JPS6039788Y2 - radiation thermometer - Google Patents
radiation thermometerInfo
- Publication number
- JPS6039788Y2 JPS6039788Y2 JP1980079635U JP7963580U JPS6039788Y2 JP S6039788 Y2 JPS6039788 Y2 JP S6039788Y2 JP 1980079635 U JP1980079635 U JP 1980079635U JP 7963580 U JP7963580 U JP 7963580U JP S6039788 Y2 JPS6039788 Y2 JP S6039788Y2
- Authority
- JP
- Japan
- Prior art keywords
- current
- temperature
- comparison
- voltage
- amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Radiation Pyrometers (AREA)
Description
【考案の詳細な説明】
この考案は温度測定対象物から放射する入射光と比較光
源から放射する比較光とを光学チョッパーによって時分
割して交互に光検出器に入射させ、その入射光及び比較
光の差が最小にするように比較光源の輝度を自動制御し
て両者を平衡させ測定対象物の温度を測定する方式の放
射温度計に関する。[Detailed description of the invention] This invention uses an optical chopper to time-divide the incident light emitted from the object to be measured and the comparison light emitted from the comparison light source, and make them alternately enter the photodetector. The present invention relates to a radiation thermometer that automatically controls the brightness of a comparison light source so as to minimize the difference in light so as to balance the two and measure the temperature of the object to be measured.
放射温度計は第1図に示すように測定対象物11から放
射する入射光はレンズ12を介してチョッパー13に与
えられ、比較光源14から放射する比較光とチョッパー
13によって時分割して交互に光検出器15に入射され
る。As shown in FIG. 1, in the radiation thermometer, incident light emitted from a measurement object 11 is given to a chopper 13 via a lens 12, and is time-divided and alternately transmitted by the chopper 13 and comparison light emitted from a comparison light source 14. The light is incident on the photodetector 15.
光検出器15からは入射光と比較光とのエネルギの差に
応じた交流電圧信号■1が得られる。From the photodetector 15, an AC voltage signal 1 is obtained according to the energy difference between the incident light and the comparison light.
交流信号■1は交流増幅器16によって増幅される。The AC signal (1) is amplified by the AC amplifier 16.
その増幅出力■2は同期整流器17によってチョッパー
13のチョッパー動作と同期して同期整流され、入射光
の強さに相当する直流電圧と比較光の強さに相当する直
流電圧とに分けられた後、両者の差が増幅器18によっ
て増幅される。The amplified output ■2 is synchronously rectified by a synchronous rectifier 17 in synchronization with the chopper operation of the chopper 13, and divided into a DC voltage corresponding to the intensity of the incident light and a DC voltage corresponding to the intensity of the comparison light. , the difference between the two is amplified by the amplifier 18.
その増幅出力V3は電圧電流変換回路19によって電流
Iに変換され、その電流が比較光源14のランプに供給
される。The amplified output V3 is converted into a current I by the voltage-current conversion circuit 19, and the current is supplied to the lamp of the comparison light source 14.
この結果ランプ電流は入射光と比較光とが平衡するよう
な値に自動的に制御される。As a result, the lamp current is automatically controlled to a value that balances the incident light and the comparison light.
よってこのランプ電流の値から測定対象物11の温度を
測定することができる。Therefore, the temperature of the object to be measured 11 can be measured from the value of this lamp current.
交流増幅器16は例えば演算増幅器21の出力側が抵抗
素子22.23の分圧回路を通じて共通電位点に接続さ
れ、その抵抗素子22.23の接続点が演算増幅器21
の入力側に帰還接続されて構成される。In the AC amplifier 16, for example, the output side of the operational amplifier 21 is connected to a common potential point through a voltage dividing circuit of resistive elements 22.23, and the connection point of the resistive elements 22.23 is connected to the operational amplifier 21.
It is configured by being connected as a feedback to the input side of the circuit.
チョッパー13は反射部及び透過部が等角間隔に設けら
れた回転板24と、その回転板24を回転するモータ2
5とよりなり、その回転板24の回転タイミングや同期
タイミング発生手段26により検出されて同期整流器1
7へ供給される。The chopper 13 includes a rotary plate 24 in which reflective portions and transmitting portions are provided at equiangular intervals, and a motor 2 that rotates the rotary plate 24.
5, and the rotation timing of the rotary plate 24 and the synchronous timing generating means 26 detect the synchronous rectifier 1.
7.
電圧電流変換回路19では増幅器18の出力がnpn
トランジスタ27のベースへ供給すれ、トランジスタ2
7のエミッタは抵抗素子28を通じて共通電位点に接続
され、コレクタはpnpトランジスタ29のベースに接
続されると共に抵抗素子31を通じて電源端子32に接
続され、トランジスタ29のエミッタは抵抗素子33を
通じて電源端子32に接続され、コレクタはランプ14
のフィラメントを通じて共通電位点に接続される。In the voltage-current conversion circuit 19, the output of the amplifier 18 is npn.
Supplied to the base of transistor 27, transistor 2
The emitter of transistor 7 is connected to a common potential point through a resistor 28, the collector is connected to the base of a pnp transistor 29, and is also connected to a power supply terminal 32 through a resistor 31, and the emitter of the transistor 29 is connected to a power supply terminal 32 through a resistor 33. and the collector is connected to the lamp 14
are connected to a common potential point through a filament of
この従来の放射温度計においては測定回路のループゲイ
ンが測定温度と周囲温度とによって大きく変化するため
、測定温度範囲の下限側で周囲温度が比較的高いときに
ループゲインが不足して温度変動誤差が生じやすくなり
、また測定温度範囲の上限側で周囲温度が比較的低いと
きにループゲインが大き過ぎて回路が発振し易くなり、
不安定になりやすい。In this conventional radiation thermometer, the loop gain of the measurement circuit changes greatly depending on the measurement temperature and the ambient temperature, so when the ambient temperature is relatively high at the lower limit of the measurement temperature range, the loop gain is insufficient and temperature fluctuation errors occur. Also, when the ambient temperature is relatively low at the upper end of the measurement temperature range, the loop gain is too large and the circuit is likely to oscillate.
Tends to become unstable.
これらのために測定する温度範囲を広くとれない欠点が
あった。For these reasons, there was a drawback that a wide temperature range could not be measured.
これらの点について更に説明すると、第1図に示した放
射温度計において対象物11の温度T(K)、入射光の
エネルギW、交流電圧■1、ランプ14のランプ電流1
1ランプ14からの比較光のエネルギW、の関係を利得
ブロック線図で表わせば第2図に示すようになる。To further explain these points, in the radiation thermometer shown in FIG.
The relationship between the energy W of the comparison light from one lamp 14 is expressed in a gain block diagram as shown in FIG.
即ち対象物11の温度が微小変化ΔTが生じると入射光
のエネルギは△W変化し、これと帰還利得βの比較光の
エネルギ変化△Wrとの差が感度Sの光検出器15で検
出され、その交流信号出力■、は交流増幅器16から電
圧電流変換回路19までの利得Aの回路34を通じてラ
ンプ電流の微小変化ΔIを出力する。That is, when a slight change ΔT occurs in the temperature of the object 11, the energy of the incident light changes ΔW, and the difference between this and the energy change ΔWr of the comparison light of the feedback gain β is detected by the photodetector 15 with sensitivity S. , the AC signal output (2) outputs a minute change ΔI in the lamp current through a circuit 34 with a gain A from the AC amplifier 16 to the voltage-current conversion circuit 19.
SA (1) Δ””I+SAβΔW と表わされる。SA (1) Δ””I+SAβΔW It is expressed as
(イ)測定温度T (K)と入射エネルギWとの関係は
第3図に示すようにWはToに比例する。(a) The relationship between the measured temperature T (K) and the incident energy W is shown in FIG. 3, where W is proportional to To.
ここでnは光検出器15の感度Sの波長スペクトルなど
によってきまる定数である。Here, n is a constant determined by the wavelength spectrum of the sensitivity S of the photodetector 15, etc.
例えばn=9〜11のような値になる。For example, n=9 to 11.
(ロ)感度Sは第4図に示すように入射エネルギWによ
って変化しWの増加と共に減少し、また入射エネルギW
が小さいときは周囲温度tによっても変化し、周囲温度
tが高い程感度Sは大きくなる。(b) As shown in Fig. 4, the sensitivity S changes depending on the incident energy W and decreases as W increases, and the sensitivity S changes with the incident energy W.
When S is small, it also changes depending on the ambient temperature t, and the higher the ambient temperature t, the greater the sensitivity S becomes.
(ハ)利得Aは電気回路の定数によってきまり、第1図
においては交流電圧V1に関係なく一定であり、
9=□1 も 1
0μ@ 0
R2R2R6
となる。(c) The gain A is determined by the constant of the electric circuit, and in FIG. 1, it is constant regardless of the AC voltage V1, and 9=□1 also becomes 1 0μ@0 R2R2R6.
ここてR19R2= R3= R4,R5= R6はそ
れぞれ抵抗素子22,23.28.31及び33の抵抗
値であり、μは増幅器18の増幅率である。Here, R19R2=R3=R4, R5=R6 are the resistance values of the resistance elements 22, 23, 28, 31, and 33, respectively, and μ is the amplification factor of the amplifier 18.
に)ランプ電流Iとランプ14からの放射エネルギW、
との関係は第5図に示すようにW「がImに比例する。) Lamp current I and radiant energy W from the lamp 14,
As shown in FIG. 5, W' is proportional to Im.
ここでmはランプ14によって異なるが、例えばn=7
〜4である。Here, m varies depending on the lamp 14, but for example, n=7
~4.
これからβは 調、 ■ β=aI框W’rz l =I m となる。From now on β key, ■ β=aI frame W’rz l =I m becomes.
m=7〜4の場合1≧0.9〜0.7となる。βとWf
との関係は第6図に示すようになる。When m=7 to 4, 1≧0.9 to 0.7. β and Wf
The relationship with is shown in FIG.
上記(イ)〜に)から第2図のフィードバック回路のル
ープゲインG=SAβと測定温度Tとの関係は第7図に
示すようになる。From (a) to (a) above, the relationship between the loop gain G=SAβ of the feedback circuit in FIG. 2 and the measured temperature T is as shown in FIG.
つまり先に述べたように測定温度Tが低いとループゲイ
ンGが小さくなり過ぎ測定温度に誤差が生じ易い、また
測定温度Tが高く、かつ周囲温度tが比較的低いとルー
プゲインGが高くなり過ぎ不安定になる。In other words, as mentioned earlier, when the measured temperature T is low, the loop gain G becomes too small and errors tend to occur in the measured temperature, and when the measured temperature T is high and the ambient temperature t is relatively low, the loop gain G becomes high. It becomes too unstable.
この考案の目的は測定温度が低い場合にも正確に測定す
ることができ、かつ測定温度が高く、また周囲温度が低
い場合にも安定に動作する放射温度計を提供することに
ある。The purpose of this invention is to provide a radiation thermometer that can accurately measure even when the measured temperature is low and operates stably even when the measured temperature is high and the ambient temperature is low.
この考案によれば交流増幅回路より電圧電流変換回路ま
でにおける増幅率を定める抵抗素子の一つに周囲温度に
よって抵抗値が変化するものを用いて測定範囲の下限側
の測定温度で、かつ周囲温度が高い時における光検出素
子の感度の低下を前記増幅率を増加することによって補
償する。According to this invention, one of the resistive elements that determines the amplification factor from the AC amplifier circuit to the voltage-current converter circuit is one whose resistance value changes depending on the ambient temperature. The decrease in the sensitivity of the photodetector element when the amplification factor is high is compensated for by increasing the amplification factor.
また電圧電流変換回路の変換率を定める抵抗素子として
電流により抵抗値が非線形に変化する素子を用い、測定
範囲の上限側でのループゲインの増加は、電圧電流変換
回路の変換率がランプ電流の増加により減少することに
よっておさえる。In addition, an element whose resistance value changes nonlinearly depending on the current is used as the resistance element that determines the conversion rate of the voltage-current conversion circuit, and the increase in loop gain at the upper limit of the measurement range means that the conversion rate of the voltage-current conversion circuit is Suppress by increasing by decreasing.
このよにしてループゲインの変化範囲を狭くする。In this way, the range of change in loop gain is narrowed.
この考案による放射温度計の一例を第8図に第1図と対
応する部分に同符号を付けて示す。An example of a radiation thermometer according to this invention is shown in FIG. 8, in which parts corresponding to those in FIG. 1 are given the same reference numerals.
この実施例においては交流増幅器16の増幅率を規定す
る抵抗素子23の代りに負温度係数交流抵抗素子36が
用いられる。In this embodiment, a negative temperature coefficient AC resistance element 36 is used in place of the resistance element 23 that defines the amplification factor of the AC amplifier 16.
また電圧電流変換回路19の帰還抵抗素子33の代りに
、例えばニクロム線またはタングステン線など抵抗値が
電流の増加によって増える非線形抵抗素子37が用いら
れる。Further, instead of the feedback resistance element 33 of the voltage-current conversion circuit 19, a nonlinear resistance element 37, such as a nichrome wire or a tungsten wire, whose resistance value increases as the current increases, is used.
この第8図に示した放射温度計のループゲインGは従来
と同様にG=SAβで表わされ、S、 A。The loop gain G of the radiation thermometer shown in FIG. 8 is expressed as G=SAβ, as in the conventional case, and S, A.
βのうちSとβは従来と同じであるがAは。Of β, S and β are the same as before, but A is.
=1鄭(6)、、、、も、IR2(t) R4
R6(I)
となる。=1 Zheng (6), ,, also, IR2(t) R4
It becomes R6(I).
R2(t)は抵抗素子36の抵抗値であり、周囲温度t
により変化し、R6(I)は抵抗素子37の抵抗値であ
り、ランプ電流Iにより変化する。R2(t) is the resistance value of the resistance element 36, and the ambient temperature t
R6(I) is the resistance value of the resistance element 37, and changes depending on the lamp current I.
抵抗素子36の抵抗値R2(t)と温度tとの関係は例
えば第9図に示すようにtが増加すると減少する。The relationship between the resistance value R2(t) of the resistance element 36 and the temperature t decreases as t increases, as shown in FIG. 9, for example.
非線形抵抗素子37の抵抗値R6(I)とランプ電流(
I)との関係は例えは第10図に示すようにIが増加す
ると非線形に抵抗値が増加する。The resistance value R6 (I) of the nonlinear resistance element 37 and the lamp current (
Regarding the relationship with I), for example, as shown in FIG. 10, as I increases, the resistance value increases nonlinearly.
従って利得Aは第11図に示すように電流■が増加する
と減少し、また温度tが上昇すると増加する。Therefore, as shown in FIG. 11, the gain A decreases as the current 2 increases, and increases as the temperature t increases.
第4図のS−W、第11図のA−I、第6図のβ−Wr
及び第5図のWr I、第3図BのW−Tの各関係か
らループゲインG…SAβと測定温度Tとの関係を求め
ると第12図に示すようになる。S-W in Fig. 4, A-I in Fig. 11, β-Wr in Fig. 6
The relationship between the loop gain G...SAβ and the measured temperature T is determined from the relationships of Wr I in FIG. 5 and WT in FIG. 3B, as shown in FIG. 12.
第12図かられかるように測定温度Tの変化に対してル
ープゲインGの変化が小さくなり、温度Tが低いときて
もゲインGが周囲温度tの変化によって変わらない。As can be seen from FIG. 12, the change in the loop gain G becomes smaller with respect to a change in the measured temperature T, and even when the temperature T is low, the gain G does not change with a change in the ambient temperature t.
従って広い範囲の温度測定が可能である。Therefore, temperature measurement over a wide range is possible.
また測定温度範囲の下限側での温度ドリフトが小さい。Furthermore, the temperature drift at the lower limit of the measurement temperature range is small.
更に光検出器15の温度による物理的特性変化の欠点を
電気回路で簡単に補正できる。Furthermore, the drawback of changes in physical characteristics of the photodetector 15 due to temperature can be easily corrected using an electric circuit.
なお交流増幅器16において抵抗素子24の代りに周囲
温度により抵抗値が変化する正温度係数の感温抵抗素子
を用いてもよい。Note that in the AC amplifier 16, a temperature-sensitive resistance element with a positive temperature coefficient whose resistance value changes depending on the ambient temperature may be used instead of the resistance element 24.
更に電圧電流変換回路の抵抗素子28に負温度係数の感
温抵抗素子を用いて増幅率Aが周囲温度変化に応じて変
化するようにしてもよい。Furthermore, a temperature-sensitive resistance element with a negative temperature coefficient may be used as the resistance element 28 of the voltage-current conversion circuit, so that the amplification factor A changes according to changes in the ambient temperature.
感温抵抗素子は光検出器15の近くに配されるべきであ
り、電圧電流変換回路19を光検出器15から離して設
ける場合や交流増幅器16で充分な利得を得る場合は交
流増幅器16に感温抵抗素子を接続してその増幅率を温
度tに応じて変化させる方がよい。The temperature-sensitive resistance element should be placed near the photodetector 15, and if the voltage-current conversion circuit 19 is provided away from the photodetector 15 or if sufficient gain is obtained with the AC amplifier 16, it should be placed near the AC amplifier 16. It is better to connect a temperature-sensitive resistance element and change its amplification factor according to the temperature t.
第1図は従来の放射温度計を示す接続図、第2図はその
微小温度変化へTに対する等価回路図、第3図は入射光
エネルギW−測定温度T特性図、第4図は光検出器感度
S−人射光エネルギW特性図、第5図は比較光エネルギ
W「ランプ電流特性図、第6図は帰還利得β−比較光エ
ネルギW「特性図、第7図はループゲインG−測定温度
T特性図、第8図はこの考案による放射温度計の一例を
示す接続図、第9図は感温抵抗素子の抵抗値R2(t)
−周囲温度を特性図、第10図は非線形抵抗素子の抵抗
値R6(t)ランプ電流特性図、第11図は増幅率A−
ランプ電流特性図、第12図はこの考案の温度計のルー
プゲインG−測定温度特性図である。
11:測定対象物、13:チョッパー、14:比較光源
、15:光検出器、16:交流増幅器、17:同期整流
回路、18:増幅器、19:[正電流変換回路、36:
負温度係数抵抗素子、37:非線形抵抗素子。Fig. 1 is a connection diagram showing a conventional radiation thermometer, Fig. 2 is an equivalent circuit diagram for its minute temperature change T, Fig. 3 is an incident light energy W-measured temperature T characteristic diagram, and Fig. 4 is photodetection. Figure 5 shows the comparison light energy W characteristic diagram, Figure 6 shows the feedback gain β vs comparative light energy W characteristic diagram, and Figure 7 shows the loop gain G measurement. Temperature T characteristic diagram, Figure 8 is a connection diagram showing an example of a radiation thermometer according to this invention, and Figure 9 is the resistance value R2 (t) of the temperature-sensitive resistance element.
-Characteristic diagram of ambient temperature, Figure 10 is resistance value R6(t) of nonlinear resistance element, lamp current characteristic diagram, Figure 11 is amplification factor A-
The lamp current characteristic diagram, FIG. 12, is a loop gain G-measured temperature characteristic diagram of the thermometer of this invention. 11: Measurement object, 13: Chopper, 14: Comparison light source, 15: Photodetector, 16: AC amplifier, 17: Synchronous rectifier circuit, 18: Amplifier, 19: [Positive current conversion circuit, 36:
Negative temperature coefficient resistance element, 37: Nonlinear resistance element.
Claims (1)
から放射された比較光とをチョッパーによって交互に光
検出器に照射し、これら入射光と比較光との強度差に応
じた波高値をもつ交流信号を得、その交流信号を交流増
幅器で増幅し、その増幅出力を同期整流し、上記入射光
の強さに相当する直流電圧と上記比較光の強さに相当す
る直流電圧とに分離し、これら両者の差を増幅しその増
幅出力を電圧電流変換器によって電流に変換し、その電
流によって上記比較光源ランプの電流を制御して上記入
射光と比較光とを平衡させ、その時の比較光源ランプ電
流の値によって上記測定対象物の温度を測定する放射温
度計において、上記交流増幅器及び電圧電流変換器間の
増幅率を定める抵抗素子の少なくとも1個として、周囲
温度によってその抵抗値が変化する抵抗素子が用いられ
て周囲温度が上昇すると上記増幅率が増加するようにさ
れ、上記電圧電流変換器の変換率を定める抵抗素子の少
なくとも1個として上記ランプ電流の大きさによってそ
の電流が増加すると変換率が減少するように抵抗値が変
化する非線形抵抗素子が用いられ、測定回路のループ利
得が測定温度及び周囲温度の変化に拘らずほぼ一定に保
持される放射温度計。The incident light emitted from the object to be measured and the comparison light emitted from the comparison light source lamp are alternately irradiated onto the photodetector by a chopper, and the peak value is determined according to the intensity difference between the incident light and the comparison light. The AC signal is amplified by an AC amplifier, and the amplified output is synchronously rectified and separated into a DC voltage corresponding to the intensity of the above-mentioned incident light and a DC voltage corresponding to the intensity of the above-mentioned comparison light. Then, the difference between these two is amplified and the amplified output is converted into a current by a voltage-current converter, and the current of the comparison light source lamp is controlled by the current to balance the incident light and the comparison light, and then the comparison is made. In the radiation thermometer that measures the temperature of the object to be measured based on the value of the light source lamp current, at least one of the resistance elements that determines the amplification factor between the AC amplifier and the voltage-current converter has a resistance value that changes depending on the ambient temperature. at least one of the resistive elements determining the conversion factor of the voltage-to-current converter increases the current according to the magnitude of the lamp current; A radiation thermometer that uses a nonlinear resistance element whose resistance value changes so that the conversion rate decreases, and the loop gain of the measurement circuit is kept almost constant regardless of changes in the measurement temperature and ambient temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1980079635U JPS6039788Y2 (en) | 1980-06-06 | 1980-06-06 | radiation thermometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1980079635U JPS6039788Y2 (en) | 1980-06-06 | 1980-06-06 | radiation thermometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS574727U JPS574727U (en) | 1982-01-11 |
JPS6039788Y2 true JPS6039788Y2 (en) | 1985-11-29 |
Family
ID=29442109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1980079635U Expired JPS6039788Y2 (en) | 1980-06-06 | 1980-06-06 | radiation thermometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6039788Y2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021139708A (en) * | 2020-03-04 | 2021-09-16 | 日本製鉄株式会社 | Temperature measurement device, and temperature measurement method |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63169942U (en) * | 1987-04-27 | 1988-11-04 | ||
JPH0192714U (en) * | 1987-12-14 | 1989-06-19 | ||
JPH0198413U (en) * | 1987-12-21 | 1989-06-30 | ||
JPH0249611Y2 (en) * | 1987-12-21 | 1990-12-27 | ||
JPH01104611U (en) * | 1987-12-29 | 1989-07-14 | ||
JPH01104612U (en) * | 1987-12-29 | 1989-07-14 | ||
JPH0249612Y2 (en) * | 1987-12-29 | 1990-12-27 |
-
1980
- 1980-06-06 JP JP1980079635U patent/JPS6039788Y2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021139708A (en) * | 2020-03-04 | 2021-09-16 | 日本製鉄株式会社 | Temperature measurement device, and temperature measurement method |
Also Published As
Publication number | Publication date |
---|---|
JPS574727U (en) | 1982-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6039788Y2 (en) | radiation thermometer | |
US3611806A (en) | Radiation thermometer | |
US5376783A (en) | Power meter with background subtraction | |
US6919716B1 (en) | Precision avalanche photodiode current monitor | |
EP1182435A2 (en) | Light sensor system and method for detecting ambient light | |
US3399348A (en) | R. m. s. metering system | |
JPS6020655A (en) | Optical detecting circuit | |
US20170314996A1 (en) | Method for Noncontact, Radiation Thermometric Temperature Measurement | |
JPS5934684A (en) | Stabilization circuit for characteristic of semiconductor laser diode | |
US4814602A (en) | Photoelectric conversion processing apparatus | |
JP3013269B2 (en) | Infrared detection circuit | |
JPH036530U (en) | ||
JPH0616012B2 (en) | Gas concentration measurement method | |
US4051490A (en) | Photographic exposure meter circuit having temperature compensation | |
JPS5942669Y2 (en) | Brightness characteristic compensation circuit for light source lamps | |
JPH05172565A (en) | Optical distance measuring sensor | |
JP3058295B2 (en) | Infrared detection circuit | |
JPH051991B2 (en) | ||
JPS58127134A (en) | Detecting circuit for temperature | |
Erez | Low-frequency electrical signal measurement by electrooptical methods | |
JPS6347921Y2 (en) | ||
JP3013268B2 (en) | Infrared detection circuit | |
JPH0376412B2 (en) | ||
JPH07239249A (en) | Optical position detecting circuit | |
RU27220U1 (en) | PHOTO RECEIVER |