[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS603843A - X-ray tube - Google Patents

X-ray tube

Info

Publication number
JPS603843A
JPS603843A JP58110828A JP11082883A JPS603843A JP S603843 A JPS603843 A JP S603843A JP 58110828 A JP58110828 A JP 58110828A JP 11082883 A JP11082883 A JP 11082883A JP S603843 A JPS603843 A JP S603843A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer surface
anode body
heat
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58110828A
Other languages
Japanese (ja)
Inventor
Yatsuyasu Matsubayashi
松林 八康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP58110828A priority Critical patent/JPS603843A/en
Publication of JPS603843A publication Critical patent/JPS603843A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/12Cooling non-rotary anodes
    • H01J35/13Active cooling, e.g. fluid flow, heat pipes

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • X-Ray Techniques (AREA)

Abstract

PURPOSE:To improve the cooling efficiency of an anode body by providing multiple lugs on a heat transfer surface on the operating liquid side. CONSTITUTION:An electron beam emitted from a cathode enters an anode body 1, part of it is radiated outside as X-ray energy, but most of it is absorbed by the anode as a heat loss. The heat generated in the anode body 1 is transferred to an operating liquid 6 through the heat transfer surface 12 of a metal lump 2. Multiple rectangular pyramidal projections 13 are provided on the heat transfer surface of the metal lump 2. Accordingly, the boiling of the operating liquid 6 first occurs at the base 14 of the projection 13 and the film formation gradually proceeds to the tip 16 of the projection 13, thereby the cooling efficiency can be improved as compared with the case of a flat heat transfer surface.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、電子ビームが入射する陽極体を有する金属塊
々、この金属塊力)ら外部に突出した伝熱部材と、この
伝熱部材の他端に配設された冷却手段とを備えたX線管
に係り、特に頭部コンピュータ、トモグラフィ用などの
ように陽極体に入射する熱量の大きなX線管に好適な冷
却構追に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a metal block having an anode body onto which an electron beam is incident, a heat transfer member protruding outward from the metal block, and a heat transfer member of the heat transfer member. The present invention relates to an X-ray tube equipped with a cooling means disposed at the other end, and particularly relates to a cooling structure suitable for an X-ray tube that has a large amount of heat incident on the anode body, such as for head computers, tomography, and the like.

〔発明の背景〕[Background of the invention]

従来のX線管は、実開昭55−124762号公報に示
すような構造よりなる。この構造は、第1図に示すよう
Iこ陰極(図示せず)に対向して配設された陽極体Iを
一端lこ有する金属塊2の他端には、伝熱部材3を有し
、この伝熱部材3の他端に冷却手段4がねじ5で取イ」
けられている。伝熱部材3および冷却手段4にけ連通し
た中空部が形成され、この中空部に蒸発性の作動液6お
よび仕切板7が内蔵されている。前記伝熱部材3の外側
はガラスシール金具8を介してガラス管9が接続されて
おり、ガラス管9の先端Cζ前記陰極部が封着されてい
る。
A conventional X-ray tube has a structure as shown in Japanese Utility Model Application No. 55-124762. As shown in FIG. 1, this structure has a metal block 2 at one end which has an anode body I disposed opposite to a cathode (not shown), and a heat transfer member 3 at the other end. A cooling means 4 is attached to the other end of this heat transfer member 3 with a screw 5.
I'm being kicked. A hollow portion communicating with the heat transfer member 3 and the cooling means 4 is formed, and an evaporative working fluid 6 and a partition plate 7 are housed in this hollow portion. A glass tube 9 is connected to the outside of the heat transfer member 3 via a glass seal fitting 8, and the cathode portion Cζ of the glass tube 9 is sealed.

そこで、陰極から放射した電子ビームが陽極体1昏こ入
射し、一部はX腺エネルギーとして外部に放射されるが
、大部分は陽極に吸収され熱損失となる。陽極体1で発
生した熱は金属塊2の伝熱面IOから作動液6に伝熱さ
れる。作動液6の温度が沸点を越えると伝熱面10に気
泡が発生し、作動液6が気化し多量の気化熱をうばうた
め、伝熱面10が冷却される。いわゆる蒸発冷却あるい
は沸騰冷却とよばれる現象が生ずる。伝熱面10に発生
した気泡は伝熱部材−3の中空部内を通って冷却手段4
の方lこ移動し、冷却手段4の空間11に集まり、冷却
手段4によって熱を失って液相となり、再び作動液6に
戻る。
Therefore, the electron beam emitted from the cathode enters the anode body, and a portion is emitted to the outside as X gland energy, but the majority is absorbed by the anode and results in heat loss. The heat generated in the anode body 1 is transferred from the heat transfer surface IO of the metal lump 2 to the working fluid 6. When the temperature of the working fluid 6 exceeds the boiling point, bubbles are generated on the heat transfer surface 10, and the working fluid 6 vaporizes and carries away a large amount of heat of vaporization, thereby cooling the heat transfer surface 10. A phenomenon called evaporative cooling or boiling cooling occurs. The bubbles generated on the heat transfer surface 10 pass through the hollow part of the heat transfer member 3 and pass through the cooling means 4.
It moves in this direction, gathers in the space 11 of the cooling means 4, loses heat by the cooling means 4, becomes a liquid phase, and returns to the working fluid 6 again.

ところで、従来の伝熱面10は平面状であるので、金属
塊2の熱量が増加するにつれ伝熱面10で発生する気泡
は全面に亘って一様に発生し、さらに熱量が増加する場
合には伝熱面10は気泡Iこ覆イつれてしまう。この状
態は膜沸騰とよばれ、冷却能率が低下し、陽極体1の損
傷を招く欠点があった。
By the way, since the conventional heat transfer surface 10 is planar, as the heat amount of the metal lump 2 increases, the bubbles generated on the heat transfer surface 10 are uniformly generated over the entire surface, and when the heat amount further increases, In this case, the heat transfer surface 10 is covered with air bubbles I and becomes entangled. This state is called film boiling, and has the drawback of reducing cooling efficiency and causing damage to the anode body 1.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、陽極体の冷却が十分に行なわれ、長寿
命化が図れるX線管を提供することにある。
An object of the present invention is to provide an X-ray tube whose anode body can be sufficiently cooled and whose life can be extended.

〔発明の概要〕[Summary of the invention]

本発明は、金属塊の作動液側の伝熱面に複数個の突起を
設けたことを特徴とする。
The present invention is characterized in that a plurality of protrusions are provided on the heat transfer surface of the metal lump on the hydraulic fluid side.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図1こより説明する。な
お、第1図り同じまたは相当部材には同じ符号を付し、
その説明を省略する。金属塊2の伝熱面12には第3図
に示すような四角錐状の突起13が複数個設けられてい
る。
Hereinafter, one embodiment of the present invention will be explained with reference to FIG. 2. In addition, the same reference numerals are given to the same or equivalent parts as in the first diagram,
The explanation will be omitted. A plurality of square pyramid-shaped projections 13 as shown in FIG. 3 are provided on the heat transfer surface 12 of the metal lump 2. As shown in FIG.

従って1作動液6の沸騰はまず突起13の根元14で起
り、熱量が増加するにつれ突起13の根元14が気泡の
膜で覆われ、さらに突起13の根元14の方から側壁」
5が膜に覆われ始め、徐々に突起13の先端16の方ま
で膜形成が進行してくる。
Therefore, boiling of the working fluid 6 first occurs at the root 14 of the protrusion 13, and as the amount of heat increases, the root 14 of the protrusion 13 becomes covered with a film of bubbles, and then from the root 14 of the protrusion 13 to the side wall.
5 begins to be covered with a film, and film formation gradually progresses to the tip 16 of the protrusion 13.

このようlこ、突起13の根元14の方から先端16の
方に徐々に膜形成が進行するので、従来のような平面な
伝熱面に比べ、冷却能率が向上する。
In this way, since the film formation gradually progresses from the root 14 of the protrusion 13 to the tip 16, the cooling efficiency is improved compared to a conventional flat heat transfer surface.

なお、突起13の形状は特に限定されるものではなく、
例えば三角錐、半球、円柱、円#ffjなどの形状でも
よい。また本実施例の場合も第1図の場合と同様に仕切
板7を設けてもよい。
Note that the shape of the protrusion 13 is not particularly limited;
For example, the shape may be a triangular pyramid, a hemisphere, a cylinder, a circle #ffj, or the like. Also in this embodiment, a partition plate 7 may be provided as in the case of FIG.

次に本発明の要旨と直接関係ないが、第1図に示す構造
の別の欠点を解消した構造について説明する。第1図に
おいて説明したように陽極体1で 1発生した熱は金属
塊2の伝熱面10から作動液6に伝達され、作動液6の
温度が沸点を越えると伝熱面10に気泡が発生し、作動
液6が気化し多量の気化熱をうばう。し力)し、この気
泡が伝熱面10力)ら離れず密着していると新しい気泡
が発生しないため、著しく冷却能率が低下する。
Next, although not directly related to the gist of the present invention, a structure that eliminates another drawback of the structure shown in FIG. 1 will be described. As explained in FIG. 1, the heat generated in the anode body 1 is transferred from the heat transfer surface 10 of the metal lump 2 to the working fluid 6, and when the temperature of the working fluid 6 exceeds the boiling point, bubbles are formed on the heat transfer surface 10. The working fluid 6 vaporizes and absorbs a large amount of heat of vaporization. If these bubbles do not separate from the heat transfer surface and remain in close contact with the heat transfer surface, no new bubbles will be generated, resulting in a significant drop in cooling efficiency.

4〜 ところで、伝熱面10に発生した気泡は初め内は伝熱面
10から離れ伝熱部拐3の中空内壁17に移Rr)Jす
るが、X線管を水平に使用する場合、中“空白壁17が
水平となるので、中空内壁17の気泡は空間11の方に
移動し1lCI、 )。このため、伝熱面10の気?f
iIの剥離も起り別Fくなり、冷却能力が低下し、陽極
体1の損傷を招く欠点があった。
4 ~ By the way, bubbles generated on the heat transfer surface 10 initially move away from the heat transfer surface 10 and into the hollow inner wall 17 of the heat transfer section 3, but when the X-ray tube is used horizontally, “Since the blank wall 17 is horizontal, the air bubbles in the hollow inner wall 17 move toward the space 11, 1lCI, ).For this reason, the air bubbles on the heat transfer surface 10 ?f
There was also a problem that peeling of iI occurred and resulted in another F, resulting in a decrease in cooling ability and damage to the anode body 1.

このような欠点は、第4図に示ずように伝熱部利3の中
空内壁を円錐形中空内壁18に形成することにより解消
される。すなわち、伝熱面iotこ発生した気泡は円錐
形中空内壁18をこ沿って容易に上昇し、冷却手段4側
に移動し易い。従って、伝熱面10は常に液相で覆われ
、十分な冷却が行なわれる。また円錐形中空内壁18の
陽極体1側は伝熱面としても作用する。
These drawbacks can be overcome by forming the hollow inner wall of the heat transfer section 3 into a conical hollow inner wall 18 as shown in FIG. That is, the bubbles generated on the heat transfer surface easily rise along the conical hollow inner wall 18 and move toward the cooling means 4 side. Therefore, the heat transfer surface 10 is always covered with a liquid phase and is sufficiently cooled. Further, the anode body 1 side of the conical hollow inner wall 18 also acts as a heat transfer surface.

そこで、伝熱部材3の中空内壁を円錐形中空内壁18と
し、伝熱面10を第2図に示す伝熱面12として突起1
3を形成すると、−胴冷却能率が向上する。
Therefore, the hollow inner wall of the heat transfer member 3 is made into a conical hollow inner wall 18, and the heat transfer surface 10 is made into a heat transfer surface 12 shown in FIG.
3 improves the cooling efficiency of the barrel.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、金朽塊の作動液側の伝熱面に複数個・
の突起を設けてなるので、陽極体の冷却能率が向上し、
信頼性に優れ、かつ長寿命化が図れる。
According to the present invention, a plurality of
Since the protrusion is provided, the cooling efficiency of the anode body is improved,
Excellent reliability and long life.

【図面の簡単な説明】[Brief explanation of drawings]

@1図は従来のX線管の陽極側冷却41り造の断面図、
第2図は本発明になるX線管の陽極側冷却借造の一実施
例を示す断面図、第3図は第2図の伝熱面の斜視図、第
4図はX線管の陽極(flll冷却搭造の他の例を示す
断面図である。 1・・・陽極体、 2・・・金属塊、 3・・・伝熱部
拐、4・・・冷却手段、 6・・・作動液、 12・・
・伝熱面、 13・・・突起。 第1図 第2図 第3図 第4図
Figure @1 is a cross-sectional view of the anode side cooling 41 structure of a conventional X-ray tube.
Fig. 2 is a sectional view showing an embodiment of the anode side cooling borrow of the X-ray tube according to the present invention, Fig. 3 is a perspective view of the heat transfer surface of Fig. 2, and Fig. 4 is an anode of the X-ray tube. (It is a sectional view showing another example of the flll cooling tower. 1...Anode body, 2...Metal lump, 3...Heat transfer section, 4...Cooling means, 6... Hydraulic fluid, 12...
・Heat transfer surface, 13...Protrusion. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 陽極体を有する金属塊と、この金属塊から外部lこ突出
し内部に蒸発性の作動液が封入された伝熱部材と、この
伝熱部材の他端lこ配設された冷却手段とを備えたX線
管において、前記金属塊の作動液側の伝熱面に′a数個
の突起を設けてなるX線管。
A metal block having an anode body, a heat transfer member protruding from the metal block to the outside and having an evaporative working fluid sealed inside, and a cooling means disposed at the other end of the heat transfer member. An X-ray tube comprising several protrusions on the heat transfer surface of the metal block on the working fluid side.
JP58110828A 1983-06-22 1983-06-22 X-ray tube Pending JPS603843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58110828A JPS603843A (en) 1983-06-22 1983-06-22 X-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58110828A JPS603843A (en) 1983-06-22 1983-06-22 X-ray tube

Publications (1)

Publication Number Publication Date
JPS603843A true JPS603843A (en) 1985-01-10

Family

ID=14545683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58110828A Pending JPS603843A (en) 1983-06-22 1983-06-22 X-ray tube

Country Status (1)

Country Link
JP (1) JPS603843A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943989A (en) * 1988-08-02 1990-07-24 General Electric Company X-ray tube with liquid cooled heat receptor
JP4749615B2 (en) * 2001-07-19 2011-08-17 株式会社日立メディコ Fixed anode type X-ray tube device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943989A (en) * 1988-08-02 1990-07-24 General Electric Company X-ray tube with liquid cooled heat receptor
JP4749615B2 (en) * 2001-07-19 2011-08-17 株式会社日立メディコ Fixed anode type X-ray tube device

Similar Documents

Publication Publication Date Title
CN103997839B (en) It is a kind of to collimate modulated X-ray emitter
ITRM940013U1 (en) PROGRESSIVE WAVE PIPE COOLING DEVICE MOUNTED IN A GEOSSTATIONARY SATELLITE THAT INCLUDES THE APPLICATION.
JPS603843A (en) X-ray tube
CN109450372A (en) A kind of desert photovoltaic power generation radiator
WO2017128812A1 (en) Integrated heat radiator and heat dissipation method
CN207118198U (en) Ultra-thin soaking plate
CN106653521A (en) Magnetron
CN207080887U (en) A kind of heat sinking LED track lamps
CN217375672U (en) Waterproof protection device for radar
CN215681978U (en) A motor protective shell
CN109714932A (en) Network base station radiating cabinet
CN113540628B (en) Battery cover, battery shell and battery
CN218550550U (en) Aluminum alloy radiating plate
CN214008972U (en) High-low temperature protection device for laser performance
CN109916134A (en) A semiconductor refrigeration constant temperature water tank
CN210343677U (en) Novel high-pressure pump
CN211039037U (en) High-efficiency Roots vacuum pump
CN219319164U (en) High-efficiency cooling tower nozzle
CN210573535U (en) Phase-change heat absorption and dissipation computer case
CN219347463U (en) Compact temperature-control uniform-temperature micro-channel heat pipe for solar photovoltaic panel and photovoltaic panel
CN219437211U (en) Circuit main board heat radiation structure
CN217933819U (en) Auxiliary heat dissipation device for gallium arsenide cell light-gathering cover
CN215898298U (en) C-band multi-channel T/R module
JPS5634057A (en) Solar heat collector
JPS5287864A (en) Methane fermentation tank