JPS6038344B2 - Method for manufacturing phosphosilicate glass film by low pressure vapor phase growth method - Google Patents
Method for manufacturing phosphosilicate glass film by low pressure vapor phase growth methodInfo
- Publication number
- JPS6038344B2 JPS6038344B2 JP11590981A JP11590981A JPS6038344B2 JP S6038344 B2 JPS6038344 B2 JP S6038344B2 JP 11590981 A JP11590981 A JP 11590981A JP 11590981 A JP11590981 A JP 11590981A JP S6038344 B2 JPS6038344 B2 JP S6038344B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- vapor phase
- mixed gas
- phase growth
- pressure vapor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45578—Elongated nozzles, tubes with holes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Description
【発明の詳細な説明】
本発明は低圧気相成長法によって、特にウェーハ表面上
に高品質なりンシリケートガラス(PSG)膜を成長さ
せる方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for growing high quality polysilicate glass (PSG) films, particularly on wafer surfaces, by low pressure vapor deposition.
低圧気相成長はIC或るし、はLSI等の半導体装置を
製造する際のゥェーハ処理方法の一つで、反応容器内の
圧力はITon近辺に減圧しながら反応ガスを流通せし
め、該容器内に直立して配列したゥェーハ表面上に膜を
成長させる方法である。Low-pressure vapor phase epitaxy is one of the wafer processing methods used when manufacturing semiconductor devices such as ICs and LSIs, and the pressure inside the reaction vessel is reduced to around the Iton while a reaction gas is passed through the vessel. In this method, a film is grown on the surface of wafers arranged vertically.
この成長法の利点は一度に多数のゥェーハを処理できる
ばかりでなく、ウェーハ表面に均一に分布した膜を成長
させることができる。PSG膜を素子が設けられている
ウェーハ表面上に形成することにより、外部から入って
来るナトIJウムィオン及び水分等が、素子の動作に影
響を及ぼすのを防ぐIC保護膜として働く一方、多層配
線のときにPSG膜を用いると断線が起こりにくいこと
もあって層間絶縁膜としても広く用いられている。The advantage of this growth method is that not only can a large number of wafers be processed at once, but also a film can be grown that is uniformly distributed on the wafer surface. By forming a PSG film on the surface of a wafer where devices are provided, it acts as an IC protective film that prevents external intrusion, moisture, etc. from affecting the operation of the device, while also preventing multilayer wiring. When a PSG film is used, disconnection is less likely to occur, so it is widely used as an interlayer insulating film.
低圧気相成長法を用いてPSG膜を成長させるとき、高
濃度シラン(SiH4)とフオスフィン(PH3)混合
ガスを反応させて膜を成長させるが、02ガスが充分反
応容器内に満たされていないと十分酸化されず、シリコ
ン(Si)リッチなPSG膜が形成される。When growing a PSG film using the low-pressure vapor phase growth method, the film is grown by reacting a mixed gas of high concentration silane (SiH4) and phosphine (PH3), but the reaction vessel is not sufficiently filled with 02 gas. As a result, the PSG film is not sufficiently oxidized, and a PSG film rich in silicon (Si) is formed.
そこで従来、上記の問題を解決するために次のような方
法が考えられた。SiH4とPH3混合ガスと02ガス
を同時に流さずに、該混合ガスを流通し始める前から0
2ガスを流通させておくという方法が考えられた。Conventionally, the following methods have been devised to solve the above problem. Without flowing the SiH4 and PH3 mixed gas and 02 gas at the same time, the 02 gas is
A method of keeping two gases flowing was considered.
しかし、この方法では02ガスのみが反応容器内に流通
しているとき、該混合ガス導入パイプにはガスが流れて
いないため、該容器内に比べて該パイプの圧力は低く、
従って、該パイプ内に02ガスが入り込み、該混合ガス
を流通せしめると、パイプ内で反応が生じ、白い粉状の
酸化物となって該混合ガスと一緒に反応容器内に導入さ
れゥヱーハ表面に付着し、PSG膜に白濁或るし、はく
もりが生じる。繊密な均一な膜を成長させるためには、
ウェ−ハ表面で反応ガスを反応させ成長させるのが良く
、ウェーハ表面で反応させて得たPSG膜には白濁くも
りは生じない。従って、白濁或るし、はくもりの生じた
PSG膜は粗な不均一な膜となって形成され保護膜等の
役目を果すことができないことになる。尚、高濃度Si
比と02は急激に反応が生じるので、反応ガスを1ケ所
から導入すると反応容器内の総てのウェーハに同一な膜
を成長させることは困難なので、同じ反応ガスを数ケ所
から導入する分割導入が用られている。本発明の目的は
低圧気相成長法を用いて成長させたPSG膜に白濁、く
もり及びSjリッチな膜が生じるのを防ぎ、高品質なP
SG膜を提供するにある。However, in this method, when only the 02 gas is flowing into the reaction vessel, no gas is flowing through the mixed gas introduction pipe, so the pressure in the pipe is lower than in the vessel.
Therefore, when 02 gas enters the pipe and the mixed gas is allowed to flow, a reaction occurs within the pipe, forming a white powdery oxide that is introduced into the reaction vessel together with the mixed gas and reaches the surface of the wafer. It adheres to the PSG film, causing cloudiness and cloudiness on the PSG film. In order to grow a dense and uniform film,
It is preferable to grow the PSG film by reacting the reaction gas on the wafer surface, and the PSG film obtained by the reaction on the wafer surface does not become cloudy. Therefore, a cloudy or cloudy PSG film is formed as a rough and non-uniform film, and cannot serve as a protective film or the like. In addition, high concentration Si
With Ratio and 02, the reaction occurs rapidly, so if the reaction gas is introduced from one place, it is difficult to grow the same film on all the wafers in the reaction vessel, so split introduction is used to introduce the same reaction gas from several places. is used. The purpose of the present invention is to prevent cloudiness, cloudiness, and Sj-rich films from occurring in PSG films grown using low-pressure vapor phase growth, and to produce high-quality PSG films.
To provide SG films.
以下、図面を参照しながら本発明を説明することにする
。Hereinafter, the present invention will be explained with reference to the drawings.
第1図aは本発明を説明するために、低圧気相成長装置
構成の一例を示した反応容器上面断面図、第1図bは第
1図aの×−Y断面図、第2図は本発明の一実施例の反
応開始時から始まり時間の経過を伴う反応ガスそれぞれ
の導入時期を示した図、第3図は時間の経過に伴う高濃
度SiAとPH3混合導入パイプ内の高濃度Si比とP
H3混合ガスとN2ガスの予想濃度分布を示した図であ
る。In order to explain the present invention, FIG. 1a is a top sectional view of a reaction vessel showing an example of the configuration of a low-pressure vapor phase growth apparatus, FIG. 1b is a cross-sectional view taken along the line X-Y in FIG. 1a, and FIG. A diagram showing the introduction timing of each reaction gas over time starting from the start of the reaction in an embodiment of the present invention. Figure 3 shows high concentration SiA and PH3 mixed in the high concentration SiA and PH3 mixed introduction pipe over time. ratio and P
It is a figure showing the expected concentration distribution of H3 mixed gas and N2 gas.
最初に、低圧気相成長装置の構成を第1図a,bを用い
て説明する。反応容器1は断面が円形の管体から成り、
該容器1の外周には多数のウェーハが全部均一に加熱さ
れるように抵抗加熱等の炉2が配置され、アルミニウム
配線が高温で溶融しないように450℃以下に保持され
ている。また、該内部には円板形状をした多数のゥェー
ハ3がホルダー4上に設立されて配置されている。反応
容器1にはその一端部に例えばロータリーポンプのよう
な真空ポンプ5が設置され、該容器1の内部を0.1〜
ITorrの間の低圧状態に維持する。キャリアガスと
して02ガス6を該容器1内へ流通せしめる。反応容器
1内には反応容器壁方向に多数の噴出口を持つ反応ガス
導入パイプ7,8を引き、パイプ7は02ガス、パイプ
8には高濃度Si比とPH3混合ガスをそれぞれ矢印の
方向に導入するのではあるが、反応開始時には02ガス
9をパイプ7に導すると同時にパイプ8には窒素(N2
)ガス1 0を置換し、N2ガス1 0につついて高濃
度Si凡とPH3混合ガス11を同パイプ8に順次導入
する(第2図)。このようにそれぞれの反応ガスを流通
させると時間が経過すると共に、パイプ8内のN2ガス
10と混合ガス1 1のそれぞれの濃度分布が第3図に
示されるようになることが当然予想されるであろう。本
発明によれば、反応開始時にパイプ7内に02ガスが導
入されるのと同時にパイプ内にはN2ガスが導入される
ので、02ガスがパイプ8内に入り込むことはできず、
従ってPSG膜に白濁またもりが生じることはない。First, the configuration of the low-pressure vapor phase growth apparatus will be explained using FIGS. 1a and 1b. The reaction vessel 1 consists of a tube with a circular cross section,
A resistance heating furnace 2 is arranged around the outer periphery of the container 1 so that all the wafers are uniformly heated, and the temperature is maintained at 450° C. or lower to prevent the aluminum wiring from melting at high temperatures. Further, a large number of disk-shaped wafers 3 are placed inside the holder 4 on a holder 4. A vacuum pump 5 such as a rotary pump is installed at one end of the reaction vessel 1, and the interior of the vessel 1 is
Maintain low pressure between ITorr. 02 gas 6 is made to flow into the container 1 as a carrier gas. Reactant gas introduction pipes 7 and 8 having a large number of spouts are drawn in the direction of the reaction vessel wall in the reaction vessel 1, and pipe 7 carries 02 gas, and pipe 8 carries high-concentration Si ratio and PH3 mixed gas in the directions of the arrows. However, at the start of the reaction, 02 gas 9 is introduced into pipe 7, and at the same time nitrogen (N2) is introduced into pipe 8.
) Gas 10 is replaced, and high-concentration Si and PH3 mixed gas 11 is sequentially introduced into the same pipe 8 along with N2 gas 10 (FIG. 2). As time passes when each of the reaction gases is circulated in this way, it is naturally expected that the respective concentration distributions of the N2 gas 10 and the mixed gas 11 in the pipe 8 will become as shown in Fig. 3. Will. According to the present invention, since the 02 gas is introduced into the pipe 7 at the same time as the N2 gas is introduced into the pipe at the start of the reaction, the 02 gas cannot enter into the pipe 8.
Therefore, cloudiness or cloudiness does not occur in the PSG film.
また、高濃度Si比とPH3混合ガスがN2ガスに希釈
され序々に高濃度になっていくため、該混合ガスは十分
酸化されて良質なPSG膜を成長させることができ、高
品質なPSG膜を得ることができるという効果がある。
尚、本発明実施例では、高濃度Si比とPH3混合ガス
をN2ガスを導入し終わってすぐ導入したが、N2ガス
導入途中に該混合ガスを導入してもよい。また、ここで
はN2ガスを用いたが、N2ガスの代わりに不活性ガス
を用いてもよい。In addition, since the high concentration Si ratio and the PH3 mixed gas are diluted with N2 gas and the concentration gradually increases, the mixed gas can be sufficiently oxidized and a high quality PSG film can be grown, resulting in a high quality PSG film. It has the effect of being able to obtain
In the embodiment of the present invention, the high-concentration Si ratio and PH3 mixed gas was introduced immediately after the introduction of the N2 gas, but the mixed gas may be introduced during the introduction of the N2 gas. Further, although N2 gas was used here, an inert gas may be used instead of N2 gas.
第1図は本発明を説明するための低圧気相成長装置構成
の一例を示した図、第2図はそれぞれの反応ガスの導入
時期を示した図、第3図は反応ガス導入パイプ内のN2
ガスと高濃度Si比とPH3混合ガスの時間経過に伴う
濃度分布をした図である。
1・・・・・・反応容器、2…・・・炉、3・・・・・
・ウェ−ハ、5……真空ポンプ、7……02ガス導入パ
イプ、8・・・・・・高濃度Si比とPH3混合ガス導
入パイプ、9・・・・・・02ガス、10・・・…N2
ガス、1 1・・・・・・高濃度Si比とPH3混合ガ
ス。
婆3図
絵1図Fig. 1 is a diagram showing an example of the configuration of a low-pressure vapor phase growth apparatus for explaining the present invention, Fig. 2 is a diagram showing the introduction timing of each reaction gas, and Fig. 3 is a diagram showing the introduction timing of each reaction gas. N2
It is a diagram showing the concentration distribution of gas, high concentration Si ratio, and PH3 mixed gas over time. 1... Reaction vessel, 2... Furnace, 3...
・Wafer, 5...Vacuum pump, 7...02 gas introduction pipe, 8...High concentration Si ratio and PH3 mixed gas introduction pipe, 9...02 gas, 10...・…N2
Gas, 1 1... High concentration Si ratio and PH3 mixed gas. Old lady 3 drawings 1 drawing
Claims (1)
ンの混合ガスと酸素ガスを該容器内に別個に導入して、
該容器内に配置され且つ加熱されているウエーハ表面に
リンシリケートガラス膜を成長させる方法において、酸
素ガス導入開始後にシランとフオスフインの混合ガスを
導入し、該混合ガス導入開始前は該混合ガス導入パイプ
内にチツ素或るいは不活性ガスを導入することを特徴と
する低圧気相成長法によるリンシリケートガラス膜の製
造方法。1. Bring the inside of the reaction container into a reduced pressure state, and separately introduce a mixed gas of silane and phosphine and oxygen gas into the container,
In the method of growing a phosphosilicate glass film on the surface of a wafer placed in the container and heated, a mixed gas of silane and phosphine is introduced after the introduction of oxygen gas is started, and before the introduction of the mixed gas is started, the mixed gas is introduced. A method for producing a phosphosilicate glass film by a low-pressure vapor phase growth method, which is characterized by introducing nitrogen or an inert gas into a pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11590981A JPS6038344B2 (en) | 1981-07-24 | 1981-07-24 | Method for manufacturing phosphosilicate glass film by low pressure vapor phase growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11590981A JPS6038344B2 (en) | 1981-07-24 | 1981-07-24 | Method for manufacturing phosphosilicate glass film by low pressure vapor phase growth method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5820711A JPS5820711A (en) | 1983-02-07 |
JPS6038344B2 true JPS6038344B2 (en) | 1985-08-31 |
Family
ID=14674205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11590981A Expired JPS6038344B2 (en) | 1981-07-24 | 1981-07-24 | Method for manufacturing phosphosilicate glass film by low pressure vapor phase growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6038344B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0514169B2 (en) * | 1985-09-09 | 1993-02-24 | Matsushita Electric Ind Co Ltd | |
JPH0519048B2 (en) * | 1987-03-27 | 1993-03-15 | Matsushita Electric Ind Co Ltd |
-
1981
- 1981-07-24 JP JP11590981A patent/JPS6038344B2/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0514169B2 (en) * | 1985-09-09 | 1993-02-24 | Matsushita Electric Ind Co Ltd | |
JPH0519048B2 (en) * | 1987-03-27 | 1993-03-15 | Matsushita Electric Ind Co Ltd |
Also Published As
Publication number | Publication date |
---|---|
JPS5820711A (en) | 1983-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5231056A (en) | Tungsten silicide (WSix) deposition process for semiconductor manufacture | |
EP0411795B1 (en) | Anisotropic deposition of silicon dioxide | |
US4557950A (en) | Process for deposition of borophosphosilicate glass | |
JPH06318551A (en) | Formation of thin film and its apparatus | |
US3496037A (en) | Semiconductor growth on dielectric substrates | |
KR900008970B1 (en) | Process vapor growth of phosphosilicate glass coating | |
US5677235A (en) | Method for forming silicon film | |
US4513026A (en) | Method for coating a semiconductor device with a phosphosilicate glass | |
US3853974A (en) | Method of producing a hollow body of semiconductor material | |
US5783257A (en) | Method for forming doped polysilicon films | |
JPS6038344B2 (en) | Method for manufacturing phosphosilicate glass film by low pressure vapor phase growth method | |
JP3004129B2 (en) | Method for manufacturing semiconductor device | |
Chang | Autodoping in silicon epitaxy | |
EP0161020B1 (en) | Method of manufacturing semiconductor devices, in which material is deposited from a reaction gas, and apparatus for carrying out such a method | |
JP3281467B2 (en) | Film formation method | |
JP2727106B2 (en) | Film formation method | |
JPS5933256B2 (en) | Manufacturing method of semiconductor device | |
JP3154730B2 (en) | Thin film processing method and apparatus | |
JPS5817614A (en) | Vapor phase grown film forming device | |
JPS60105227A (en) | Manufacture of semiconductor device | |
JPS6125213B2 (en) | ||
JPS6360530B2 (en) | ||
JPS5935426A (en) | Diffusing method for impurity at high concentration of semiconductor device | |
JPH04304624A (en) | Vertical heating oven for wafer process | |
JPS60158672A (en) | Manufacture of semiconductor device |