JPS6047546B2 - How to process infrared imaging signals - Google Patents
How to process infrared imaging signalsInfo
- Publication number
- JPS6047546B2 JPS6047546B2 JP54167342A JP16734279A JPS6047546B2 JP S6047546 B2 JPS6047546 B2 JP S6047546B2 JP 54167342 A JP54167342 A JP 54167342A JP 16734279 A JP16734279 A JP 16734279A JP S6047546 B2 JPS6047546 B2 JP S6047546B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- sensing element
- temporary
- ccd
- infrared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003331 infrared imaging Methods 0.000 title claims description 9
- 238000000034 method Methods 0.000 title claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 238000003384 imaging method Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 101100115215 Caenorhabditis elegans cul-2 gene Proteins 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000005036 potential barrier Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- MCMSPRNYOJJPIZ-UHFFFAOYSA-N cadmium;mercury;tellurium Chemical compound [Cd]=[Te]=[Hg] MCMSPRNYOJJPIZ-UHFFFAOYSA-N 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/80—Calibration
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/20—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/67—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
- H04N25/671—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/701—Line sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/767—Horizontal readout lines, multiplexers or registers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J2005/0077—Imaging
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Radiation Pyrometers (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Description
【発明の詳細な説明】
本発明は赤外線検知装置、とくにシフトレジスタと一
体化された多素子赤外線検知装置を用いた赤外線撮像信
号の処理方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared sensing device, and more particularly to a method of processing an infrared imaging signal using a multi-element infrared sensing device integrated with a shift register.
近年開発された赤外線撮像信号の一つとして、互いに
電気的に独立した赤外線検知素子を支持基板上に一直線
上に複数個配列して固定した光電変換部と、上記赤外線
検知素子群中の各素子の光電変換機能により生じた電気
信号を時系列化して外部へ取り出すアナログシフトレジ
スタとを結合して単一ユニットとしたものがある。該シ
フトレジスタとしては通常シリコンで製した電荷転送素
子 (以下CCDと略記する)が使用される。そこでこ
のようなユニットを赤外線CCD(IRCCD)と呼ぶ
ようになつた。 上記IRCCDは当然赤外線検知素子
(以下検知素子という)とCCDの間に移送ゲート (
以下TGと略記する)電極を有している。One type of infrared imaging signal developed in recent years is a photoelectric conversion section in which a plurality of electrically independent infrared sensing elements are arranged and fixed in a straight line on a support substrate, and each element in the group of infrared sensing elements mentioned above. There is a single unit that is combined with an analog shift register that converts electrical signals generated by the photoelectric conversion function into a time series and takes them out to the outside. As the shift register, a charge transfer device (hereinafter abbreviated as CCD) made of silicon is usually used. Therefore, such a unit came to be called an infrared CCD (IRCCD). Naturally, the above IRCCD has a transfer gate (
It has an electrode (hereinafter abbreviated as TG).
とくに医学用等の比較的コントラストの低い観測対象の
温度を精密に測定するために用いるIRCCDにおいて
は信号中の不要な直流分を除去するためのゲート電極と
ドレイン領域とを上記移送用ゲートと共に具えている。
この直流分除去用のゲート電極は信号レベルのうちある
所定レベル以下の部分を切除する役割を有するものであ
る。 上記IRCCDの構造については本発明者等が特
願昭53−132825号および特願昭54−2283
時にて提案しているが、その概略を第1図の模式図を用
いて説明する。In particular, in an IRCCD used for precisely measuring the temperature of an observation target with relatively low contrast, such as a medical device, a gate electrode and a drain region are provided together with the transfer gate to remove unnecessary DC components from the signal. It is growing.
This gate electrode for removing the DC component has the role of removing a portion of the signal level below a certain predetermined level. Regarding the structure of the above IRCCD, the present inventors et al.
This method has been proposed from time to time, but its outline will be explained using the schematic diagram in FIG.
図において1は水銀カドミウムテルル(HgCdTe)
等の多元半導体からなる赤外線検知素子群で、D、、D
2、D3・・・・・・・・・Dnは各個の検知素子を示
す。2はシリコン(Si)からなるCCDを主体とする
シフトレジスタ部で、B、、B2、B3・・・・・・・
・・BnはCCD3の各ビットを示しているが、各個の
転送電極については図示していない。In the figure, 1 is mercury cadmium telluride (HgCdTe)
A group of infrared sensing elements made of multidimensional semiconductors such as D, , D
2, D3...Dn indicates each sensing element. 2 is a shift register section mainly consisting of a CCD made of silicon (Si), B, , B2, B3...
... Bn indicates each bit of the CCD 3, but each transfer electrode is not illustrated.
CCDと検知素子群1との間には入力ダイオード4、入
力調整用ゲート電極5、直流分除去用の電極を有する一
時信号蓄積ゲート電極6および移送用ゲート電極7が存
在する。これら各電極の役割は以下のとおりである。
入力調整用ゲート電極5はシフトレジスタ2へ出入口の
門戸に相当し、入力ダイオード群4からCCD3への信
号流入量の調整を行う機能を有する。An input diode 4, an input adjustment gate electrode 5, a temporary signal storage gate electrode 6 having a DC component removal electrode, and a transfer gate electrode 7 are present between the CCD and the detection element group 1. The role of each of these electrodes is as follows.
The input adjustment gate electrode 5 corresponds to an entrance/exit gate to the shift register 2, and has a function of adjusting the amount of signal flowing from the input diode group 4 to the CCD 3.
ゲート電極を通過した電荷を一時信号蓄積ゲート電極6
下に一時蓄え、つぎに所定時間後に移送用ゲート電極7
を開くと電荷と該移送用ゲート電極を通つてCCD3へ
注入される。The charge passing through the gate electrode is temporarily stored in the gate electrode 6.
The transfer gate electrode 7 is temporarily stored at the bottom and then transferred after a predetermined time.
When opened, charges are injected into the CCD 3 through the transfer gate electrode.
このとき移送用ゲート電極7の電位を、一時信号蓄積用
ゲート電極6下よりも若干電位障壁の高い空乏層がその
下にできるように選定すれば一時信号蓄積用ゲート電極
6の下に蓄えられた電荷のうち所定量の電荷が残留し、
これを越える量だけCCD3に注入されることになる。
次に図示しない直流分除去用のゲート電極に所定の電圧
を印加して残留する電荷をドレインに排出する。以上述
べた構成のIRCCDを用い上記のような動作によつて
前述のコントラストの低いい観測対象の温度分布をも充
分精密に測定できるはずであるが、光電変換素子として
用いるHgCdTeなどの光起電力形の赤外線検知素子
ては動作温度Nx近傍でのコンダクタンスGD(5Si
からなるシフトレジスタ入力部の相互コンダクタンスG
mの差が無視できないため、赤外線撮像信号を忠実に一
時信号蓄積ゲート電極6の下へ注入することができず、
ひいてはシフトレジスタ部への信号の転送効率が劣化す
ることや、各検知素子の特性のバラツキにより入射赤外
線によつて発生した電荷の差あるいは暗電流の差又は検
知素子アレイに対するコールドシールドの有効率の不均
一性などによつて生ずる信号レベルの差などによつて各
検知素子に対する信号対雑音比が悪化するとともにバラ
ツキも大きく、鮮明な信号像を得ることができないとい
う欠点があつた。At this time, if the potential of the transfer gate electrode 7 is selected so that a depletion layer with a slightly higher potential barrier than under the temporary signal storage gate electrode 6 is formed under it, the temporary signal storage gate electrode 6 can be stored under the temporary signal storage gate electrode 6. A predetermined amount of charge remains,
An amount exceeding this will be injected into the CCD 3.
Next, a predetermined voltage is applied to a gate electrode (not shown) for removing a DC component to discharge the remaining charges to the drain. By using the IRCCD with the above-described configuration and operating as described above, it should be possible to measure the temperature distribution of the observation target with low contrast with sufficient precision. The infrared sensing element has a conductance GD (5Si
The mutual conductance G of the shift register input section consisting of
Since the difference in m cannot be ignored, the infrared imaging signal cannot be faithfully injected under the temporary signal storage gate electrode 6.
As a result, the efficiency of signal transfer to the shift register section may deteriorate, the difference in charge or dark current generated by incident infrared rays due to variations in the characteristics of each sensing element, or the effectiveness of the cold shield for the sensing element array may decrease. Differences in signal levels caused by non-uniformity deteriorate the signal-to-noise ratio for each sensing element, and there is also large variation, making it impossible to obtain a clear signal image.
本発明は上記各検知素の特性バラツキ等を補正して鮮明
な信号像を得ることができるIRCCDの信号処理方法
を提供するもので、その要旨とするところは、複数の赤
外線検知素子の光電変換信号と、ある基準値から各検知
素子固有の特性値を差引いた逆転信号を記憶したメモリ
からの信号とを蓄積する一時信号蓄積領域と電荷転送装
置とを移送ゲートを介して配設し、前記光電変換信号を
前記一時信号蓄積領域に導入する一方、前記メモリから
の逆転信号を前記電荷転送装置の所望ビットに導いた後
移送ゲートを介して前記一時信号蓄積領域に導入して、
光電変換信号と逆転信号を合成し、該合成信号のうち有
効信号を再び移送ゲートを介して電荷転送装置に導き、
順次有効信号のみを出力するようにしたものである。The present invention provides an IRCCD signal processing method that can obtain a clear signal image by correcting the characteristic variations of each of the above-mentioned sensing elements. A temporary signal storage region for storing a signal and a signal from a memory storing a reversal signal obtained by subtracting a characteristic value specific to each sensing element from a certain reference value and a charge transfer device are disposed via a transfer gate, introducing a photoelectric conversion signal into the temporary signal storage area, while introducing an inversion signal from the memory to a desired bit of the charge transfer device and then into the temporary signal storage area via a transfer gate;
combining the photoelectric conversion signal and the inversion signal, and guiding the effective signal of the combined signal to the charge transfer device via the transfer gate again;
It is designed to sequentially output only valid signals.
以下本発明の実施例について第2図および第3図を参照
しながら説明する。Embodiments of the present invention will be described below with reference to FIGS. 2 and 3.
なお各図において同等機能を示す部分には同一符号を付
して説明する。第2図は本発明の赤外線撮像信号の処理
装置の構成を示す図であり、第3図aは逆転信号を説明
する図、第3図bは各検知素子の対象信号受光時の信号
発生量を示す図、第3図cは第3図aに示す逆転信号T
。In addition, in each figure, the same reference numerals are given to the parts showing equivalent functions. FIG. 2 is a diagram showing the configuration of the infrared imaging signal processing device of the present invention, FIG. 3 a is a diagram illustrating a reversal signal, and FIG. FIG. 3c is a diagram showing the reversal signal T shown in FIG. 3a.
.
−(μIPO+Ni)と第3図bに示す各検知素子の信
号発生量μ,P,+Niとを合成した時の一時信号蓄積
領域下の信号量を説明する図である。第2図に示したメ
モリMにはIRCCDの特に赤外線検知素子1(D1〜
D。-(μIPO+Ni) and the signal generation amount μ, P, +Ni of each detection element shown in FIG. 3b are combined to explain the signal amount under the temporary signal accumulation region. The memory M shown in FIG.
D.
)の個々の特性の不均一性によつて生ずる信号レベルが
支配的となる値である(μ,PO+N、)と所定の値T
。との差(TO一(μ,PO+N,))に基づく逆転信
号をあらかじめ記憶しておく。ここでN,は各検知素子
の暗電流等の雑音成分で、各検知素子ごとに一般にバラ
ツキを有しており、またμ,は各検知素子の光電変換効
率を示し、POは基準光源からの均一な赤外線パワーを
示している。すなわち、この記憶させておくべき逆転信
号は各検知素子D1〜Dnに均一な赤外線パワーPOを
照射したときの各検知素子D,からの出力を入力ダイオ
ード4を通じ、一時信号蓄積領域6および移送ゲートT
Gを通してCCDの各検知素子に対応するビットである
Bl,B2,・・・・Bnに入力し、この信号を出力ゲ
ート美を通してMOSダイオードの出力端子0UTから
順次出力した値(μ,PO+NOと基準値T。との差を
順次記憶させておく。ここでT。は、対象物を実際に測
定する場合の背景信号値に近い値に設定することにより
正確な測定が実現できる。またμ,POは各検知素子D
1が基準となる赤外線パワーPOを光電変換したときの
信号量である。次にこのようなメモリMを有する赤外線
撮像装置の動作について説明する。) is the dominant value of the signal level caused by the non-uniformity of the individual characteristics of (μ, PO+N, ) and the predetermined value T
. A reversal signal based on the difference (TO - (μ, PO + N, )) is stored in advance. Here, N, is a noise component such as dark current of each sensing element, which generally varies depending on each sensing element, μ, represents the photoelectric conversion efficiency of each sensing element, and PO is the noise component from the reference light source. Showing uniform infrared power. That is, this reversal signal to be stored is generated by inputting the output from each sensing element D when uniform infrared power PO is irradiated to each sensing element D1 to Dn through the input diode 4 to the temporary signal storage area 6 and the transfer gate. T
The values (μ, PO+NO and reference The difference from the value T. is sequentially stored.Here, accurate measurement can be achieved by setting T. to a value close to the background signal value when actually measuring the object.Also, μ, PO is each sensing element D
1 is the signal amount when the reference infrared power PO is photoelectrically converted. Next, the operation of an infrared imaging device having such a memory M will be explained.
各検知素子Dl,D2,・・・・Dn(D,)には撮像
対象物からの赤外線Pl,P2,・・・・Pピ・・・・
・・Pnがそれぞれの検知素子Diに入射する。Each detection element Dl, D2,...Dn (D,) receives infrared rays Pl, P2,...Pp... from the object to be imaged.
...Pn enters each sensing element Di.
この入射によつて各検知素子Diて光電変換された信号
μ,Piとそれぞれの検知素子Diで光電変換されてい
る期間中に発生した暗電流やリーク電流による各検知素
子特有の雑音信号N,が発生する。これらの和の信号μ
IP,+N,が入力ダイオード群4を通り入力ゲート1
Gを介して各検知素子D,に対応した一時信号蓄積領域
6に導入される。一方前記メモリMに記憶させていた各
検知素子D,に対応した逆転信号T。一(μ,PO+N
,をD/A変換器および増幅器M2を通つて、CCDへ
の信号入力部1Sおよび入力ゲートIGl,IG2を通
してCCDのクロックφ1〜φ4の印加によつて順次転
送し、メモリMの各検知素子D1に対応した逆転信号T
。−(μ,PO+N,)がCCDの所定ビットの、本実
施例ではφ3電極の位置へ転送された時点で、移送ゲー
トTGに電圧を印加して一時信号蓄積領域6にそれぞれ
導入する。このとき一時信号蓄積領域6のゲートSG下
には深い電位の井戸すなわち空乏層を形成しておくこと
が必要である。以上のような操作によつて各検知素子D
,で発生した撮像信号電荷と各検知素子Diに対応した
逆転信号に基づく信号電荷が一時信号蓄積領域6下で合
成される。Signals μ, Pi photoelectrically converted by each sensing element Di due to this incidence and noise signals N, peculiar to each sensing element due to dark current and leakage current generated during the period of photoelectric conversion by each sensing element Di, occurs. The signal μ of these sums
IP, +N, passes through input diode group 4 and input gate 1
The signal is introduced into the temporary signal storage region 6 corresponding to each sensing element D through the signal G. On the other hand, a reversal signal T corresponding to each sensing element D stored in the memory M. One (μ, PO+N
, through the D/A converter and amplifier M2, are sequentially transferred to the CCD by applying clocks φ1 to φ4 of the CCD through the signal input section 1S and input gates IGl and IG2, and each sensing element D1 of the memory M is Reverse signal T corresponding to
. -(μ, PO+N,) is transferred to the position of the φ3 electrode of a predetermined bit of the CCD, in this embodiment, a voltage is applied to the transfer gate TG and introduced into the temporary signal storage region 6, respectively. At this time, it is necessary to form a deep potential well, that is, a depletion layer, under the gate SG of the temporary signal storage region 6. Through the above operations, each detection element D
, and the signal charges based on the inversion signals corresponding to each sensing element Di are combined under the temporary signal accumulation region 6.
即ち、このときの信号量はT。+(μ,P「μIPO)
となる。ここでμ,(PI−PO)すなわち出・ΔP,
が各検知素子の受光量の差−すなわち撮像対象物の温度
差による信号の変化分に対応しており、雑音成分N1は
打消されている。この時の一時信号蓄積領域6での信号
の蓄積状況を第3図cに示す。今第3図cの斜線で示し
た部分が撮像対象物体!の温度変化による有効信号成分
で、この成分すなわちμi・ΔP,をCCDの各ビット
に導入して順次導出して画像信号処理を施せばよい。That is, the signal amount at this time is T. + (μ, P “μIPO)
becomes. Here, μ, (PI-PO), i.e., output・ΔP,
corresponds to the difference in the amount of light received by each detection element, that is, the change in signal due to the temperature difference of the object to be imaged, and the noise component N1 is canceled out. The signal accumulation situation in the temporary signal accumulation area 6 at this time is shown in FIG. 3c. The shaded area in Figure 3c is the object to be imaged! This component, ie, .mu.i.DELTA.P, is an effective signal component due to temperature change, and may be introduced into each bit of the CCD and sequentially derived to perform image signal processing.
すなわち一時信号蓄積領域6には前記合成信号T。+μ
,・ΔP,を蓄積するに十分な空乏層を作るための電圧
!が蓄積ゲートに印加されており合成信号を蓄積してい
る。この合成信号のうち有効信号成分のみをCCDに導
入するには移送ゲートTGに、前記有効信号成分のみが
CCD側にオーバフローする程度の高い電位障壁を形成
するような電圧を印加すクる。このとき一時信号蓄積領
域6には移送ゲート゛mよりも深い電位障壁を形成して
おり、合成信号のうちほぼT。なる直流信号分のみを残
留するような電位をTG,SGにそれぞれ印加する。こ
のようにしてCCDに移された有効信号μl・ΔP,を
CCDに印加されたクロック電圧(φ1〜φ4)によつ
て順次出力ゲート(1)側に送り、出力ダイオード0D
に達した信号による電位の変化が増幅器MOSに導かれ
、出力端子0UTより導出される。ここでDおよびSは
それぞれMOSダイオードのソースおよびドレインを示
す。また、φ1は有効信号を順次排出ドレインDRに送
出するためのゲート電極に印加する電圧印加端子である
。一方、有効信号成分がCCDに送出された残りの直流
信号成分T。は一時信号蓄積領域6部に設けられた所定
の電圧を印加した不要信号排出ドレインBDの周囲に設
けられた不要信号排出ゲートBSGに所要の電圧を印加
して排出ドレインBDへ・排出される。以上述べた操作
により撮像の1サイクルが完了し、次々と上記と同様の
サイクルを繰返して撮像を行う。That is, the composite signal T is stored in the temporary signal storage area 6. +μ
,・ΔP, is the voltage required to create a depletion layer sufficient to accumulate it! is applied to the storage gate and stores the composite signal. In order to introduce only the effective signal component of this composite signal into the CCD, a voltage is applied to the transfer gate TG to form a potential barrier high enough to cause only the effective signal component to overflow to the CCD side. At this time, a potential barrier deeper than the transfer gate m is formed in the temporary signal storage region 6, and approximately T of the composite signal is formed. A potential is applied to TG and SG such that only the DC signal component remains. The effective signal μl·ΔP, thus transferred to the CCD, is sequentially sent to the output gate (1) side by the clock voltage (φ1 to φ4) applied to the CCD, and the output diode 0D
The change in potential due to the signal that has reached 0 is guided to the amplifier MOS and then output from the output terminal 0UT. Here, D and S represent the source and drain of the MOS diode, respectively. Further, φ1 is a voltage application terminal applied to the gate electrode for sequentially sending valid signals to the discharge drain DR. On the other hand, the remaining DC signal component T is the effective signal component sent to the CCD. is discharged to the discharge drain BD by applying a required voltage to the unnecessary signal discharge gate BSG provided around the unnecessary signal discharge gate BSG provided around the unnecessary signal discharge drain BD provided in the temporary signal storage region 6 and to which a predetermined voltage is applied. One cycle of imaging is completed by the operations described above, and the same cycle as above is repeated one after another to perform imaging.
なお第2図中の点線で示したCHは電荷通路を画定する
電荷堰を示している。以上述べた説明は信号入力部のダ
イオードISlゲートIGl,IG2およびCCD等の
系が信号電荷量に対して直線性が良好で、移送ゲートT
Gの各素子に対応する部分のしきい値電圧も均一な理想
的な場合について述べたが、これらの特性は一般に良好
でなく、この場合には有効信号として導出される出力信
号にこれらによる信号の歪分による値δT,が加算され
た出力μ,・ΔPi+δTiが導出される。Note that CH indicated by a dotted line in FIG. 2 indicates a charge weir defining a charge path. The above explanation is that the system including the diode ISl gates IGl, IG2 and CCD in the signal input section has good linearity with respect to the amount of signal charge, and the transfer gate T
We have described an ideal case in which the threshold voltages of the parts corresponding to each element of G are uniform, but these characteristics are generally not good, and in this case, the output signal derived as an effective signal has a signal due to them. The output μ,·ΔPi+δTi, to which the value δT due to the distortion component is added is derived.
この場合には撮像の精度を向上するため出力部0UTに
これらのδT,を除去する固定雑音除去回路を設ければ
よい。以上説明した本発明による信号処理法を用いれば
CCDの出力部での信号取り扱い量がμi・ΔPIと有
効信号成分のみとなるので、CCDのダイナミツクレン
ヂを小さくでき、CCDの出力部を小型化てきるととも
に出力部の信号処理部すなわち増幅系も小型化てきる等
信頼性が高く、良質の赤外線撮像を実現することができ
る。In this case, in order to improve the accuracy of imaging, a fixed noise removal circuit for removing these δT may be provided in the output section 0UT. If the signal processing method according to the present invention described above is used, the amount of signal handled at the output section of the CCD will be only μi, ΔPI and effective signal components, so the dynamic range of the CCD can be reduced, and the output section of the CCD can be made smaller. At the same time, the signal processing section of the output section, that is, the amplification system, can be made smaller, resulting in high reliability and high quality infrared imaging.
第1図はIRCCDの概略を説明する模式図、第2図は
本発明の赤外線撮像信号の処理装置の構成を示す図、第
3図a−cは本発明の信号処理操作を説明する図である
。
1:赤外線検知素子群、2:シリコンからなるCCDを
主体とするシフトレジスタ部、3CCDl6:ー時信号
蓄積領域、M:メモリ、D1(外線検知素子、CH:電
荷堰。FIG. 1 is a schematic diagram illustrating the outline of an IRCCD, FIG. 2 is a diagram showing the configuration of an infrared imaging signal processing device of the present invention, and FIGS. 3 a to 3 c are diagrams explaining the signal processing operation of the present invention. be. 1: Infrared detection element group, 2: Shift register section mainly consisting of CCD made of silicon, 3CCDl6: - signal storage area, M: memory, D1 (external ray detection element, CH: charge dam).
Claims (1)
基準値から各検知素子固有の特性に対応したレベル差を
有する信号を差引いて得られる特性差補償用の逆転信号
をあらかじめメモリに記憶させ、かつ前記検知素子から
の光電変換によつて得られた撮像信号と該メモリからの
逆転信号とを各検知素子に対応した蓄積可能な一時信号
蓄積領域と、電荷転送装置とを移送ゲートを介して配設
し、前記撮像信号を前記一時信号蓄積領域に導入する一
方、前記メモリからの逆転信号を一旦前記電荷転送装置
の所望ビットに導いた、移送ゲートを介して前記一時信
号蓄積領域に導入して前記撮像信号と合成し、該合成信
号の一部を有効信号として再び移送ゲートを介して電荷
転送装置に導入した後、順次出力するようにしたことを
特徴とする赤外線撮像信号の処理方法。1. A plurality of infrared sensing elements are provided, and a reversal signal for compensating for characteristic differences obtained by subtracting a signal having a level difference corresponding to the characteristic unique to each sensing element from a predetermined reference value is stored in advance in a memory, and A temporary signal storage area capable of storing an imaging signal obtained by photoelectric conversion from the sensing element and a reverse signal from the memory corresponding to each sensing element, and a charge transfer device are arranged via a transfer gate. The imaging signal is introduced into the temporary signal storage area, while the inversion signal from the memory is introduced into the temporary signal storage area via a transfer gate, which is once guided to a desired bit of the charge transfer device. 1. A method for processing an infrared imaging signal, comprising: combining the signal with an imaging signal, introducing a portion of the combined signal as an effective signal into a charge transfer device via a transfer gate, and sequentially outputting the signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54167342A JPS6047546B2 (en) | 1979-12-21 | 1979-12-21 | How to process infrared imaging signals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54167342A JPS6047546B2 (en) | 1979-12-21 | 1979-12-21 | How to process infrared imaging signals |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5689033A JPS5689033A (en) | 1981-07-20 |
JPS6047546B2 true JPS6047546B2 (en) | 1985-10-22 |
Family
ID=15847944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54167342A Expired JPS6047546B2 (en) | 1979-12-21 | 1979-12-21 | How to process infrared imaging signals |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6047546B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57124727A (en) * | 1981-01-27 | 1982-08-03 | Mitsubishi Electric Corp | Infrared-ray image pickup device |
JPS57124726A (en) * | 1981-01-27 | 1982-08-03 | Mitsubishi Electric Corp | Infrared-ray image pickup device |
JP6291629B2 (en) * | 2015-05-21 | 2018-03-14 | 富士フイルム株式会社 | Infrared imaging apparatus and fixed pattern noise data updating method |
-
1979
- 1979-12-21 JP JP54167342A patent/JPS6047546B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5689033A (en) | 1981-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6130423A (en) | Method and apparatus for a CMOS image sensor with a distributed amplifier | |
US8004579B2 (en) | Gain measurement structure | |
US7910874B2 (en) | Method of amplifying charge in an imager | |
US8054363B2 (en) | Determining the multiplication of EMCCD sensor | |
EP0140266B1 (en) | Ccd picture element defect compensating apparatus | |
US5027148A (en) | Autofocus chip with reference level determination circuit | |
US5471246A (en) | Apparatus for determining charge/voltage conversion ratios in charge coupled devices | |
EP2084756B1 (en) | A cmos imaging sensor | |
JPS6047546B2 (en) | How to process infrared imaging signals | |
US5053873A (en) | Solid state image pickup device capable of picking up an image with a long time exposure at a low noise | |
US5452003A (en) | Dual mode on-chip high frequency output structure with pixel video differencing for CCD image sensors | |
JPH07162763A (en) | Charge transfer device | |
Fowler et al. | Evaluation of the rca 512x320 charge-coupled device (ccd) imagers for astronomical use | |
US4700085A (en) | Circuit for detecting signal charges transferred in a charge transfer device | |
Zhou et al. | A low readout noise cmos pixel based on the skipper technology | |
US7075340B2 (en) | Solid-state imaging device | |
JP3610636B2 (en) | Temperature detection device, charge transfer device and camera equipped with the same | |
JP3395481B2 (en) | Solid-state imaging device and driving method thereof | |
JPS61154373A (en) | Photoelectric converting device | |
Meisenzahl et al. | 3.2-million-pixel full-frame true 2-phase CCD image sensor incorporating transparent gate technology | |
Willems et al. | High-speed VGA resolution CMOS image sensor with global shutter | |
JPH07169935A (en) | Solid-state image pickup device and its charge transfer method | |
JPH0418737A (en) | Ccd solid-state image pickup element | |
JPH08223486A (en) | Ccd solid-state image pickup device | |
Wadsworth et al. | Fabricating a hybrid imaging device |