JPS6047969B2 - Guided wireless mobile object position detection method - Google Patents
Guided wireless mobile object position detection methodInfo
- Publication number
- JPS6047969B2 JPS6047969B2 JP8603978A JP8603978A JPS6047969B2 JP S6047969 B2 JPS6047969 B2 JP S6047969B2 JP 8603978 A JP8603978 A JP 8603978A JP 8603978 A JP8603978 A JP 8603978A JP S6047969 B2 JPS6047969 B2 JP S6047969B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- moving object
- parallel lines
- phase
- antennas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
- Train Traffic Observation, Control, And Security (AREA)
Description
【発明の詳細な説明】
本発明は誘導無線式移動体位置検出方法の改良”に関
し、特に1対の交差式平行線路と移動体上のアンテナと
の結合によつてアンテナに受信された信号の位相の変化
から移動体の相対番地を検出する誘導無線式移動体位置
検出方法の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to ``improvement of a method for detecting the location of a moving object using guided radio,'' and particularly relates to an improved method for detecting the position of a moving object using guided radio, and in particular, the present invention relates to an improved method for detecting the position of a moving object using guided radio, and in particular, the present invention relates to an improved method for detecting the position of a moving object using guided radio. The present invention relates to an improvement in a method for detecting the position of a moving body using guided radio, which detects the relative address of a moving body from a change in phase.
誘導無線式移動体位置検出方法には複数対の交差式平
行線路の交差ピッチを種々変化させてアンテナに誘導さ
れる信号から番地コードを生成し絶対番地を検出する絶
対番地方式と一定周期て交差する1対の交差式平行線路
からアンテナに誘導される信号が基準点から周期的に位
相変化を繰返して相対番地を検出する相対番地方式とが
ある。Inductive wireless mobile object position detection methods include the absolute address method, which detects the absolute address by varying the intersecting pitch of multiple pairs of intersecting parallel lines to generate an address code from the signal guided by the antenna, and the absolute address method, which detects the absolute address by varying the intersecting pitch of multiple pairs of intersecting parallel lines. There is a relative address method in which a signal guided to an antenna from a pair of crossed parallel lines repeats periodic phase changes from a reference point to detect a relative address.
絶対番地方式は停電後電源か再投入されても直ちに正確
な位置を検出できるが対数が多いので線路が太くなり設
備が大掛りとなる。また相対番地方式は対数が1つであ
るので例えばコンテナクレーンの如き移動体のようにコ
ンクリート路面内に埋設するには有利であるが、停電後
電源が再投入された場合には移動体を基準点に位置させ
て位置補正した上で正確な位置を算出する必要があるい
で取扱が不便であつた。更に、1対の交差式平行線路の
交差ピッチを大きくすると、位置検出の分解能が低下し
、逆に交差ピッチを小さくすると、アンテナとの結合が
小さくなるためアンテナと線路との間隔を小さくしない
と信号レベルが低下しSN比も低下する欠点があつた。
本発明の目的は、大きな交差ピッチでも位置検出を精度
よく行うことができる上に停電後電源が再投入されても
移動体を基準点に位置せしめることなく直ちに位置補正
することができる相対番地方式による誘導無線式移動体
位置検出方法を提供することにある。The absolute location system can detect the exact position immediately even if the power is turned on again after a power outage, but because there are many logarithms, the line becomes thick and the equipment becomes large-scale. Also, since the relative number and land type has one logarithm, it is advantageous for burying a moving object such as a container crane in a concrete road surface, but when the power is turned back on after a power outage, the moving object becomes the reference point. It is inconvenient to use because it is necessary to calculate the exact position after positioning it at a point and correcting the position. Furthermore, if the crossing pitch of a pair of crossed parallel lines is increased, the resolution of position detection will decrease, and conversely, if the crossing pitch is decreased, the coupling with the antenna will be reduced, so it is necessary to reduce the distance between the antenna and the line. It had the disadvantage that the signal level decreased and the SN ratio also decreased.
The purpose of the present invention is to provide a relative address system that can perform position detection with high accuracy even with large intersecting pitches, and that can immediately correct the position without having to position the moving object at the reference point even if the power is turned on again after a power outage. An object of the present invention is to provide a method for detecting the position of a moving object using guided wireless.
本発明の実施例を図面を参照して詳細に説明すると、第
1図は本発明の方法の一例を系統的に示し、図示しない
地上発振器によつてそれぞれ異なる周波数例えば52.
8K?及び40KHZでそれぞれ励振される主交差式平
行線路10と位置補正用交差式平行線路12とが移動体
の軌道に沿つて設けられている。Embodiments of the invention will be described in detail with reference to the drawings. FIG. 1 systematically shows an example of the method of the invention, in which different frequencies, for example 52.
8K? A main cross-type parallel line 10 and a cross-type parallel line 12 for position correction, each excited at 40 KHZ, are provided along the trajectory of the moving body.
主交差式平行線路10は1〜数Cmの短い一定周期(ピ
ッチ)Pで交差点10aを有し、一方位置補正用交差式
平行線路12は数百mの如き長い周期P″で交差点10
aに対しすべて間隔(電気角度)αをずらせて交差点1
2aを有する。移動体上には2つのアンテナ14,15
が交差式平行線路10,12に沿つてずらせて配置して
搭載され図示の実施例ではこれらのアンテナは主交差式
平行線路10に対し112Pすらせてある。The main crossing type parallel line 10 has intersections 10a at a short constant period (pitch) P of 1 to several cm, while the position correction crossing type parallel line 12 has intersections 10a at a long period P'' of several hundred meters.
Intersection 1 by shifting the interval (electrical angle) α from a
It has 2a. There are two antennas 14 and 15 on the moving body.
are mounted in a staggered arrangement along the cross-parallel lines 10, 12, and in the illustrated embodiment these antennas are even 112P apart from the main cross-parallel line 10.
従つて移動体と共にアンテナ14,15が移動すると、
両アンテナには主交差式平行線路10から900位相が
ずれた第2図に示す如き信号1a,16b,18aが受
信される。尚、位置補正用交差式平行線路12からも極
めて小さい角度で位相のずれた信号16b,18bが受
信される。アンテナ14,15はそれぞれ分波器20A
,20B及び21A,21Bに接続され、分波器20A
,21Aはそれぞれ主交差式平行線路10からアンテナ
14,15に結合された信号16a,18aをろ波し、
一方分波器20B,21Bはそれぞれ位置補正用交差式
平行線路12からアンテナ14,15に結合された信号
16b,18bをろ波する。Therefore, when the antennas 14 and 15 move together with the moving object,
Both antennas receive signals 1a, 16b, 18a as shown in FIG. 2, which are 900 degrees out of phase from the main crossed parallel line 10. Note that signals 16b and 18b whose phases are shifted by an extremely small angle are also received from the position correction crossing parallel line 12. The antennas 14 and 15 each have a duplexer 20A.
, 20B and 21A, 21B, and the duplexer 20A
, 21A filter the signals 16a, 18a coupled from the main crossing parallel line 10 to the antennas 14, 15, respectively;
On the other hand, the branching filters 20B and 21B filter the signals 16b and 18b coupled to the antennas 14 and 15 from the crossed parallel line 12 for position correction, respectively.
信号16aは直接位置検出用の第1の加算回路22Aに
入力されると共に1801移相器24Aを経て位置検出
用の第2の加算回路26Aに入力され、また信号18a
は90算位相器28Aを経て第1の加算回路22Aと第
2の加算回路26Aに入力される。The signal 16a is directly input to the first addition circuit 22A for position detection, and is also input to the second addition circuit 26A for position detection via the 1801 phase shifter 24A.
is inputted to the first addition circuit 22A and the second addition circuit 26A via the 90 phase shifter 28A.
第1と第2の加算回路22A,26Aの出力信号はその
位相差を検出する位置検出用位相差検出器30Aに供給
される。今、アンテナ14,15が第2図に示す位置に
ある時アンテナ14は線路と結合しないのて第1の加算
回路22Aの合成信号V22はアンテナ15の信号■1
8aを900移相した第3図Aに示すベクトルぐ.で表
わされ、また第2の加算回路26Aの合成信号■ぉも同
じく第3図Aに示すようにぐ9と同じくベクトルぐ,6
で表わされる。The output signals of the first and second adder circuits 22A and 26A are supplied to a position detection phase difference detector 30A that detects the phase difference between them. Now, when the antennas 14 and 15 are in the position shown in FIG.
The vector shown in FIG. 3A is obtained by shifting the phase of 8a by 900. The composite signal of the second adder circuit 26A is also represented by the vector G,6 as shown in FIG. 3A.
It is expressed as
アンテナ14,15がこの位置から第2図矢印方向に1
14P移動すると、第1と第2の加算回路の合成信号立
,2,ぐ,6はそれぞれ第3図Bに示すようになる。こ
のようにアンテナ14,15が第2図の矢印方向に移動
すると、ぐ2は反時計方向に、Q26・は時計方向に回
転するベクトルとなり、その位相差は第4図に示すよう
に主交差式平行線路10の交差区間(隣合う交差点10
aの間)で00から360間まて変化する。従つて、位
相差検出器30Aで検出された位相差に相応する角度信
号から交差区間内の移動体の位置を検出することかてき
る。一方信号16b,18bも同様の方法で移相されて
位置補正用の第1と第2の加算回路22B,26Bで合
成されて位相差検出器30Bて位置補ノ正用角度信号を
発生する。The antennas 14 and 15 are moved 1 from this position in the direction of the arrow in Figure 2.
After moving by 14P, the composite signals R, 2, G, and 6 of the first and second adder circuits become as shown in FIG. 3B, respectively. When the antennas 14 and 15 move in the direction of the arrow in Figure 2 in this way, the vector G2 rotates counterclockwise and the vector Q26 rotates clockwise, and their phase difference is caused by the main intersection as shown in Figure 4. Intersection section of parallel lines 10 (adjacent intersection 10
a) and varies between 00 and 360. Therefore, it is possible to detect the position of the moving object within the intersection section from the angle signal corresponding to the phase difference detected by the phase difference detector 30A. On the other hand, the signals 16b and 18b are also phase-shifted in a similar manner and are combined by the first and second adder circuits 22B and 26B for position correction, and the phase difference detector 30B generates an angle signal for position correction.
尚、第1図において符号24B及び28Bはそれぞれ1
80図移相器24A及び90び移相器28Aと同様の移
相器てある。既にのべたように位置補正用交差式平行線
路12の交差点12aは各補正点毎に主交差式平行線路
10の交差点10aに対し異なる角度でずらせてある。
第5図はその一例を示し、2300フィート(約690
7T1.)の線路において8ケ所の補正点を設け各補正
点毎に表の上段のように交差点10a,12a間の距離
をすらせると、位置補正用角度信号の角度がOの時の位
置検出用角度信号の角度が22.5O,67.5検・・
337.5角と変化しそれぞれの補正点の絶対番地は基
準点から異なる位置、例えば100フィート (30T
L),400フィート (120rrL),・・・22
00フィート(6607TL)と定めてその位置を知る
ことができる。第1図に示す補正位置検出器32はこの
位置補正用角度信号の角度がOの時の位置検出用角度信
号の角度、即ち補正位置(絶対番地)を検出するための
ものてある。本発明によれば、上記のように、相対番地
を検出するに当つて交差式平行線路の交差区間内でも更
に移動体の位置を検出することができるので検出精度が
著しく向上し、また停電後電源が再投入された場合でも
補正点で絶対番地を知ることができるので移動体を基準
点に戻す必要がなく取扱が極めて容易である。In addition, in FIG. 1, the symbols 24B and 28B each represent 1.
80 shows phase shifters similar to phase shifters 24A and 90 and phase shifter 28A. As already mentioned, the intersections 12a of the position correction crossing parallel lines 12 are shifted at different angles from the intersections 10a of the main crossing parallel lines 10 for each correction point.
Figure 5 shows an example, with a distance of 2,300 feet (about 690 feet)
7T1. ) on the track, and if the distance between the intersections 10a and 12a is decreased for each correction point as shown in the upper row of the table, the angle for position detection when the angle of the angle signal for position correction is O. The angle of the signal is 22.5O, 67.5°...
337.5 angles, and the absolute address of each correction point is a different position from the reference point, for example, 100 feet (30T
L), 400 feet (120rrL),...22
00 feet (6607TL) and know its location. The correction position detector 32 shown in FIG. 1 is for detecting the angle of the position detection angle signal when the angle of the position correction angle signal is O, that is, the correction position (absolute address). According to the present invention, as described above, when detecting a relative address, the position of a moving object can be further detected even within the crossing section of crossed parallel lines, so the detection accuracy is significantly improved. Even if the power is turned on again, the absolute address can be known at the correction point, so there is no need to return the moving object to the reference point, making handling extremely easy.
第1図は本発明の一例を示す概略系統図、第2図は2つ
のアンテナの位置と受信信号との関係を示す図、第3図
A,Bは第1と第2の合成信号のベクトル図、第4図は
第1と第2の合成信号の位相差と線路位置との関係を示
す図、第5図は主交差式平行線路と位置補正用交差式平
行線路との交差点位置のずれ、角度信号の位相差及び絶
対位置を示す表である。
10・・・・・主交差式平行線路、12・・・・位置補
正用交差式平行線路、14,15・・・・・・アンテナ
、16a,16b,18a,18b・・・・・・受信信
号、22A,22B,26A,26B・・・・・・第1
と第2の加算回路、24A,24B,28A,28B・
・・・移相器、V22,V26・・・・・・第1と第2
の合成信号。Figure 1 is a schematic system diagram showing an example of the present invention, Figure 2 is a diagram showing the relationship between the positions of two antennas and received signals, and Figures A and B are vectors of the first and second combined signals. Figure 4 shows the relationship between the phase difference between the first and second composite signals and the line position, and Figure 5 shows the deviation of the intersection position between the main crossing parallel line and the position correction crossing parallel line. , is a table showing phase differences and absolute positions of angle signals. 10... Main crossing parallel lines, 12... Crossing parallel lines for position correction, 14, 15... Antenna, 16a, 16b, 18a, 18b... Reception Signal, 22A, 22B, 26A, 26B...1st
and the second adder circuit, 24A, 24B, 28A, 28B.
...Phase shifter, V22, V26...First and second
composite signal.
Claims (1)
合によつてアンテナに受信された信号の位相の変化から
移動体の相対番地を検出する誘導無線式移動体位置検出
方法において、前記1対の交差式平行線路に沿つて2つ
のアンテナをずらせて配置し、これらのアンテナからの
受信信号の少なくとも1つを第1の角度で移相した後両
者を合成して第1の合成信号を発生し、またこれらのア
ンテナからの受信信号の少なくとも1つを第2の角度で
移相した後両者を合成して第2の合成信号を発生し、こ
れらの第1と第2の合成信号は前記移動体が前記交差式
平行線路に沿つて移動する際逆方向に位相回転するよう
に設定されてこれらの第1と第2の合成信号の位相差に
相応する角度信号から前記交差式平行線路の交差区間内
の移動体の位置を検出することを特徴とする誘導無線式
移動体位置検出方法。 2 1対の交差式平行線路と移動体上のアンテナとの結
合によつてアンテナに受信された信号の位相の変化から
移動体の相対番地を検出する誘導無線式移動体位置検出
方法において、前記1対の交差式平行線路に沿つて2つ
のアンテナをずらせて配置し、これらのアンテナからの
受信信号の少なくとも1つを第1の角度で移相した後両
者を合成して第1の合成信号を発生し、またこれらのア
ンテナからの受信信号の少なくとも1つを第2の角度で
移相した後両者を合成して第2の合成信号を発生し、こ
れらの第1と第2の合成信号は前記移動体が前記交差式
平行線路に沿つて移動する際逆方向に位相回転するよう
に設定されてこれらの第1と第2の合成信号の位相差に
相応する角度信号から前記交差式平行線路の交差区間内
の移動体の位置を検出し、更に前記交差式平行線路の所
定間隔毎にその交差点に対し相互に異なる角度間隔で交
差点を有し前記交差式平行線路が励振される周波数と異
なる周波数で励振される補正用交差式平行線路を前記交
差式平行線路に平行に布設し、前記補正用交差式平行線
路から前記2つのアンテナに結合された補正用受信信号
を前記受信信号から分波した後前記受信信号と同様の処
理を経て位置補正用角度信号を発生し、前記位置検出用
角度信号と前記位置補正用角度信号との位相差から移動
体の絶対番地を検出することを特徴とする誘導無線式移
動体位置検出方法。[Claims] 1. An inductive wireless moving object that detects the relative address of a moving object from a change in the phase of a signal received by an antenna by coupling a pair of crossed parallel lines with an antenna on the moving object. In the position detection method, two antennas are arranged in a staggered manner along the pair of crossed parallel lines, and at least one of the received signals from these antennas is phase-shifted by a first angle and then both are combined. to generate a first composite signal, and to phase-shift at least one of the received signals from these antennas by a second angle and then combine them to generate a second composite signal; and a second composite signal are set to rotate in phase in opposite directions when the moving body moves along the intersecting parallel tracks, and an angle corresponding to the phase difference between the first and second composite signals is set. A method for detecting the position of a moving object using guided radio, characterized in that the position of the moving object within the crossing section of the crossing parallel lines is detected from the signal. 2. In the guided radio moving object position detection method for detecting the relative address of a moving object from a change in the phase of a signal received by an antenna by coupling a pair of crossed parallel lines and an antenna on the moving object, Two antennas are arranged in a staggered manner along a pair of crossed parallel lines, and at least one of the signals received from these antennas is phase-shifted by a first angle, and then both are combined to produce a first composite signal. at least one of the received signals from these antennas is phase-shifted by a second angle and then combined to generate a second combined signal, and these first and second combined signals are is set so that the moving object rotates in phase in the opposite direction when moving along the crossed parallel lines, and the crossed parallel lines are calculated from an angle signal corresponding to the phase difference between the first and second composite signals. Detecting the position of a moving object within a crossing section of railway tracks, and furthermore, having intersections at predetermined intervals of the crossing parallel lines at mutually different angular intervals with respect to the crossing points, and determining the frequency at which the crossing parallel lines are excited. Correcting crossed parallel lines excited at different frequencies are laid parallel to the crossed parallel lines, and the correcting received signal coupled to the two antennas is separated from the received signal from the corrected crossed parallel line. After receiving the signal, a position correction angle signal is generated through the same processing as the received signal, and the absolute address of the moving object is detected from the phase difference between the position detection angle signal and the position correction angle signal. A guided wireless moving object position detection method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8603978A JPS6047969B2 (en) | 1978-07-17 | 1978-07-17 | Guided wireless mobile object position detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8603978A JPS6047969B2 (en) | 1978-07-17 | 1978-07-17 | Guided wireless mobile object position detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5513844A JPS5513844A (en) | 1980-01-31 |
JPS6047969B2 true JPS6047969B2 (en) | 1985-10-24 |
Family
ID=13875523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8603978A Expired JPS6047969B2 (en) | 1978-07-17 | 1978-07-17 | Guided wireless mobile object position detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6047969B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9227641B2 (en) * | 2013-05-03 | 2016-01-05 | Thales Canada Inc | Vehicle position determining system and method of using the same |
-
1978
- 1978-07-17 JP JP8603978A patent/JPS6047969B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5513844A (en) | 1980-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2472129A (en) | Radio navigation system | |
CN103248379B (en) | Small antenna auxiliary radio frequency phase correction method for monopulse track receiver of shipborne satellite communication system | |
CN104581942B (en) | Network distribution type localization method based on rotatable launching beam signal | |
EP0345836B1 (en) | System for determining the angular spin position of an object spinning about an axis | |
US3025520A (en) | Positioning determining device | |
CN101408434A (en) | Zero drift of mobile terminal and double-mould position and single-mould positioning method | |
US3842419A (en) | Passive ranging interferometer system | |
US4197542A (en) | Radio navigation system | |
JPS6047969B2 (en) | Guided wireless mobile object position detection method | |
US2476977A (en) | Radio direction finder | |
JP2916708B2 (en) | Current position measurement device for moving objects | |
US3245079A (en) | A. d. f. receiver | |
RU2110077C1 (en) | Method determining course angle and coordinates of locations of objects by radio signals of spacecraft of satellite radio navigation systems | |
US3160369A (en) | Flight path control system | |
JPS61284687A (en) | Gps navigation device | |
US3300783A (en) | Direction finding | |
JPS5469094A (en) | Inductive radio system position detecting system for mobile object | |
JPH03142389A (en) | Position measuring instrument for gps | |
JPH0450541B2 (en) | ||
RU2152049C1 (en) | Device for measuring coordinates of actuating mechanism of surface vessels | |
US2218361A (en) | Direction finder | |
JPS5460965A (en) | Inductive radio system moving object position detecting system | |
JPH0626873A (en) | Vehicle-bearing correcting apparatus | |
JPH05126930A (en) | Method for deciding position of moving robot | |
Subaşıay et al. | Beacon Based Navigation for Automized Vehicles |