[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS603869A - Air cooling type fuel cell - Google Patents

Air cooling type fuel cell

Info

Publication number
JPS603869A
JPS603869A JP58111322A JP11132283A JPS603869A JP S603869 A JPS603869 A JP S603869A JP 58111322 A JP58111322 A JP 58111322A JP 11132283 A JP11132283 A JP 11132283A JP S603869 A JPS603869 A JP S603869A
Authority
JP
Japan
Prior art keywords
air
cooling
plate
manifold
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58111322A
Other languages
Japanese (ja)
Other versions
JPH0136672B2 (en
Inventor
Masao Kumeta
粂田 政男
Kensho Matsuoka
松岡 憲昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58111322A priority Critical patent/JPS603869A/en
Priority to US06/528,443 priority patent/US4508793A/en
Publication of JPS603869A publication Critical patent/JPS603869A/en
Publication of JPH0136672B2 publication Critical patent/JPH0136672B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make construction simple by constructing the portion, facing a manifold for cooling air, of a manifold for reaction air with a heat resistant, insulating, elastic plate having a seal frame in which each cooling plate projection part is fixed in airtightness, and arranging a supporting plate having a window with a play of each seal frame on the elastic plate. CONSTITUTION:A cell stack 1 is assembled in such a way that a unit cell is constructed by interposing electrolyte matrix between gas electrodes, and a gas separating carbon plate is prepared by arranging reaction gas (hydrogen and air) flow path in the direction crossing each other on its both sides, then a large number of unit cells and gas separating plates are stacked, and carbon cooling plates 2 having air flow path 5 are placed every four to five unit cells, then they are tightened after the upper and lower end plates are placed. Each cooling plate 2 is projected from the air flow surface of the stack 1 and connected to a cooling air manifold 6. A reaction air manifold 3 is constructed with a frame 31 and a plate 32, and a window 4 in which a cooling plate projecting part 2' is fixed with a play is installed at certain spaces in the plate 32. A sealing frame 12 in which the cooling plate projection part 2' is fixed in airtightness is installed in a heat resistant, insulating, elastic plate 11 such as fluorine rubber formed in the plate 32.

Description

【発明の詳細な説明】 0)産業上の利用分野 本発明は空冷式燃料電池特に冷却空気と反応空気とを分
離供給する方式の燃料電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 0) Industrial Application Field The present invention relates to an air-cooled fuel cell, and particularly to a fuel cell in which cooling air and reaction air are separately supplied.

(ロ)従来技術 燃料電池の冷却用空気の供給方法は、共通マニホルドに
送られた空気の一部を反応空気としてガス分離板の通路
へ、他の大部分は冷却空気として冷却板の通路へ夫々導
入する方法と、反応空気とは分離して冷却空気を供給す
る方法とがある。
(b) Conventional technology The method of supplying cooling air to a fuel cell is that part of the air sent to the common manifold is used as reaction air to flow through the gas separation plate passage, and most of the other air is used as cooling air to flow through the cooling plate passage. There are two methods: a method in which each air is introduced separately, and a method in which cooling air is supplied separately from the reaction air.

前者は各通路のパターンが簡単であるという利点を有す
るが、反応及び冷却に夫々必要とされる空気吸を各通路
に配分することがむつかしく、電池反応と’7E池温鹿
のバランスがくずれて電池特性上好ましくない。
The former has the advantage that the pattern of each passage is simple, but it is difficult to distribute the air intake required for reaction and cooling to each passage, and the balance between battery reaction and '7E pond temperature is lost. Unfavorable in terms of battery characteristics.

一方後者は第1図、@2図のようなスタック0)とマニ
ホルド(ロ)を用いて反応空気と冷却空気を分離供給す
るため、特に反応ガス通路のパターンが複雑となってガ
ス分離板の作成がむつかしいと共に流通抵抗が太きくな
?て大容量のブロワを必要とするなどの問題点があった
On the other hand, the latter uses a stack 0) and a manifold (b) as shown in Figures 1 and 2 to separate and supply reaction air and cooling air, so the pattern of the reaction gas passages is particularly complicated and the gas separation plate is Isn't it difficult to create and has high distribution resistance? There were problems such as the need for a large-capacity blower.

本出順人はかかる問題点に鑑み、冷却空気と反応空気を
共通に供給する方式のスタックにわづがの改良を加える
ことKよシ、冷却空気と反応空気とを分離供給できるよ
うにした空冷式燃料電池をすでに特願昭57−1571
33号で提案した。
In view of this problem, Junto Motode made a series of improvements to the stack that supplies cooling air and reaction air in common, making it possible to supply cooling air and reaction air separately. A patent application for air-cooled fuel cells has already been filed in 1971-1571.
I proposed this in issue 33.

上記電池は第3図乃至第5図に示すように、電池スタッ
ク(1)に介在する各冷却板(2)を前記スタックの空
気流通面より突設してスタックに取付けた反応空気用マ
ニホルド(3)の窓口(4)に気密的に装着し、各窓口
に前記冷却板(3)の空気通路(5)を露出させると共
に、前記反応空気用マニホルド(3)上に冷却空気用マ
ニホルド(6)を取付けたものである。又反応空気用マ
ニホルド(3)の−側面には、各冷却板(2)間のサブ
スタックに対応する連通口(7)を穿設すると共にこれ
ら連通口(7)を覆う補助マニホルド(8)を有する。
As shown in FIGS. 3 to 5, the battery described above has a reaction air manifold ( A cooling air manifold (6) is installed on the reaction air manifold (3) in an airtight manner to expose the air passage (5) of the cooling plate (3) to each window. ) is attached. In addition, communication ports (7) corresponding to the substack between each cooling plate (2) are bored on the negative side of the reaction air manifold (3), and an auxiliary manifold (8) is provided to cover these communication ports (7). has.

尚スタック(2)の水素流通面には通常の如く水素ガス
供給用マニホルド(9)が取付けられる。
A hydrogen gas supply manifold (9) is attached to the hydrogen flow surface of the stack (2) as usual.

この場合冷却板(2)の突設部(セ)と反応空気マニホ
ルド(3)の窓口(4)との間を密閉するため、一般的
に ゛第6図、第7図に示すように窓口(4)と冷却板
突設部(2′)との間隙にフッ素ゴム[1(i)を充填
塗着する方法が考えられる。しかし電池の大型化に伴い
スタック(11の積重セル数が増加した場合、サブスタ
ックfx)の厚みのバラツキにより、冷却板(2)の間
隔が不均一となり、そのため冷却板突設部と窓口とが寸
法的に合わなくなる可能性が生ずる。これには窓口(4
)の寸法を−まわり大きくして余裕をもたせれば詮が・
冷却板突設部)′)と0間隙は当然大きく1なって前記
の如き方法で密閉することは不可能になるという問題が
あった。
In this case, in order to seal the space between the protrusion (C) of the cooling plate (2) and the window (4) of the reaction air manifold (3), the window is generally closed as shown in Figures 6 and 7. A possible method is to fill and apply fluororubber [1(i)] into the gap between (4) and the cooling plate protrusion (2'). However, due to variations in the thickness of the stack (substack fx when the number of stacked cells of 11 increases) as batteries become larger, the intervals between the cooling plates (2) become uneven, and as a result, the gaps between the cooling plate protrusions and the windows become uneven. There is a possibility that the dimensions will not match. This includes the window (4
) If you increase the dimensions around - to provide some extra space, it will be easier to see.
There was a problem in that the gap between the cooling plate protrusion ()') and the cooling plate protrusion was naturally large and became impossible to seal using the method described above.

0 発明の目的 本発明の目的は簡単な構成をもつ冷却空気分離方式の空
冷式燃料電池を提供することであり、特に前Rt2問題
点を解消した反応空気用マニホルドと冷却板突設部との
シール構成を提供することである。
0 OBJECTS OF THE INVENTION The purpose of the present invention is to provide an air-cooled fuel cell of a cooling air separation type with a simple configuration, and in particular, to provide a reaction air manifold and a cooling plate protrusion that solve the previous Rt2 problem. It is to provide a seal configuration.

に)発明の構成 本発明は電池スタックの空気流通面に、反応空気用マニ
ホルドと冷却空気用マニホルドとを順次積重装着し、前
記スタックに介在する各冷却板を前記空気流通面より突
設してその空気通路を冷却空気用マニホルドに連通させ
た方式の空冷式燃料電池であって、前記反応空気用マニ
ホルドに、前記冷却板突設部が遊合する弯口を形成する
と共に、前記窓口より−まわり寸法の小さいシール枠を
一体に形設した耐熱絶縁性弾性板を添着し、前記冷却板
突設部を前記シール枠に気密的に装着せしめたことを特
徴とする。
B) Structure of the Invention The present invention is characterized in that a reaction air manifold and a cooling air manifold are stacked in sequence on the air circulation surface of a battery stack, and each cooling plate interposed in the stack is provided to protrude from the air circulation surface. The air-cooled fuel cell is of a type in which the reaction air manifold is formed with a curved opening into which the cooling plate protrusion fits loosely, and the air passage is communicated with a cooling air manifold. It is characterized in that a heat-resistant insulating elastic plate integrally formed with a seal frame having a smaller circumferential dimension is attached, and the cooling plate protrusion is attached to the seal frame in an airtight manner.

又、本発明は前記方式の空冷式燃料電池において、前記
反応空気用マニホルドの冷却空気用マニホルドと対向す
る面が前記各冷却板突設部を気密的に嵌着するシール枠
を一体に形設した耐熱絶へf性弾性板で構成されると共
に、前記弾性板上に前記各シール枠の遊合窓口を穿設し
た補強板を添着せしめたことを特徴とする。
Further, in the air-cooled fuel cell of the above-mentioned type, the present invention provides that the surface of the reaction air manifold facing the cooling air manifold is integrally formed with a sealing frame that airtightly fits each of the cooling plate protrusions. The present invention is characterized in that it is constructed of a heat-resistant, insulated, elastic plate, and a reinforcing plate in which openings for the respective seal frames are bored is attached to the elastic plate.

(ホ)実施例 本発明による電池スタック(1)は陰陽ガス極間に電解
質マトリックスを介挿した単位セルと、両面に互に交錯
する方向の各反応ガス通路(水素ガス及び空気)を配列
した炭素質ガス分離板とを交互に多数積重し、4〜5単
位スル毎に空気通路(5)を有する炭素質冷却板(2)
を介在させ、上下端板間で締付けて構成される。
(E) Example The battery stack (1) according to the present invention has a unit cell in which an electrolyte matrix is interposed between negative and positive gas electrodes, and reaction gas passages (hydrogen gas and air) arranged in mutually intersecting directions on both sides. A carbonaceous cooling plate (2) in which a large number of carbonaceous gas separation plates are stacked alternately and has an air passage (5) every 4 to 5 units.
It is constructed by interposing and tightening between the upper and lower end plates.

この構成は、反応空気と冷却空気とを共通的に供給する
所謂ダイガスシステムの電池スタックと同様であるが本
発明では各冷却板(2)をスタックfi+の空気流通面
より突設して冷却空気用マニホルド(6)と連通させて
冷却分離方式としたものである。
This configuration is similar to the battery stack of the so-called Daigas system that commonly supplies reaction air and cooling air, but in the present invention, each cooling plate (2) is provided protruding from the air circulation surface of the stack fi+ for cooling. It communicates with the air manifold (6) to provide a cooling separation system.

本発明は、このような各冷却板突出部(2)が反応空気
用マニホルド(3)を貫通する部分のシール構成に関す
るもので、その実施例を第8図乃至第11図について説
明する。
The present invention relates to a seal structure for the portion where each of the cooling plate protrusions (2) penetrates the reaction air manifold (3), and an embodiment thereof will be described with reference to FIGS. 8 to 11.

実施例1 第8図に示す反応空気用マニホルド(3)は、枠部(3
,1)と板体部(32)で構成されているが、両者は金
属のプレス加工で一体に形成してもよい。板体部(32
)には、冷却板突設部(2)が遊合する窓口(4)を間
隔を存して穿設しこの板体部(32)に添着されたフッ
素系ゴムなどの耐熱絶縁性弾性板(11)には、冷却板
突設部(2)が気密的に底着されるシール枠Qカを一体
に形設している。
Example 1 The reaction air manifold (3) shown in FIG.
, 1) and a plate part (32), but both may be integrally formed by metal press working. Plate part (32
), holes (4) are bored at intervals through which the cooling plate protrusions (2) fit together, and a heat-resistant insulating elastic plate such as fluorine rubber is attached to this plate body (32). (11) is integrally formed with a sealing frame Q to which the cooling plate protrusion (2) is hermetically bottomed.

第10図は第8図のシール部断面図であり1シ一ル部が
ゴムなどの弾性板で伸縮自在であるから各冷却板突設部
(2)に多少の間隔不均一があっても、これを吸収でき
ると共に、反応空気用マニホルド(3)の窓口(4)は
各冷却板突出部(2)の間隔不均一に対応できる大きさ
として冷却板との接触を防止できる0 冷却空気用マニホルド(6)は、前記弾性板(0)の周
辺部をシール部材に兼用して反応空気用マニホルド(3
)に締付固定される。
Fig. 10 is a cross-sectional view of the seal part in Fig. 8, and since one seal part is made of an elastic plate made of rubber or the like and can be expanded and contracted, even if there is some uneven spacing between the cooling plate protrusions (2), In addition to being able to absorb this, the window (4) of the reaction air manifold (3) is sized to accommodate the uneven spacing of each cooling plate protrusion (2) to prevent contact with the cooling plate. The manifold (6) uses the peripheral portion of the elastic plate (0) as a sealing member to form a reaction air manifold (3).
) is tightened and fixed.

実施例2 第9図に示す反応空気用マニホルド(3)は、枠部(3
1)と前記実施例1と同様の弾性板(11)で構成され
、この弾性板(11)に形成したシール枠θ−に前記と
同様冷却板突設部(2“)を気密的に底着する。この弾
性板(ltl上には、前記シール枠(1チの逃し用窓口
(4゛)を有する金属補強板(131を添着し、この補
強板(131上にシール部材を介して冷却空気用マニホ
ルド(6)を取付ける。この補強板(131を設けた理
由は、反応空気用マニホルド(3)の供給空気内圧が冷
却空気用マニホルド(6)の内圧に比し高いため、弾性
板(川が圧力差によって変形するのを防止するためであ
る。
Example 2 The reaction air manifold (3) shown in FIG.
1) and an elastic plate (11) similar to that of Example 1, and a cooling plate protrusion (2") is hermetically sealed at the bottom of the seal frame θ- formed on the elastic plate (11). A metal reinforcing plate (131) having one escape window (4゛) is attached to the elastic plate (ltl), and a cooling Install the air manifold (6).The reason for providing this reinforcing plate (131) is that the supply air internal pressure of the reaction air manifold (3) is higher than the internal pressure of the cooling air manifold (6). This is to prevent the river from deforming due to pressure differences.

第11図は第9図のシール部断面図であり、シール用弾
性板と金属板〔補強板(13)又は反応空気用マニホル
ド板体部(32〕との関係が逆になっているが、実施例
1に示すと同様の効果が得られることは容易に理解でき
る。
FIG. 11 is a sectional view of the seal part in FIG. 9, and the relationship between the sealing elastic plate and the metal plate [reinforcement plate (13) or reaction air manifold plate body part (32] is reversed). It can be easily understood that the same effect as shown in Example 1 can be obtained.

(ホ)発明の効果 オ、よよ工、1ゎ52ッ、。。−よ。ゆ 1空気用及び
反応空気用の各通路が開口する通常のスタックにわづか
の修正を加えることにより、冷却空気分離方式とするこ
とができるので、従来の分離方式に比し、各反応ガネ通
路のパターンが極めて単純でガス分離板の作成が簡単化
される。
(e) Effects of invention Oh, yoyo engineering, 1ゎ52. . -Yo. By making a slight modification to a normal stack in which air and reaction air passages are open, a cooling air separation system can be created. The pattern is extremely simple, simplifying the production of the gas separation plate.

又スタックに介在する冷却板より突設した部分は、耐熱
性ゴムなどの弾性板に形設したシール枠に気密的に嵌着
されて反応空気用マニホルドを貫通しているので、各突
設冷却板の間隔が多少不均一でも融通性があって組立上
有利となり、この弾性板を添着した反応空気用マニホル
ド面の窓口は太きくして突設冷却板との接触を防止する
ことが可能となると共に、反応空気用マニホルド面を弾
性板で47¥成した場合には、7−ル枠の逃し用窓口を
有する補強板が、互に重台装着された反応空気用及び冷
却空気用各マニホルド内の圧力差による弾性板の変形を
防止する。
In addition, the parts protruding from the cooling plates interposed in the stack are hermetically fitted into seal frames formed from elastic plates such as heat-resistant rubber, and pass through the reaction air manifold, so that each protruding cooling Even if the spacing between the plates is somewhat uneven, it is flexible and advantageous for assembly, and the window on the reaction air manifold surface to which this elastic plate is attached can be made thicker to prevent contact with the protruding cooling plate. In addition, when the reaction air manifold surface is made of an elastic plate, a reinforcing plate with a 7-hole frame relief window is installed inside each of the reaction air and cooling air manifolds, which are mounted on each other. prevents deformation of the elastic plate due to pressure difference.

更にマニホルドに添着した弾性板の周辺部は、冷却空気
用マニホルドの取付シール部材を兼用することが1」能
となるなど種々の利点を有する。
Furthermore, the peripheral portion of the elastic plate attached to the manifold has various advantages such as being able to double as a mounting seal member for the cooling air manifold.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はいづれも従来の分離式冷却空気経路を
有する空冷式電池の平面図である。第3図乃至第5図は
本発明燃料電池を示し、竿3図は同上の斜面図、第4図
は一部分解斜面図、第5図は同上電池スタックの斜面図
である。第6図、第7図は一般的な反応空気マニホルド
と突設冷却板のシール部を示し、第6図は要部断面図、
第7図は正面図である。第8図、第9図はいずれも本発
明燃料電池の要部分解斜面図、第10図、第11図は夫
々前記第8図、第9図に夫々対応するシール部断面図を
示す□ (1)・・・電池スタック、(2)・・・冷却板、(2
;・・・冷却板突設部、(3)・・・反応空気用マニホ
ルド、(4)(4)・・窓口、(5)・・・空気通路、
(6)・・・冷却空気用マニホルド、(7)・・・連通
口、(8)・・・補助マニホルド、(9)・・・反応水
素用マ枠、(1:1・・・補強板。 第1図 第7図 第6図 第1θ図 第U図
FIG. 1 and FIG. 2 are both plan views of a conventional air-cooled battery having a separate cooling air path. 3 to 5 show the fuel cell of the present invention, in which Figure 3 is a perspective view of the same, FIG. 4 is a partially exploded perspective view, and FIG. 5 is a perspective view of the battery stack. Figures 6 and 7 show a general reaction air manifold and the sealing part of the protruding cooling plate, and Figure 6 is a cross-sectional view of the main parts.
FIG. 7 is a front view. 8 and 9 are exploded perspective views of essential parts of the fuel cell of the present invention, and FIGS. 10 and 11 are sectional views of the seal portion corresponding to FIGS. 8 and 9, respectively. 1)...Battery stack, (2)...Cooling plate, (2
;... Cooling plate protrusion, (3)... Reaction air manifold, (4) (4)... Window, (5)... Air passage;
(6)... Cooling air manifold, (7)... Communication port, (8)... Auxiliary manifold, (9)... Reaction hydrogen frame, (1:1... Reinforcement plate Figure 1 Figure 7 Figure 6 Figure 1θ Figure U

Claims (1)

【特許請求の範囲】 ■ 電池スタックの空気流通面に、反応空気用マニホル
ドと冷却空気用マニホルドとを順次積重装着し、前記ス
タックに介在する各冷却板を前記空気流通面より突設し
てその空気通路を前記冷却空気用マニホルド内に連通し
てなり、前記反応空気用マニホルドに、冷却板突設部が
遊合する窓口を形成すると共に、前記窓口より小さいシ
ール枠を一体に形設した耐熱絶縁性弾性板を添着し、前
□ 記各冷却板突設部を前記各シール枠に気密的に嵌着
せしめたことを特徴とする空冷式燃料電池。 ■ 前記弾性板の周辺部が冷却空気用マニホルドの取付
シール部材を一部していることを特徴とする特許請求の
範囲第1項記載の空冷式燃料電池。 ■ 電池スタックの空気流通面に、反応空気用マニホル
ドと冷却空気用マニホルドとを順次積重装着し、前記電
池スタックに介在する各冷却板を前記空気流通面より突
設してその空気通路を前記冷却空気用マニホルド内に連
通してなり、前記反応空気用マニホルドは、冷却空気用
マニホルドに対向する面が前記各冷却板突設部を気密的
に嵌着するシール枠を一体に突設した耐熱絶縁性弾性板
で構成されると共に、前記弾性板上に前記各シール枠の
逃し窓口を穿設した補強板を添着せしめたことを特徴と
する空冷式燃料電池。
[Claims] ■ A reaction air manifold and a cooling air manifold are stacked in sequence on the air circulation surface of the battery stack, and each cooling plate interposed in the stack is provided to protrude from the air circulation surface. The air passage is communicated with the inside of the cooling air manifold, and the reaction air manifold is formed with a window through which the cooling plate protrusion fits loosely, and a sealing frame smaller than the window is integrally formed. An air-cooled fuel cell characterized in that a heat-resistant insulating elastic plate is attached, and each of the cooling plate protrusions described above is hermetically fitted into each of the seal frames. (2) The air-cooled fuel cell according to claim 1, wherein a peripheral portion of the elastic plate serves as a part of a mounting seal member for a cooling air manifold. ■ A reaction air manifold and a cooling air manifold are sequentially stacked and mounted on the air circulation surface of the battery stack, and each cooling plate interposed in the battery stack is provided to protrude from the air circulation surface to open the air passage. The reactor air manifold is connected to the inside of the cooling air manifold, and the reaction air manifold has a sealing frame integrally protruding from the surface facing the cooling air manifold to airtightly fit each of the cooling plate protrusions. 1. An air-cooled fuel cell comprising a heat-resistant insulating elastic plate, and a reinforcing plate having relief windows for each of the seal frames attached to the elastic plate.
JP58111322A 1982-09-08 1983-06-20 Air cooling type fuel cell Granted JPS603869A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58111322A JPS603869A (en) 1983-06-20 1983-06-20 Air cooling type fuel cell
US06/528,443 US4508793A (en) 1982-09-08 1983-09-01 Air-cooled fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58111322A JPS603869A (en) 1983-06-20 1983-06-20 Air cooling type fuel cell

Publications (2)

Publication Number Publication Date
JPS603869A true JPS603869A (en) 1985-01-10
JPH0136672B2 JPH0136672B2 (en) 1989-08-01

Family

ID=14558275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58111322A Granted JPS603869A (en) 1982-09-08 1983-06-20 Air cooling type fuel cell

Country Status (1)

Country Link
JP (1) JPS603869A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999022413A1 (en) * 1997-10-28 1999-05-06 Kabushiki Kaisha Toshiba A fuel cell with a gas manifold
JP2007509482A (en) * 2003-10-23 2007-04-12 ユーティーシー フューエル セルズ,エルエルシー Easily isolated oversized fuel cell stack cooling plate
JP2007122999A (en) * 2005-10-27 2007-05-17 Nippon Telegr & Teleph Corp <Ntt> Fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999022413A1 (en) * 1997-10-28 1999-05-06 Kabushiki Kaisha Toshiba A fuel cell with a gas manifold
US6410177B1 (en) 1997-10-28 2002-06-25 Kabushiki Kaisha Toshiba Fuel cell having gas manifold
JP2007509482A (en) * 2003-10-23 2007-04-12 ユーティーシー フューエル セルズ,エルエルシー Easily isolated oversized fuel cell stack cooling plate
JP2007122999A (en) * 2005-10-27 2007-05-17 Nippon Telegr & Teleph Corp <Ntt> Fuel cell

Also Published As

Publication number Publication date
JPH0136672B2 (en) 1989-08-01

Similar Documents

Publication Publication Date Title
US5362578A (en) Integrated main rail, feed rail, and current collector
US6423439B1 (en) Membrane electrode assembly for an electrochemical fuel cell
US20020127461A1 (en) Fuel cell and fuel cell stack
EP0281949B1 (en) Corrosion resistant fuel cell structure
JPH0935726A (en) Gas plate, cooling plate for fuel cell, and fuel cell
US3436272A (en) Stacked fuel cells
JPS61279068A (en) Molten carbonate fuel cell
JPS603869A (en) Air cooling type fuel cell
JP4337394B2 (en) Fuel cell
JPH0275162A (en) Fuel cell
JPH0160902B2 (en)
JP4283381B2 (en) Electrolysis cell of hydrogen oxygen generator and electrode plate thereof
JPS6322426B2 (en)
JPS6010565A (en) Seal structure for fuel cell
JP2554114B2 (en) Fuel cell separator
JPH1092447A (en) Layer-built fuel cell
JPS58164171A (en) Cell stack of fuel cell
JPS6317160Y2 (en)
JPH0311059B2 (en)
JPH0613091A (en) Plate solid electrolyte fuel cell
JP2007510274A (en) PEM fuel cell stack assembly with isolated internal refrigerant manifold
JP2708500B2 (en) Stacked fuel cell
KR102541553B1 (en) Fuel cell stack system
JPS59219866A (en) Fuel cell
JP2569541B2 (en) Separator for fuel cell