerobic conditions.
以下にその理由を説明する。第1表に示す組成の合成廃
水を、活性汚泥濃度.(以下MLSSと記す。The reason is explained below. Synthetic wastewater with the composition shown in Table 1 was mixed with activated sludge concentration. (Hereinafter referred to as MLSS.
MLSは廃水と汚泥との混合液の一定量を10’×Gの
もとで5分間超遠心分離を行つて得られる沈澱部の重量
で表示される。ただしGは重力加速度を示す。)が43
347TLダ/lの活性汚泥を用いて、PH7.4温度
22.0’Cのもとで回.分法により生物学的硝化処理
を行つた。その結果を第1図に示す。なお、第1表のC
ODcrとはクロム酸カリ法にもとづいて測定した化学
的酸素要求量を示し、TKNとは全窒素を示す。(ただ
し、TKN=(NH3−N)+(有機態窒素))図から
生物学的硝化反応によつて廃水中の有機態窒素がアンモ
ニア態窒素(NH。−N)を経て硝酸態窒素(NO3−
N)に変換されてゆくことがうlかがえる。NH3−N
の減少とNO3−Nの増加はほ :ぼ0次反応で近似す
ることが出来る。何故ならNH。−N濃度の減少速度は
、NH。−NLOm9/l以下で緩慢になるので、正確
にはミハエレスーメンテン(Michalis−Men
ten)式に当てはまり、次式(4)が導出され得るか
らてある。今、NH。−N濃度をSm9/l、汚泥濃度
をXm9/lとし、NH。−Nの比減少速度をνとする
と、次式が成立する。1dsvmS
ν= −ーー − ・・・・・・・・・・・・・・・・
・・(1)XdtKm+Sこゝで、Kmは汚泥NH3−
Nに対する親和恒数で、1ppm以下の小さな値である
。MLS is expressed as the weight of the sediment obtained by ultracentrifuging a certain amount of a mixture of wastewater and sludge at 10' x G for 5 minutes. However, G indicates gravitational acceleration. ) is 43
Using activated sludge of 347 TL da/l, the cycle was carried out at pH 7.4 and temperature of 22.0'C. Biological nitrification treatment was carried out using a fractionation method. The results are shown in FIG. In addition, C in Table 1
ODcr indicates chemical oxygen demand measured based on the potassium chromate method, and TKN indicates total nitrogen. (However, TKN = (NH3-N) + (organic nitrogen)) As shown in the figure, organic nitrogen in wastewater changes to ammonia nitrogen (NH.-N) and nitrate nitrogen (NO3) through biological nitrification reaction. −
It can be seen that it is being converted into N). NH3-N
The decrease in NO3-N and the increase in NO3-N can be approximated by a nearly zero-order reaction. Because NH. - The rate of decrease in N concentration is NH. - It becomes slow below NLOm9/l, so to be exact, Michaelis-Menten (Michaelis-Menten)
Therefore, the following equation (4) can be derived. Now, NH. -N concentration is Sm9/l, sludge concentration is Xm9/l, and NH. If the specific decreasing speed of -N is ν, then the following equation holds true. 1dsvmS ν= −ーー − ・・・・・・・・・・・・・・・・・・
...(1)XdtKm+S where Km is sludge NH3-
It is an affinity constant for N, and is a small value of 1 ppm or less.
それ故、KmとSとの関係は(2)式のようになる。K
m<<S ・・・・・・・・・・・・・・・・・・・・
・(2)(1),(2)式から(3)式が成立する。Therefore, the relationship between Km and S is as shown in equation (2). K
m<<S ・・・・・・・・・・・・・・・・・・・・・
- (2) From equations (1) and (2), equation (3) holds true.
1dsν=ー又肝ゞνM゜゜゜゜゜゜゜゜゜゜゜゜゜゜
゜(3)よつて(4)式が得られる。1DSν = Matarako νm ゜ ゜ ゜ ゜ ゜ ゜ ゜ ゜ ゜ ゜ ゜ ゜ ゜ ゜ ゜ ゜ ゜ ゜ ゜ ゜ ゜ (3) Equation (4) is obtained.
Ds
−■=νMX・・・・・・・・・・・・・・・・・・(
4)(4)式は、NH。Ds −■=νMX・・・・・・・・・・・・・・・・・・(
4) Formula (4) is NH.
−Nの減少速度はNH。−N濃度に無関係な0次反応と
して近似でき汚泥濃度にのみ比例することを示している
。つまり生物学的硝化速度を上げるには、汚泥濃度を上
げることが必須条件となる。そこで次に、MLSS濃度
を10000mg/l以上の高濃度に保つて生物学的硝
化実験を行い、上記推論が成立することを確認した。-The rate of decrease of N is NH. - It can be approximated as a zero-order reaction that is unrelated to the N concentration, and it is shown that it is proportional only to the sludge concentration. In other words, increasing the sludge concentration is an essential condition for increasing the biological nitrification rate. Therefore, next, a biological nitrification experiment was conducted while maintaining the MLSS concentration at a high concentration of 10,000 mg/l or more, and it was confirmed that the above inference was valid.
第2図にその硝化成績を示す。この実験に使用した廃水
も前記同様、ペプトン、肉工キズを主体とする合成廃水
(CODcl=500TrL,/′,TKN=85m9
/′)である。このときの硝化実験は、第5図に示すよ
うなフィルターF、例えば住友スリーエム株式会社の商
品名スコツチ,ブライトを底に取りつけた固液分離槽S
を硝化槽内(容量6.8e)に設置した装置を用いて連
続的に行つた。なお、硝化槽内混合液には51/Mjn
の通気を行い、溶存酸素濃度DOを0.5〜7ppmに
維持した。Figure 2 shows the nitrification results. The wastewater used in this experiment was similar to the above, synthetic wastewater mainly containing peptone and meat scratches (CODcl=500TrL, /', TKN=85m9
/'). In this nitrification experiment, the solid-liquid separation tank S was equipped with a filter F as shown in Fig.
This was carried out continuously using a device installed in a nitrification tank (capacity 6.8e). In addition, the mixed liquid in the nitrification tank contains 51/Mjn.
Aeration was performed to maintain the dissolved oxygen concentration DO at 0.5 to 7 ppm.
実験結果を第2図に示す。定常状態(197奔8月3日
〜8月9日)における化学的酸素要求量CODO、と活
性汚泥量SSとの量比、いわゆるCODc.−SS負荷
は0.14kgC0D0r/K9MLSS●Dayであ
り、MLSS濃度は14000mg/eであつた。流入
全窒素TKN力塙濃度の活性汚泥によつて硝化反応を受
けると、処理水中にはNO3−Nが高濃度で含まれると
同時にNH3−Nが0.5ppm以下の低濃度て検出さ
れた。流入全窒素TKNのうち硝酸態窒素NO3−Nに
まて酸化された割合、すなわち硝化率は、第2図におい
て点線で示されるように、90〜100%であつた。C
ODc,の除去率は約90%であつた。The experimental results are shown in Figure 2. The quantitative ratio between the chemical oxygen demand CODO and the activated sludge amount SS in the steady state (August 3 to August 9, 197 years), so-called CODc. -SS load was 0.14 kg C0D0r/K9 MLSS Day, and MLSS concentration was 14000 mg/e. When the activated sludge with the inflow total nitrogen concentration of TKN was subjected to a nitrification reaction, the treated water contained a high concentration of NO3-N, and at the same time, a low concentration of NH3-N of 0.5 ppm or less was detected. The proportion of the inflowing total nitrogen TKN that was oxidized to nitrate nitrogen NO3-N, that is, the nitrification rate, was 90 to 100%, as shown by the dotted line in FIG. C
The removal rate of ODc was about 90%.
なお、上記実験に用いた、肉工キズ、ペプトンを主体と
する合成廃水の窒素形態は99%以上が有機態窒素であ
つたので、流入全窒素TKNを流入総窒素TOtal一
Nとみなすことができる。それ故、上記硝化率は処理水
中のNO3−Nの流入廃水中のTKNの比で表示された
。ここで(TOtal−N)=(TKN)+(NO3−
N)+(NO2−N)である。以上の実験結果から、廃
水の硝化工程は活性汚泥濃度を高くし、好気的、例えば
溶存酸素濃度DOを0.5〜7ppmに保持することが
好ましいといえる。In addition, since the nitrogen form of the synthetic wastewater mainly composed of meat industry scratches and peptone used in the above experiment was more than 99% organic nitrogen, the inflow total nitrogen TKN can be regarded as the inflow total nitrogen TOtal - N. can. Therefore, the nitrification rate was expressed as the ratio of NO3-N in the treated water to TKN in the influent wastewater. Here (TOtal-N) = (TKN) + (NO3-
N)+(NO2-N). From the above experimental results, it can be said that it is preferable to increase the activated sludge concentration in the wastewater nitrification process and maintain the aerobic method, for example, the dissolved oxygen concentration DO at 0.5 to 7 ppm.
なお、活性汚泥濃度が60000mg/eのような高濃
度の場合には、硝化工程での酸素供給が汚泥微生物の酸
素消費速度に追いつけず、所定の好気条件を維持するこ
とができなくなるおそれがある。In addition, when the activated sludge concentration is as high as 60,000 mg/e, the oxygen supply during the nitrification process cannot keep up with the oxygen consumption rate of the sludge microorganisms, and there is a risk that the specified aerobic conditions cannot be maintained. be.
それ故、硝化工程における活性汚泥の濃度は5000m
g/e〜30000mg/f1好ましくは8000mg
/f〜1500mg/eであることが推奨される。(2
)脱窒工程:この工程では、嫌気的でかつ活性汚泥濃度
を高濃度にすれば、C一源を系外から補填しなくても脱
窒反応を充分に起こし得る。以下にこの理由を説明する
。CODO、−SS負荷を種々変化させて脱窒試験を行
つた。Therefore, the concentration of activated sludge in the nitrification process is 5000 m
g/e~30000mg/f1 preferably 8000mg
/f~1500mg/e is recommended. (2
) Denitrification process: In this process, if the process is anaerobic and the activated sludge concentration is made high, the denitrification reaction can occur sufficiently without supplementing a C source from outside the system. The reason for this will be explained below. Denitrification tests were conducted by varying the CODO and -SS loads.
その結果を第3図に示す。使用した活性汚泥のMLSS
濃度は5000mg/e1濃度は20′C,PHは8.
0〜8.5であつた。また脱窒槽内の溶存酸素濃度DO
を0ppmに維持した。図中の( )内はC/N比を示
す。C一源として例えばメタノールを添加することによ
つて脱窒槽内のCODc.−SS負荷(以下Lと表示す
る)を増加させると、第3図から明らかなように、脱窒
速度Udが増加する。The results are shown in FIG. MLSS of activated sludge used
The concentration is 5000mg/e1, the concentration is 20'C, and the pH is 8.
It was 0 to 8.5. Also, the dissolved oxygen concentration DO in the denitrification tank
was maintained at 0 ppm. The numbers in parentheses in the figure indicate the C/N ratio. By adding, for example, methanol as a C source, the COD c. - As the SS load (hereinafter referred to as L) is increased, the denitrification rate Ud increases, as is clear from FIG.
第3図から、L.l5Udとの関係は(5)式て示され
る。Lが0.26(VCODO、/YM?S・占y)よ
り大きい場合にはUdは一定となり、(6)式で示され
る。一方、LがOの場合、すなわちC一源をまつたく添
加しない楊合にはUdは次の値で示される。From FIG. 3, L. The relationship with l5Ud is expressed by equation (5). When L is larger than 0.26 (VCODO, /YM?S·Y), Ud is constant, and is expressed by equation (6). On the other hand, when L is O, that is, when no C source is added at all, Ud is shown as the following value.
この値は汚泥の自己分解に起因する脱窒速度である。上
記(7)式は、活性汚泥は脱窒工程のような嫌気条件下
においてはC一源が全く添加されない場合にでも汚泥の
自己分解によりNO3−Nを脱窒する特性を有している
ことを示している。This value is the denitrification rate due to sludge self-decomposition. Equation (7) above indicates that activated sludge has the property of denitrifying NO3-N through self-decomposition of the sludge under anaerobic conditions such as in the denitrification process, even when no C source is added. It shows.
そこで、今、添加炭素量をC(炭素原子の重量q/Da
y)、総汚泥量をX(QM?S)とすると、LはC.l
5Xの比(L=1日当りの流入CODe,/全汚泥量=
C/X)で表わされるから、前記(5)式は(8)式で
示される。Therefore, the amount of added carbon is now C (weight of carbon atoms q/Da
y), and the total sludge amount is X(QM?S), L is C. l
5X ratio (L = daily inflow CODe, / total sludge volume =
C/X), the above formula (5) is expressed as formula (8).
ここで、汚泥量のみをn倍にすると、(9)式が得られ
る。Here, if only the sludge amount is multiplied by n, equation (9) is obtained.
この(9)式は、汚泥量をn倍(nは自然数)にすると
、単位汚泥当りの除去NO3−N量が減少することを示
している。This equation (9) shows that when the amount of sludge is increased by n times (n is a natural number), the amount of NO3-N removed per unit sludge decreases.
ところで、一日当りの脱窒量Ru
MNO−NremOVed(t)汚泥量がX及び■のD
ay)場合それぞれ(8)及び(9)式かから次式の(
10)及び(11)式で示される。By the way, the amount of denitrification per day Ru MNO-NremOVed(t) The amount of sludge is X and D
ay), from equations (8) and (9) respectively, the following equation (
10) and (11).
Ru=UdxX=205C+9.5X・・・・・・・・
・・・・・・・(10トRu=UdxnX=205C+
9.5nX・・・・・・(11)。Ru=UdxX=205C+9.5X・・・・・・・・・
・・・・・・・・・(10tRu=UdxnX=205C+
9.5nX...(11).
したがつて、一日当りの脱窒量Ruの増加量ΔRuは(
11)一(10)により、(12)式で示される。ΔR
u=9.6(n−1)X ・・・・・・・・・(12)
結局、汚泥量を増加させることにより、汚泥自己分解に
起因する分だけ脱窒量が増えたことになる。したがつて
、発明者は、脱窒工程を嫌気的に維持し、かつ高濃度の
活性汚泥を用いれば、系外からこの脱素工程へ供給され
る流入廃水は汚泥の自己分解に起因する脱窒特性の故に
、C−源を添加しなくても充分に脱窒され得ると考えた
。Therefore, the increase amount ΔRu in the daily denitrification amount Ru is (
11) According to (10), it is expressed by equation (12). ΔR
u=9.6(n-1)X ・・・・・・・・・(12)
In the end, by increasing the amount of sludge, the amount of denitrification increased by the amount caused by sludge self-decomposition. Therefore, the inventors believe that if the denitrification process is maintained anaerobically and high-concentration activated sludge is used, the inflow wastewater supplied from outside the system to this deoxidation process will be deoxidized due to self-decomposition of the sludge. Because of the nitrogen properties, it was thought that sufficient denitrification could be achieved without adding a C-source.
以下に、この推論が実際の脱窒反応において成立するこ
とを、活性汚泥濃度が上記実験の場合の約2倍の950
0mg/lの汚泥を使つて、立証する。Below, we will show that this inference holds true in an actual denitrification reaction when the activated sludge concentration was 950, which is approximately twice that in the above experiment.
Proof using 0 mg/l sludge.
.脱窒試験の条件は以下のとおりてある。脱窒槽の容量
・・・・・・・・・・・・4.951溶存酸如濃度(
DO)・・・・・・・・・・・・0ppm
流入NO。.. The conditions for the denitrification test are as follows. Capacity of denitrification tank ・・・・・・・・・・・・4.951 Dissolved acid concentration (
DO)・・・・・・・・・・・・0ppm Inflow NO.
−N ・・・・・・・・・・・・約80ppm流入廃水
量 ・・・・・・・・・・・・0.751/HrC/N
比 ・・・・・・・・・・・・0.4〜1.3温度 ・
・・・・・・・・・・・25゜CMLSS・・・・・・
・・・・・・9500y/l実験結果を第4図及ひ第2
表に示す。-N ・・・・・・・・・・・・Approx. 80ppm Inflow wastewater amount ・・・・・・・・・・・・0.751/HrC/N
Ratio・・・・・・・・・0.4~1.3Temperature・
・・・・・・・・・・・・25゜CMLSS・・・・・・
・・・・・・The results of the 9500y/l experiment are shown in Figures 4 and 2.
Shown in the table.
脱窒を完全に行うためには、MLSS濃度が5000m
9/lの場合には、第3図から明らかなように、C/N
比は1.7以上でなければならないが、MLSS濃度が
9500m9/lの場合には第4図から明らかなように
、C/N比が1.3でよい。For complete denitrification, the MLSS concentration must be 5000 m
In the case of 9/l, as is clear from Fig. 3, the C/N
The ratio must be 1.7 or more, but when the MLSS concentration is 9500 m9/l, the C/N ratio may be 1.3, as is clear from FIG.
このことは、汚泥濃度を上げることにより補填炭素源が
節約できることを示している。第2表には、上記実験結
果が前記(5)式から計算されるUd値と比較して示さ
れている。This indicates that supplementary carbon sources can be saved by increasing the sludge concentration. Table 2 shows the above experimental results in comparison with the Ud value calculated from the above equation (5).
第2表によると、C/N比がそれぞれ1.0及び1.3
の場合、Udの計算値と実測値が極めて近似している。According to Table 2, the C/N ratio is 1.0 and 1.3, respectively.
In this case, the calculated value and the measured value of Ud are extremely similar.
それ故、前記(5)式が実際の脱窒反応において成立す
ることが明らかとなつた。(3)循環速度:脱窒工程に
おける廃水−汚泥混合液を硝化工程へ循環させる循環速
度Qrは処理水が固液分離工程から系外へ流出する流出
量Qの1〜8倍、好ましくは3〜5倍に設定される。Therefore, it has become clear that the above formula (5) holds true in an actual denitrification reaction. (3) Circulation speed: The circulation speed Qr at which the wastewater-sludge mixture in the denitrification process is circulated to the nitrification process is 1 to 8 times, preferably 3 times, the flow rate Q at which the treated water flows out of the system from the solid-liquid separation process. It is set to ~5 times.
以下にその理由を説明する。脱窒工程ては、活性汚泥微
生物により次のような生物反応が起きる。もし、脱窒工
程から硝化工程への廃水汚泥混合液の循環を行わないと
、硝化−脱窒の系が成立しないのみならず、循環速度Q
rを可成り大きく選ばないと上記の生物反応による生成
物NH。The reason is explained below. In the denitrification process, the following biological reactions occur due to activated sludge microorganisms. If the wastewater sludge mixture is not circulated from the denitrification process to the nitrification process, not only will the nitrification-denitrification system not be established, but the circulation rate will be
Unless r is chosen to be quite large, the product NH from the above biological reaction.
−Nがそのまま系外へ流出し、結果として廃水中の窒素
の除去効率が低下してしまう。また、廃水−汚泥混合液
を循環しないて汚泥を長期間連続して嫌気状態において
おくと、汚泥の沈降性が悪くなり、汚泥の再使用が不可
能となるため、安定した廃水処理系を組むことができな
くなる。それ故、廃水−汚泥混合液の返送速度Qrは出
来るだけ大きく選ふことが好ましいが、以下の実施例1
,2及び3からも明らかなように、返送速度Qrを処理
水量Qの3倍から5倍に上げた場合、窒素除去率は84
.2%から89.8%と約5.6%上昇するだけで、大
巾な上昇はみられない。-N flows out of the system as it is, and as a result, the efficiency of removing nitrogen from wastewater decreases. In addition, if the wastewater-sludge mixture is not circulated and the sludge is left in an anaerobic state for a long period of time, the settling properties of the sludge will deteriorate, making it impossible to reuse the sludge, so a stable wastewater treatment system must be established. I won't be able to do that. Therefore, it is preferable to select the return speed Qr of the wastewater-sludge mixture as large as possible.
, 2 and 3, when the return rate Qr is increased from 3 times to 5 times the amount of treated water Q, the nitrogen removal rate is 84
.. There is no significant increase, only an increase of about 5.6%, from 2% to 89.8%.
しかも、循環速度Qrの設定は循環ポンプの経済性、廃
水成分濃度及ひ廃水中のC/N比に依存している。それ
故、循環速度QrはIQ−8Q)好ましくはΩ〜搗に設
定することが効果的である。したがつて、本発明の廃水
処理においては、(a)流入廃水を脱窒工程一、給する
こと、(b)硝化−脱窒の両工程に高濃度の活性汚泥を
使用すること、(c)硝化工程を溶存酸素濃度のDOが
0.5〜7ppm)好ましくは3 〜5ppmの好気条
件に維持すること、(d)脱窒工程を溶存酸素濃度DO
が0.5ppm以下の嫌気条件に維持すること、(e)
脱窒工程における廃水−汚泥混合液を固液分離工程から
系外へ流出する処理水量Qの1〜8倍、好ましくは3〜
5倍の速度て硝化工程へ循環させること、の諸条件を満
たすことによつて系外から炭素源を補填することなく効
果的に廃水中の窒素、生物学的酸素要求量(BOD)及
ひ化学的酸素要求量(CODcr及びCODMn)を除
去することができる。Furthermore, the setting of the circulation speed Qr depends on the economic efficiency of the circulation pump, the concentration of wastewater components, and the C/N ratio in the wastewater. Therefore, it is effective to set the circulation rate Qr to IQ-8Q), preferably Ω to 1000m. Therefore, in the wastewater treatment of the present invention, (a) feeding inflow wastewater to the denitrification process, (b) using highly concentrated activated sludge in both the nitrification and denitrification processes, and (c) ) the nitrification step is maintained under aerobic conditions with a dissolved oxygen concentration of 0.5 to 7 ppm), preferably 3 to 5 ppm; (d) the denitrification step is maintained at a dissolved oxygen concentration of 0.5 to 7 ppm;
(e) Maintaining anaerobic conditions at 0.5 ppm or less; (e)
The wastewater-sludge mixture in the denitrification process is 1 to 8 times the amount of treated water Q that flows out of the system from the solid-liquid separation process, preferably 3 to 8 times.
By meeting the conditions of recycling to the nitrification process five times faster, nitrogen, biological oxygen demand (BOD) and Chemical oxygen demand (CODcr and CODMn) can be removed.
ただしCODMnは過マンガン酸カリ法にもとづいて測
定した化学的酸素要求量を示す。以下に、本発明の廃水
処理法及びその装置の実施例を示す。However, CODMn indicates the chemical oxygen demand measured based on the potassium permanganate method. Examples of the wastewater treatment method and apparatus of the present invention are shown below.
実施例1
硝化槽としてはプラグフロー(PlugflOw)型−
硝化槽(容量6.81を、脱窒槽としては完全混合型脱
窒槽(容量7.01)を用いた。Example 1 Plugflow type nitrification tank
A nitrification tank (capacity 6.81) was used, and a complete mixing type denitrification tank (capacity 7.01) was used as the denitrification tank.
前記第1表に示す組成の合成廃水を、MLSS濃度約1
2000m9/lの活性汚泥約170ダを用いて温度2
0゜Cのもとで処理した。処理方法は上記合成廃水を1
.017/.Minの割合で脱窒工程(DO:0ppm
)に供給する。脱窒工程ての汚泥−廃水混合液は3.0
1/Mjnの割合で硝化工程(通気量5.01/Min
,DO4〜7ppm)へ返送される。この返送速度、す
なわち汚泥−廃水混合液循環速度Qrは、脱窒工程に.
続く固液分離工程から系外へ排出される処理水量Q(流
入廃水量と同一速度)の3倍に相当する。処理成績は第
3表に余す。上記第3表に示すように、処理水中のTO
tal一Nは13.7m9/lであり、流入廃水のTO
tal−N86.9mg/lのうちの84.2%が除去
されている。Synthetic wastewater having the composition shown in Table 1 above was mixed with an MLSS concentration of about 1.
Using activated sludge of about 170 Da at 2000 m9/l, the temperature is 2.
Processing was carried out at 0°C. The treatment method is to process the above synthetic wastewater into
.. 017/. Denitrification process (DO: 0ppm
). The sludge-wastewater mixture in the denitrification process is 3.0
Nitrification process at a ratio of 1/Mjn (aeration rate 5.01/Min
, DO4-7ppm). This return rate, that is, the sludge-wastewater mixture circulation rate Qr, is the same as that in the denitrification process.
This corresponds to three times the amount Q of treated water discharged outside the system from the subsequent solid-liquid separation step (at the same rate as the amount of inflow wastewater). The processing results are shown in Table 3. As shown in Table 3 above, TO in the treated water
tal-N is 13.7 m9/l, and the TO of influent wastewater
84.2% of 86.9 mg/l of tal-N was removed.
CODcr及びCODMnはそれぞれ93.2及び92
.2%が除去されている。なお、総窒素TOtal−N
は(TOtal−N)(TKN)+ (NO2−N)
+ (NO3−N)て表示されている。実施例2
前記第1表に示す組成の合成廃水を、MLSS濃度約1
2000m9/lの活性汚泥約168ダを用いて温度2
0℃のもとて処理した。CODcr and CODMn are 93.2 and 92 respectively
.. 2% has been removed. In addition, total nitrogen TOtal-N
is (TOtal-N) (TKN) + (NO2-N)
+ (NO3-N) is displayed. Example 2 Synthetic wastewater having the composition shown in Table 1 above was mixed with an MLSS concentration of about 1
Using activated sludge of 2000m9/l of approximately 168 da
It was treated at 0°C.
処理方法は上記実施例1と同じであるが、本実施例2に
おいてはQr=4Qにて処理実験を行つた。その処理成
績を第4表に示す。上記第4表に示すように、処理水中
のTOtal一Nは12.6mg/lてあり、流入廃水
中のTOtal一N89.Omg/lのうちの86.0
%が除去されている。The treatment method was the same as in Example 1 above, but in Example 2, a treatment experiment was conducted with Qr=4Q. The treatment results are shown in Table 4. As shown in Table 4 above, TOtal-N in the treated water is 12.6 mg/l, and TOtal-N in the influent wastewater is 89. 86.0 of Omg/l
% has been removed.
CODc,及びCODMnはそれぞれ93.7%及び9
2.0%が除去されている。実施例3
前記第1表の組成の合成廃水を、MLSS濃度約120
00m9/lの活性汚泥約165ダを用いて温度20゜
Cのもとで処理した。CODc and CODMn are 93.7% and 9, respectively.
2.0% has been removed. Example 3 Synthetic wastewater having the composition shown in Table 1 above was treated with an MLSS concentration of about 120
The treatment was carried out using approximately 165 da of activated sludge of 00 m9/l at a temperature of 20°C.
この場合のQrはQr=ωに調節して処理実験を行つた
。その処理成績を第5表に示す。上記第5表に示すよう
に、流入廃水中のTOtal−Nの89.8%が除去さ
れている。また、CODc,及びCODMnもそれぞれ
93.5%及び93.0%が除去された。実施例4
前記第1表の組成の合成廃水を、MLSS濃度8000
mg/lの活性汚泥110ダを用いて温度20’Cのも
とで処理した。In this case, Qr was adjusted to Qr=ω and a processing experiment was conducted. The treatment results are shown in Table 5. As shown in Table 5 above, 89.8% of TOtal-N in the influent wastewater was removed. Furthermore, 93.5% and 93.0% of CODc and CODMn were removed, respectively. Example 4 Synthetic wastewater having the composition shown in Table 1 above was treated with an MLSS concentration of 8000.
The treatment was carried out using 110 mg/l activated sludge at a temperature of 20'C.
この場合のQrはQr=搗に調節して処理実験を行つた
。その処理成績を第6表に示す。上記第6表に示すよう
に、流入廃水中のTOtal一Nの82.5%が除去さ
れている。In this case, the treatment experiment was conducted by adjusting Qr to Qr=pounds. The treatment results are shown in Table 6. As shown in Table 6 above, 82.5% of TOtal-N in the influent wastewater was removed.
またCODcr及び フCODMnもそれぞれ91.0
%及び90.0%が除去された。実施例5
前記第1表の組成の合成廃水を、MLSS濃度1500
0m9/lの活性汚泥210ダを用いて温度20゜Cの
もとで処理した。Also, CODcr and CODMn are each 91.0.
% and 90.0% were removed. Example 5 Synthetic wastewater having the composition shown in Table 1 was treated with an MLSS concentration of 1500.
The treatment was carried out using 210 da of activated sludge of 0 m9/l at a temperature of 20°C.
この場合のQrはQr=搗に調節して処理実験を行つた
。その処理成績を第7表に示す。上記第7表に示すよう
に、流入廃水中のTOtal−Nの91.0%が除去さ
れている。In this case, the treatment experiment was conducted by adjusting Qr to Qr=pounds. The treatment results are shown in Table 7. As shown in Table 7 above, 91.0% of TOtal-N in the influent wastewater was removed.
また、CODc,及びCODMnもそれぞれ94.0%
及び93.2%が除去された。実施例6
第5図に本発明の廃水処理装置の模式図を示す。Also, CODc and CODMn were each 94.0%.
and 93.2% were removed. Example 6 FIG. 5 shows a schematic diagram of the wastewater treatment apparatus of the present invention.
本装置は図外の廃水槽からの廃水のバルブV1付き流入
端D1を有する生物学的脱窒を行う脱窒槽D(容量7.
01)と、脱窒槽Dからの廃水一汚泥混合液の返送用バ
ルブV2付き流入端N1を有する生物学的硝化を行う硝
化槽N(容量6.81)と、前記脱窒槽D内に設けられ
、液面差を利用してフィルターF)例えばスリーエム株
式会社の商品名スコツチブライトといういわゆるナイロ
ンたわし、により廃水−汚泥混合液から固液を分離する
固液分離槽Sと、を具備し、上記硝化槽Nの流出端N2
と脱窒槽Dの流入端D2が流路NDで連結されている。
また、脱窒槽Dと硝化槽Nとを連結する返送管Rには循
環ポンプP2が設けられ、脱窒槽D内混合液を所定の循
環速度Qrで返送管Rを通して硝化槽N内に循環てきる
よう構成されている。脱窒槽Dにはさらにタービン型の
プロペラをもつ攪拌機A(回転数120rpm)が備え
られ、槽内混合液を完全混合する。硝化槽Nの底部には
例えば多孔板N3,N3・・・が備えられ、通気攪拌用
空気が槽内に吹き込まれるよう構成されている。なお、
N4,N4は硝化槽N内を仕切る隔壁である。上記フィ
ルターFを取りつけた固液分離槽Sの底は脱窒槽D内の
廃水−汚泥混合液中に液面から所定の深さにつけられて
いる。This device is a denitrification tank D (capacity 7.
01), a nitrification tank N (capacity 6.81) for performing biological nitrification having an inflow end N1 with a valve V2 for returning the wastewater-sludge mixture from the denitrification tank D, and a nitrification tank N (capacity 6.81) provided in the denitrification tank D. , a solid-liquid separation tank S that separates solid and liquid from the wastewater-sludge mixture using a filter F) using a liquid level difference, for example, a so-called nylon scrubbing brush called Scotchibrite, a product of 3M Co., Ltd. Outflow end N2 of nitrification tank N
and the inflow end D2 of the denitrification tank D are connected by a flow path ND.
In addition, a circulation pump P2 is provided in the return pipe R connecting the denitrification tank D and the nitrification tank N, and circulates the mixed liquid in the denitrification tank D into the nitrification tank N through the return pipe R at a predetermined circulation speed Qr. It is configured like this. The denitrification tank D is further equipped with an agitator A (rotation speed: 120 rpm) having a turbine-type propeller to completely mix the mixed liquid in the tank. The bottom of the nitrification tank N is provided with, for example, perforated plates N3, N3, . . . , so that air for aeration and stirring is blown into the tank. In addition,
N4 and N4 are partition walls that partition the inside of the nitrification tank N. The bottom of the solid-liquid separation tank S equipped with the filter F is placed in the wastewater-sludge mixture in the denitrification tank D at a predetermined depth from the liquid level.
そのため、フィルターFに接している脱窒槽D内混合液
は上記固液分離槽Sの浸責深さに応じて深水圧力を受け
る。その結果、フィルターFに接している混合液はフィ
ルターFを通つて固液分離槽S内に浸入してゆく。この
浸入は浸入水、すなわち処理水が固液分離槽S内で脱窒
槽D内の混合液の水面と同じ高さになるまで続行される
。一方、活性汚泥はフィルターFにより流出を封じらる
。したがつて廃水を一定流量Qで脱窒槽D内に供給する
と、処理水は廃水供給速度と同一速度Qて連続的に放流
口S1から流出し、河川などへ放流される。本装置に1
例として用いられるいわゆるナイロンたわしは水切れが
良く、したがつて乾燥しやすく、耐久性に富み、かつ弾
力性があるなどの特性を有している。Therefore, the mixed liquid in the denitrification tank D that is in contact with the filter F is subjected to deep water pressure depending on the immersion depth of the solid-liquid separation tank S. As a result, the mixed liquid in contact with the filter F passes through the filter F and enters the solid-liquid separation tank S. This infiltration continues until the infiltrated water, that is, the treated water, reaches the same level in the solid-liquid separation tank S as the water level of the mixed liquid in the denitrification tank D. On the other hand, activated sludge is blocked from flowing out by filter F. Therefore, when wastewater is supplied into the denitrification tank D at a constant flow rate Q, the treated water continuously flows out from the outlet S1 at the same speed Q as the wastewater supply rate and is discharged into a river or the like. 1 for this device
The so-called nylon scrubbing brush used as an example has characteristics such as good drainage, easy drying, durability, and elasticity.
したがつて、従来から一般にフィルターとして用いられ
ていた種々のメッシュの金網やパンチングメタルなどに
比較して廃水と活性汚泥との混合液のろ過分離に好適で
ある。実施例7第6図aの装置は上記実施例4の装置と
は固液分離槽の構造が異つている。Therefore, it is more suitable for filtering and separating a mixed liquid of wastewater and activated sludge than the various mesh wire meshes, punched metals, etc. that have conventionally been generally used as filters. Embodiment 7 The apparatus shown in FIG. 6a is different from the apparatus of Example 4 in the structure of the solid-liquid separation tank.
本装置は、第6図bに示すように脱窒槽D内に中空洞の
回転ドラム3によつて構成される固液分離槽1が配置さ
れ、脱窒槽D内の混合液から固液を連結的に分離して廃
水処理を連続的に行いうるよう構成されている。すなわ
ち、固液分離槽1は壁面の多数穴を通して脱窒槽Dに連
通している。そして固液分離槽1の1対の対向壁12,
12に中空洞の貫通筒2,2が固定されている。この貫
通筒2,2には回転自在に嵌合した外筒20,20に回
転ドラム3が取りつけられている。この回転ドラム3の
枦過表面31には例えは上記実施例4のフィルターFと
同じ住友スリーエム株式会社の商品名スコツチプライト
といういわゆるナイロンたわしからできたフィルター3
0が取りつけられている。この回転ドラム3はステンレ
ス製のローラーチエインなどのJベルト32でモーター
33に連結され、例えば60rpm以下の回転速度で回
転する。一方、筒2,2の中空洞は各両端が槽壁12,
12に当接する部分に設けられた穴120,120を通
して槽1及びD外と導通している。一方の筒2の中空洞
には開口端21及び壁穴120を通つて回転ドラム3内
に吸込口40をもち、槽外に吐水口をもつ排水バイブ4
が、他方の筒2の中空洞には壁穴120及び開口端22
を通つて洗浄水供給バイブ5がそれぞれ配設されている
。そして排水バイブ4に連結された図外の吸引ポンプの
駆動によつて回転ドラム3内を減圧、例えば10〜30
0mmHgにして槽1内の混合液10をフィルター30
を通してろ過するよう構成されている。また、洗浄水供
給バイブ5の先端部は回転ドラム3内の上方部に配置さ
れ、その表面には洗浄水噴射孔50,50・・・がフィ
ルター30に向つて上向きに設けられている。これら噴
射孔50,50・・・が槽1内混合液10の液面から常
に露出するように、ドラム3の回転速度を調整して液面
調整が行われる。それ故、回転ドラム3の頂部は常時液
面から空気中に露出し、洗浄水噴射孔50,50・・・
からの洗浄水噴射によりフィルター30の一部は常に洗
浄される。フィルター30上方にカバーを設けると、洗
浄水噴射よる汚泥等の飛散は防止される。なお、洗浄水
供給バイブ5の他端は図外の洗浄水供給源、例えば上記
排水バイブ4にポンプなどを介して公知の手段によつて
連結され、処理水の一部を洗浄水として利用できるよう
になつている。300は回転ドラム3に取りつけられた
フィルター支持部材を示す。As shown in FIG. 6b, in this device, a solid-liquid separation tank 1 composed of a hollow rotating drum 3 is arranged in a denitrification tank D, and the solid-liquid is connected from the mixed liquid in the denitrification tank D. It is constructed so that wastewater treatment can be performed continuously by separating the wastewater. That is, the solid-liquid separation tank 1 communicates with the denitrification tank D through multiple holes in the wall surface. and a pair of opposing walls 12 of the solid-liquid separation tank 1,
Hollow through cylinders 2, 2 are fixed to 12. A rotary drum 3 is attached to outer cylinders 20, 20 which are rotatably fitted into the through cylinders 2, 2. For example, a filter 3 made of a so-called nylon scrubbing brush called Scotchiplite, a trade name of Sumitomo 3M Ltd., which is the same as the filter F of the above-mentioned embodiment 4, is provided on the perforated surface 31 of the rotating drum 3.
0 is attached. This rotating drum 3 is connected to a motor 33 by a J belt 32 such as a stainless steel roller chain, and rotates at a rotation speed of, for example, 60 rpm or less. On the other hand, each of the hollow tubes 2, 2 has a tank wall 12 at each end,
It is electrically connected to the outside of the tanks 1 and D through holes 120, 120 provided in the portion that abuts on the tank 12. The hollow cavity of one cylinder 2 has a suction port 40 into the rotating drum 3 through an open end 21 and a wall hole 120, and a drainage vibrator 4 having a water spout outside the tank.
However, the hollow cavity of the other cylinder 2 has a wall hole 120 and an open end 22.
A cleaning water supply vibrator 5 is disposed through each. Then, by driving a suction pump (not shown) connected to the drainage vibrator 4, the pressure inside the rotary drum 3 is reduced, e.g.
Filter the mixed liquid 10 in the tank 1 to 0 mmHg through the filter 30.
It is configured to filter through. Further, the tip of the cleaning water supplying vibrator 5 is disposed in the upper part of the rotating drum 3, and cleaning water injection holes 50, 50, . . . are provided on the surface thereof facing upward toward the filter 30. The liquid level is adjusted by adjusting the rotation speed of the drum 3 so that these injection holes 50, 50, . . . are always exposed above the liquid level of the mixed liquid 10 in the tank 1. Therefore, the top of the rotating drum 3 is always exposed to the air from the liquid level, and the cleaning water injection holes 50, 50...
A part of the filter 30 is always cleaned by a jet of cleaning water from the filter 30. Providing a cover above the filter 30 prevents sludge and the like from scattering due to the injection of washing water. The other end of the cleaning water supply vibrator 5 is connected to a cleaning water supply source (not shown), such as the above-mentioned drainage vibrator 4, by a known means via a pump or the like, so that a part of the treated water can be used as cleaning water. It's becoming like that. 300 indicates a filter support member attached to the rotating drum 3.
モーター33の始動によつて回転ドラム3が例えば60
rpm以下のゆつくりした回転速度で混合液10内を回
転する。By starting the motor 33, the rotating drum 3 is
The mixture 10 is rotated at a slow rotational speed of rpm or less.
排水バイブ4に連結した図外の吸引ポンプの作用により
回転ドラム3内の液が吸い出される。その結果、ドラム
3のまわりの混合液10がフィルター30によりろ過さ
れてドラム内に流入する。枦液すなわち処理水は排水バ
イブ4の吸引口40から吸引され槽外に排出される。一
方、活性汚泥は液中にあるフィルター30の表面に堆積
してゆく。ドラム3が回転しフィルター30が液面上に
露出する位置に来たとき、フィルター30は噴射孔50
,50・・・から噴射される処理水の一部を裏側から吹
きつけられて洗浄される。そのため、フィルター30の
表面に堆積した活性汚泥は洗い流され、フィルター表面
をつたうなどして混合液10中に戻る。本装置は活性汚
泥濃度が5000〜30000ppmのような高濃度の
場合にも廃水処理を効果的にかつ連続的に行うことがで
きる。The liquid in the rotating drum 3 is sucked out by the action of a suction pump (not shown) connected to the drainage vibrator 4. As a result, the mixed liquid 10 around the drum 3 is filtered by the filter 30 and flows into the drum. The liquid, that is, the treated water, is sucked through the suction port 40 of the drainage vibrator 4 and discharged to the outside of the tank. On the other hand, activated sludge accumulates on the surface of the filter 30 in the liquid. When the drum 3 rotates and the filter 30 comes to a position where it is exposed above the liquid surface, the filter 30 is exposed to the injection hole 50.
, 50 . . . are sprayed from the back side for cleaning. Therefore, the activated sludge deposited on the surface of the filter 30 is washed away and returns to the liquid mixture 10 by trickling down the filter surface. This apparatus can effectively and continuously treat wastewater even when the activated sludge concentration is as high as 5,000 to 30,000 ppm.
なお、処理水の流出量Qは、排水ポンプを調整すること
によつて廃水−汚泥混合液循環速度Qrと所定の数値関
係に保持される。実施例8
第7図の装置は、上記実施例6及び7とは固液分離槽の
構成を異にしている。Note that the outflow amount Q of treated water is maintained in a predetermined numerical relationship with the wastewater-sludge mixed liquid circulation rate Qr by adjusting the drainage pump. Example 8 The apparatus shown in FIG. 7 differs from those of Examples 6 and 7 in the structure of the solid-liquid separation tank.
本装置では固液分離槽として汚泥の沈降性を利用した清
澄分離槽Tが用いられている。この清澄分離槽Tは脱窒
槽Dの外部に脱窒槽Dと連結して配置されている。槽底
部の沈降汚泥は硝化槽Nへ汚泥返送管R1を通つて返送
される。清澄分離槽Tを用いると、脱窒槽Dからの汚泥
の濃度が通常の活性汚泥による廃水処理に用いられる濃
度にほぼ近い3000〜4000m9/lのように比較
的低い場合に特に効果的である。In this device, a clarification separation tank T that utilizes the sedimentation properties of sludge is used as a solid-liquid separation tank. This clarification separation tank T is arranged outside the denitrification tank D in connection with the denitrification tank D. The settled sludge at the bottom of the tank is returned to the nitrification tank N through the sludge return pipe R1. The use of the clarification separation tank T is particularly effective when the concentration of sludge from the denitrification tank D is relatively low, such as 3000 to 4000 m9/l, which is approximately the concentration used in wastewater treatment with normal activated sludge.
しかし、汚泥濃度が10000m9/lであつても汚泥
示標SVI(SludgeVOlumeIndex)が
50前後という低い場合には効果的に固液が分離される
。また、上記清澄分離槽Tの代りに、第8図に示すよう
に、いわゆる浮上分離槽T1を用いることも推奨される
。However, even if the sludge concentration is 10,000 m9/l, if the sludge index SVI (SludgeVOlumeIndex) is as low as about 50, solid and liquid can be effectively separated. Furthermore, instead of the clarification tank T, it is also recommended to use a so-called flotation tank T1, as shown in FIG.
槽内の固液混合液に圧縮空気を吹き込むと、分子状とな
つて溶け込んだ気泡が大気圧下て減圧されて微粒子状と
なりその浮上刃によつて汚泥フロックが浮上濃縮分離さ
れる。このような浮上濃縮処理によると短時間で固液分
離ができ、しかも汚泥には微粒子状の気泡が多数混入す
るため、汚泥は濃縮されやすい性状に変化する利点があ
る。このように、本発明では流入廃水を活性汚泥の吸着
特性の強い脱窒工程へ直接供給する方式を採用し、しか
も廃水−汚泥混合液の内部循環速度Qrを調整すること
によつて脱窒工程での嫌気的混合液と硝化工程での好気
的混合液とを完全に稀釈混合した。When compressed air is blown into the solid-liquid mixture in the tank, the bubbles that have dissolved into molecules are reduced to atmospheric pressure and become fine particles, with the floating blades floating and concentrating the sludge flocs. Such flotation concentration treatment has the advantage that solid-liquid separation can be carried out in a short period of time, and that the sludge changes into a state that is easily concentrated, since many fine particles of air bubbles are mixed into the sludge. In this way, the present invention adopts a method of directly supplying inflow wastewater to the denitrification process where activated sludge has strong adsorption properties, and furthermore, by adjusting the internal circulation rate Qr of the wastewater-sludge mixture, the denitrification process can be improved. The anaerobic mixture in the nitrification process and the aerobic mixture in the nitrification process were completely diluted and mixed.
その結果炭素源を補填することなく、したがつて著しく
安価に廃水中の窒素を90%以上、CODc,,COD
Mnを共に90%以上除去できる。なお、CODc,,
CODMn及びBOD(生物学的酸素要求量)の関係は
一般にCODc,<BOD<CODMnであるので、本
案ではBODを特に測定しなかつた。また、本発明は汚
泥の引き抜きを行わないいわゆる全酸化処理方式である
ので、余剰汚泥が出ない。As a result, more than 90% of nitrogen in wastewater can be removed without supplementing carbon sources and therefore at a significantly lower cost.
Both Mn can be removed by 90% or more. In addition, CODc,,
Since the relationship between CODMn and BOD (biological oxygen demand) is generally CODc,<BOD<CODMn, BOD was not particularly measured in this study. Furthermore, since the present invention is a so-called total oxidation treatment method in which sludge is not drawn out, no excess sludge is produced.
その結果、汚泥処理費用が不要である。また、活性汚泥
を5000〜30000m9/lの広範囲の濃度、特に
8000〜15000m9/lの高濃度て使用するため
、廃水処理速度を上げることができる。それ故、プラン
トを小型化することができ、プラント設置面積が小さく
てすむ。さらに、活性汚泥を高濃度で使用できるため、
廃水の水質変動に対応できる。As a result, sludge treatment costs are unnecessary. Furthermore, since activated sludge is used at a wide range of concentration from 5000 to 30000 m9/l, particularly at a high concentration from 8000 to 15000 m9/l, the wastewater treatment rate can be increased. Therefore, the plant can be downsized and the installation area of the plant can be small. Furthermore, activated sludge can be used in high concentrations;
Can respond to fluctuations in wastewater quality.
第1図〜第4図は本発明の廃水処理法の実施例で、第1
図は硝酸態窒素の生成速度とアンモニア態窒素の減少速
度との関係、第2図は高濃度の活性汚泥を用いた場合の
廃水の硝化試験成績、第3図はCODc,−SS負荷と
脱窒速度との関係、第4図は濃度の活性汚泥を用いた場
合の脱窒試験成績を示し、第5図は本発明の廃水処理装
置の1実施例の模式図、第6図は廃水処理装置の第2実
施例で、aはその模式図、bは固液分離槽1の部分切欠
側面図、第7図及び第8図はそれぞれ第3及び第4実施
例の模式図てある。
N・・・硝化槽、D・・・脱窒槽、S,I,T・・・固
液分離槽、R・・・返送管、Pl,P2,33・・・ポ
ンプ。Figures 1 to 4 show examples of the wastewater treatment method of the present invention.
Figure 2 shows the relationship between the production rate of nitrate nitrogen and the rate of decrease in ammonia nitrogen, Figure 2 shows the results of a nitrification test of wastewater using high-concentration activated sludge, and Figure 3 shows the relationship between CODc, -SS loading and depletion. Fig. 4 shows the denitrification test results when activated sludge with a certain concentration is used, Fig. 5 is a schematic diagram of one embodiment of the wastewater treatment equipment of the present invention, and Fig. 6 shows the relationship with the nitrification rate. In the second embodiment of the apparatus, a is a schematic diagram thereof, b is a partially cutaway side view of the solid-liquid separation tank 1, and FIGS. 7 and 8 are schematic diagrams of the third and fourth embodiments, respectively. N...Nitrification tank, D...Denitrification tank, S, I, T...Solid-liquid separation tank, R...Return pipe, Pl, P2, 33...Pump.
Claims (1)
槽の廃水−汚泥混合液流入端に廃水−汚泥混合液流出端
が接続されかつ脱窒槽の廃水−汚泥混合液の循環用バル
ブ付き流入端を有する硝化槽と、前記脱窒槽に接続され
た固液分離槽と、を具備し、上記脱窒槽と硝化槽とを連
結する廃水−汚泥混合液循環管にポンプを連結し該脱窒
槽の廃水−汚泥混合液が所定循環速度で循環し、上記固
液分離槽で分離された汚泥は、上記硝化槽へ通じる汚泥
返送管により、もしくは上記脱窒槽の廃水−汚泥混合液
と共に上記脱窒槽と硝化槽とを連結する廃水−汚泥混合
液循環管により、上記硝化槽へ返送されることを特徴と
する余剰汚泥の出ない全酸化処理型廃水処理装置。 2 前記固液分離槽として、脱窒槽内液面から所定深さ
の底部にフィルターを取りつけかつ上部に処理水放流口
を設けた固液分離槽を使用し、脱窒槽内液面と上記フィ
ルターの位置との圧力差によつて脱窒槽内混合液をフィ
ルターを通して固液分離槽内に浸入させ、浸入した処理
水を上記処理水放流口から流出させるよう構成した特許
請求の範囲第1項に記載の廃水処理装置。 3 前記固液分離槽として、壁面穴を通して脱窒槽に連
通する固液分離槽の内側に固定され槽外に導通する中空
洞の筒と、この筒に回転自在に取りつけられた回転ドラ
ムと、回転ドラム駆動モーターと、回転ドラム表面に取
りつけられたフィルターと、上記筒の中空洞を通つて回
転ドラム内に吸込口をもち、槽外に吐水口をもつよう配
設された排水パイプと、上記筒の中空洞を通つてドラム
内上方部に洗浄水噴射孔をもつよう配設された洗浄水供
給パイプと、を具備した固液分離槽を脱窒槽内に配設し
、上記排水パイプによつて脱窒槽内の混合液をフィルタ
ーを通して吸引するとともに洗浄水噴射孔から洗浄水を
液面上に露出されている部分のフィルター裏面に吹きつ
けてフィルター表面から活性汚泥を脱窒槽内混合液に戻
すよう構成した特許請求の範囲第1項記載の廃水処理装
置。[Scope of Claims] 1. A denitrification tank having a wastewater inflow end with a valve, and a wastewater-sludge mixture outflow end connected to the wastewater-sludge mixture inflow end of the denitrification tank, and a wastewater-sludge mixture outflow end of the denitrification tank. A nitrification tank having an inflow end with a circulation valve and a solid-liquid separation tank connected to the denitrification tank, and a pump connected to a wastewater-sludge mixture circulation pipe connecting the denitrification tank and the nitrification tank. The wastewater-sludge mixture in the denitrification tank is circulated at a predetermined circulation speed, and the sludge separated in the solid-liquid separation tank is transferred to the sludge return pipe leading to the nitrification tank or the wastewater-sludge mixture in the denitrification tank. A total oxidation treatment type wastewater treatment device that does not produce excess sludge, characterized in that the wastewater-sludge mixture is returned to the nitrification tank through a wastewater-sludge mixture circulation pipe that connects the denitrification tank and the nitrification tank. 2 As the solid-liquid separation tank, use a solid-liquid separation tank in which a filter is attached to the bottom at a predetermined depth from the liquid level in the denitrification tank and a treated water outlet is provided at the top, so that the liquid level in the denitrification tank and the above-mentioned filter are According to claim 1, the mixed liquid in the denitrification tank is allowed to enter the solid-liquid separation tank through a filter due to the pressure difference between the denitrification tank and the denitrification tank, and the treated water that has entered the tank is made to flow out from the treated water outlet. wastewater treatment equipment. 3 The solid-liquid separation tank includes a hollow cylinder fixed inside the solid-liquid separation tank and communicating with the denitrification tank through a wall hole and communicating with the outside of the tank, a rotating drum rotatably attached to the cylinder, and a rotating drum that is rotatably attached to the cylinder. a drum drive motor, a filter attached to the surface of the rotating drum, a drainage pipe arranged to pass through the hollow cavity of the cylinder and have a suction port inside the rotating drum and a water outlet outside the tank; A solid-liquid separation tank equipped with a washing water supply pipe arranged to have a washing water injection hole in the upper part of the drum through a hollow cavity is disposed in the denitrification tank, and The mixed liquid in the denitrification tank is sucked through the filter, and the cleaning water is sprayed from the cleaning water injection hole onto the back of the filter, which is exposed above the liquid surface, and the activated sludge is returned from the filter surface to the mixed liquid in the denitrification tank. A wastewater treatment apparatus according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20237582A JPS6048239B2 (en) | 1982-11-18 | 1982-11-18 | wastewater treatment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20237582A JPS6048239B2 (en) | 1982-11-18 | 1982-11-18 | wastewater treatment equipment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1458076A Division JPS5298356A (en) | 1976-02-12 | 1976-02-12 | Method of and apparatus for treating waste water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58170596A JPS58170596A (en) | 1983-10-07 |
JPS6048239B2 true JPS6048239B2 (en) | 1985-10-25 |
Family
ID=16456450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20237582A Expired JPS6048239B2 (en) | 1982-11-18 | 1982-11-18 | wastewater treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6048239B2 (en) |
-
1982
- 1982-11-18 JP JP20237582A patent/JPS6048239B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS58170596A (en) | 1983-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108046518B (en) | Enhanced nitrogen and phosphorus removal device and method for low-carbon source sewage | |
CN206069622U (en) | Biological sewage treatment device | |
CN106430845A (en) | Kitchen garbage wastewater treatment apparatus | |
CN108585385A (en) | A kind of MBBR sewage disposal systems and treatment process | |
CN113845218A (en) | Multistage AO sewage treatment system and process thereof | |
CN101746931A (en) | Denitrification dephosphorization biological treatment and filtration integral sewage treatment system and method thereof | |
CN201598224U (en) | Biological nitrogen and phosphorus removal treatment and filter integrated sewage treatment system | |
CN107265791A (en) | Kitchen garbage slurry fermentation waste water processing unit | |
CN216549815U (en) | Internal circulation short-cut denitrification filter tank | |
CN208732851U (en) | A kind of MBBR high standard sewage disposal system | |
KR19980083279A (en) | Treatment method of high concentration organic wastewater and nutrients using immersion type microfiltration membrane-activated sludge process | |
CN107973488B (en) | Method for denitrification treatment of ammonia nitrogen wastewater | |
KR100889377B1 (en) | A wastewater transaction appratus | |
CN107337321A (en) | Anaerobic digestion of kitchen wastes wastewater treatment equipment | |
CN108033654B (en) | Membrane printing wastewater treatment system and method | |
JPH1034185A (en) | Drainage treatment method | |
CN107311403A (en) | Kitchen garbage fermentation waste water processing unit | |
Charmot‐Charbonnel et al. | Nitrification of high strength ammonium wastewater in an aerated submerged fixed bed | |
KR100709456B1 (en) | Waste water disposal plant and waste water disposal method | |
Bodzek et al. | Biomembrane wastewater treatment by activated sludge method | |
JPS6048239B2 (en) | wastewater treatment equipment | |
JP3807945B2 (en) | Method and apparatus for treating organic wastewater | |
CN207259331U (en) | A kind of kitchen garbage slurry fermentation waste water processing unit | |
KR100655471B1 (en) | Apparatus for wastewater treatment using up-flow bio reactor and membrane filter | |
JP3325474B2 (en) | Sewage treatment method and circulating nitrification denitrification method |