JPS6037602B2 - Permanent magnet material and its manufacturing method - Google Patents
Permanent magnet material and its manufacturing methodInfo
- Publication number
- JPS6037602B2 JPS6037602B2 JP50098032A JP9803275A JPS6037602B2 JP S6037602 B2 JPS6037602 B2 JP S6037602B2 JP 50098032 A JP50098032 A JP 50098032A JP 9803275 A JP9803275 A JP 9803275A JP S6037602 B2 JPS6037602 B2 JP S6037602B2
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- magnet material
- cemm
- alloy
- neodymium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0433—Nickel- or cobalt-based alloys
- C22C1/0441—Alloys based on intermetallic compounds of the type rare earth - Co, Ni
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/0555—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
- H01F1/0557—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】
本発明は主としてセルミッシメタル(CeMM)および
コバルトを含む永久磁石材料およびその製法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention primarily relates to a permanent magnet material containing CeMM and cobalt, and a method for producing the same.
この種の材料は文献にすでに多数記載されている。たと
えばD.V.ラトナム(Ratnam)およびM.G.
日.ウエルズ(Wens)は川PConf.Proc.
18 アメリカンインステイテユートオブ フイジクス
(AmencanInstituteofPh侭ics
、ニューヨーク(NewYork)1974にミツシメ
タルーコバルト磁石の特性を示した。ラトナムおよびウ
ェルズはこの中にlamG戊までのエネルギー積および
14KOeまでの保磁力を有する個々の磁石について報
告しているけれど、これらの磁石は矩形性の顕著でない
減滋曲線しか示さない。“セルミッシメタル”とは鉱石
から分離された軽い希土類を表わす。Many materials of this type have already been described in the literature. For example, D. V. Ratnam and M. G.
Day. Wens is a member of the River PConf. Proc.
18 American Institute of Physics
, New York, 1974, showed the characteristics of Mitsushi metal-cobalt magnets. Ratnam and Wells here report individual magnets with energy products up to lamG and coercivities up to 14 KOe, but these magnets exhibit only depletion curves with no significant rectangularity. "Selmismetal" refers to a light rare earth separated from ore.
たとえばE.V.クレーバ(K1eber)およびB.
ラブ(Loue)はテクノロジーオブ スカソジウム
(Technology ofScand肌m)、イッ
トリウム アンド ザ レアアース メタルズ(Yt
qMm and the RareEaれh Meta
ls)、パーガモン プレス(Pergermon
Press)、ニュー ヨーク(NewYork)1
96310ページにバストネス石およびモナズ石は希±
類を次言己の%で含有することを示している:バストネ
ス石 モナズ石
La 30 38
Ce 50 48.5
Pr 4 3.6
Nd 14 8.8
Sm l 0.5
すなわちセルミツシメタルの組成は1定でなくて原料鉱
石に応じて最重要成分セリウム、ランタン、ネオジムお
よびプラセオジムが少なくとも45〜5を 20〜40
、5〜14、0〜5原子%の間で変動する。For example, E. V. Kleber and B.
Loue is a technology of Scandium, Yttrium and the Rare Earth Metals.
qMm and the RareEareh Meta
ls), Pergermon Press
Press), New York 1
On page 96310, bastnesite and monazite are rare.
The following shows that it contains the following percentages: Bastnesite Monazite La 30 38 Ce 50 48.5 Pr 4 3.6 Nd 14 8.8 Sm l 0.5 In other words, the composition of Selmitsimetal is The most important components cerium, lanthanum, neodymium and praseodymium are at least 45 to 5 and 20 to 40 depending on the raw material ore.
, 5-14, 0-5 at.%.
これはたしかにセルミツシメタルまたはセルミッシメタ
ル添加剤により良好な特性および再現可能な値を有する
サマリウム磁石を製造することが困難な理由である。そ
れゆえ本発明の目的は矩形減磁曲線が優れているだけで
なく、さらに再現可能に経済的に製造しうるエネルギー
積が約laMq史以上および保磁力が靴戊以上のセルミ
ッシメタル含有永久磁石材料を得ることである。This is certainly the reason why it is difficult to produce samarium magnets with good properties and reproducible values with Selmitsimetal or with Selmitsimetal additives. Therefore, it is an object of the present invention to provide a permanent magnet containing Celmissi metal that not only has an excellent rectangular demagnetization curve, but also has an energy product of about 1 aMq or more and a coercive force of about 1 aM or more, which can be manufactured reproducibly and economically. It's about getting the materials.
この目的は本発明により材料が一般式:
(CeMM,〜SEX),−ySmyC*土〇.2〔こ
こに0.05くxく0.5:OSyミ0.25であり、
SEは希土類セリウム、ランタン、ネオジムおよびプラ
セオジムの1つを表わす〕の組成を有し、その際セルミ
ツシメタルがほぼCeQW8NdyPr6〔ここに0.
45<Q<0.55、0.20<8<0.40、0.0
5<y<0.1ふ 0.0びく6<0.05およびQ+
3十y+6ら1である〕の組成を有し、かつ製品磁石材
料におけるセリウムとランタン、ネオジムまたはプラセ
オジムの原子%の比が0.20/0‐55ミLa/Ce
もしくはい/Ce三0.40/0.4ふ
または0.05/0.55三Nd/CeもしくはNd/
Ce三0.15/0.45またはPr/Ce三0.05
/0.45
の条件を充足することによって解決される。For this purpose, according to the invention, the material has the general formula: (CeMM, ~SEX), -ySmyC*Sat〇. 2 [here 0.05 x 0.5: OSy mi 0.25,
SE stands for one of the rare earths cerium, lanthanum, neodymium and praseodymium], where the cermitsimetal is approximately CeQW8NdyPr6 [where 0.
45<Q<0.55, 0.20<8<0.40, 0.0
5<y<0.1fu 0.0 6<0.05 and Q+
30y+6x1], and the atomic percent ratio of cerium and lanthanum, neodymium or praseodymium in the product magnet material is 0.20/0-55 μLa/Ce.
or 3 Ce or 0.40/0.4 ft or 0.05/0.55 3 Nd/Ce or Nd/
Ce30.15/0.45 or Pr/Ce30.05
/0.45 is solved by satisfying the condition.
原料セルミッシメタルの組成範囲は上記のように規定さ
れるので、原料セルミッシメタル中のたとえばい/Ce
の比は0.20/0.55(最小値)<La/Ce<0
.40/0.45(最大値)の範囲内にあり、すなわち
最小値0.20/0.55より大きく、最大値0.40
/0.45より小さい。Since the composition range of the raw material Celmissi metal is defined as above, for example,
The ratio is 0.20/0.55 (minimum value)<La/Ce<0
.. 40/0.45 (maximum value), i.e. greater than the minimum value 0.20/0.55 and the maximum value 0.40
/0.45.
しかし本発明によりSEとしてたとえば凶を使用するこ
とにより、製品磁石材料のい/Ceの比はこの最大値0
.40/0.45以上になり、SEとしてたとえばCe
を使用する場合この比は最小値0.20/0.55以下
にならなければならない。ネオジムまたはプラセオジム
添加の場合も同様である。SEとして純粋に近いセリウ
ム、ランタン、ネオジムおよびプラセオジムの1つをQ
+8十y+6を1すなわち純度の高いセルミツシメタル
にこのような量で付加的に添加することによって、セル
ミツシメタル中の不純物とくに鉄の含有率がさらに低下
されることと相まって、後述のように添加元素に応じて
製品磁石材料の磁気特性が改善される。このような材料
を製造するには原料合金および場合により焼結添加剤を
粗く粉砕した形でミルに装入し、保護ガス下に粒子サイ
ズ数仏の粉末に磨砕し、約50KOeの磁場内で配向し
、アィソスタチックに成形体に圧縮し、1035〜10
45ooの間で焼結し、30000を超える温度で熱処
理するのが有利である。However, according to the present invention, by using, for example, Ce as SE, the ratio of I/Ce of the product magnet material can be reduced to this maximum value of 0.
.. 40/0.45 or more, and as an SE, for example, Ce
When using , this ratio must be less than or equal to the minimum value 0.20/0.55. The same applies to the addition of neodymium or praseodymium. One of nearly pure cerium, lanthanum, neodymium and praseodymium as SE
By additionally adding +80y+6 in such an amount to 1, that is, highly pure Selmitsushi metal, the content of impurities, especially iron, in Selmitsushi metal is further reduced, and as will be described later. The magnetic properties of the product magnet material are improved depending on the added elements. To produce such materials, the raw material alloy and optionally sintering additives are charged to a mill in coarsely ground form, ground under protective gas to a powder with a particle size of several degrees, and then heated in a magnetic field of about 50 KOe. 1035 to 10
It is advantageous to sinter at temperatures between 45°C and heat treat at temperatures above 30,000°C.
熱処理は有利に2種の方法で行うことができる。The heat treatment can advantageously be carried out in two ways.
1つの方法によれば永久磁石材料を950〜10200
0、とくに980土1oo○の温度で1畑時間加熱処理
し、その直後急冷し、続いて300〜600ooとくに
約350q0で30〜40分、場合により60分まで焼
戻し処理する。According to one method, the permanent magnet material is 950-10200
Heat treatment is performed at a temperature of 300 to 600 degrees Celsius, especially about 350 degrees Celsius, for 30 to 40 minutes, and in some cases up to 60 minutes.
しかし第2法として永久磁石材料を加熱処理後、低い温
度たとえば約300℃のゾーンに入れ、最大1時間後と
くに15分後に室温に冷却することもできる。このよう
に製造した磁石材料は例外なく高いエネルギー積、大き
い保磁力およびほぼ矩形の減磁曲線を有するのが特徴で
ある。とくにセルミッシメタルーコバルト含有材料は保
磁力の意外な改善を示す。とくにネオジムの過剰分が0
〜45原子%の材料はさらに改善された残留磁気を示す
。材料は原料合金から保護ガス雰囲気中、たとえばヘリ
ウムまたはアルゴン下に嘘結することができる。However, as a second method, it is also possible to place the permanent magnet material after heat treatment in a zone at a low temperature, for example about 300 DEG C., and to cool it to room temperature after a maximum of 1 hour, especially after 15 minutes. Magnet materials produced in this way are invariably characterized by a high energy product, a large coercive force and an approximately rectangular demagnetization curve. In particular, cermiscimetal-cobalt-containing materials show a surprising improvement in coercive force. In particular, the excess amount of neodymium is 0.
~45 atomic % materials exhibit even improved remanence. The material can be formed from a raw material alloy in a protective gas atmosphere, for example under helium or argon.
原料合金と混合する暁結添加剤を使用するのが望ましい
。It is desirable to use a freezing additive that mixes with the raw alloy.
焼結添加剤としては希土類とくにCe、La、Nd、P
rまたはSm6の重量%およびCo40重量%の合金が
適し、これは混合物の全軍量に対し約10〜14重量%
を占める。この錫合焼緒添加剤および原料合金よりなる
混合物を粗く粉砕した形でジェット粉砕機内で粉砕する
のがとくに有利である。次に図面により本発明の実施例
を説明する。Sintering additives include rare earths, especially Ce, La, Nd, and P.
An alloy with wt.% r or Sm6 and 40 wt.% Co is suitable, which is about 10-14 wt.% relative to the total mass of the mixture.
occupies It is particularly advantageous to grind this mixture of tin-coated additive and starting alloy in coarsely ground form in a jet grinder. Next, embodiments of the present invention will be described with reference to the drawings.
製造する永久磁石材料の原料物質としてX線礎光分析計
により約1%の精度で測定した組成がCe53.7原子
%、仏30.2原子%、Nd12.0原子%およびPr
4.0原子%であるセルミツシメタル、それぞれ純度9
9.9%のSm、Ce、La、NdおよびPr、ならび
に純度99.99%のコバルトを使用した。すべての合
金はそれぞれ120夕のチャージでチツ化ホウ素ルッボ
内でアルゴンの保護ガス下に中周波炉により約1200
二0で溶解した。溶解した脆い合金を次に0.5側より
小さい直径の粒子に粉砕し、ついでジェット粉砕機で粒
子サイズ2.5〜4ムの粒子に粉砕した。粉末を適当な
圧力で円筒状の試料に圧縮し、約50KOeの磁場内で
配向し、60の気圧でアィソスタチックに圧縮し、次に
少なくとも半時間1035〜1045qoで焼結した。
後に詳述する続く熱処理によって製造した材料の磁気特
性をさらに著しく改善することができた。焼結前に粉砕
した原料合金にSm6の重量%およびCo4の重量%の
合金よりなる暁結添加剤を添加した。The composition of the raw material for the permanent magnet material to be manufactured, measured with an accuracy of approximately 1% using an X-ray basic spectrometer, is 53.7 at% Ce, 30.2 at% France, 12.0 at% Nd, and Pr.
4.0 atomic % Selmitushi metal, each purity 9
9.9% Sm, Ce, La, Nd and Pr and 99.99% purity cobalt were used. All alloys were prepared in a medium frequency furnace under a protective gas of argon in a boron oxide rubbo with a charge of 120 min each.
It was dissolved at 20. The molten brittle alloy was then ground to particles with a diameter smaller than 0.5 side and then ground in a jet grinder to particles with a particle size of 2.5 to 4 mm. The powder was compacted into a cylindrical sample with suitable pressure, oriented in a magnetic field of about 50 KOe, isostatically compacted at 60 atmospheres, and then sintered at 1035-1045 qo for at least half an hour.
A subsequent heat treatment, which will be detailed later, made it possible to further significantly improve the magnetic properties of the produced material. A dawning additive consisting of an alloy of weight % Sm6 and weight % Co4 was added to the ground raw material alloy before sintering.
この焼結添加剤の重量は焼結する圧縮体の全軍量の10
〜14%の間を変動した。しかし適当な原料合金および
酸素を含まない雰囲気中の嘘結の場合、焼給添加剤ない
こ磁石を製造することも考えられる。Sm−Co合金の
ほかにSE60一Co40合金(ここにSEはCe、L
a、Pr、Ndを表わす)の形の軽い希±類も焼結添加
剤として適する。粉末化した原料合金は元素からの溶解
のほかに粉砕したCeMMC巧合金およびSEC巧合金
の混合と引続くいつしよの磨砕によっても製造された。
同様に粉砕した原料合金に粉砕した焼結添加剤を添加し
、この混合物をジェット粉砕機で粉末に磨砕した。この
方法で溶解した4系列の合金
CeMM,−XCeXC巧 CeMM,−X
LaXCらCeMM,‐xPrxC巧およびCeMM,
−xNdxC巧から(CeMM,すSEX),−ySm
yC巧±〇.2〔ここにSEニCe、La、Nd、Pr
;0<×<0.5およびOSyミ0.25である〕の組
成の永久磁石材料が製造された。The weight of this sintering additive is 10% of the total weight of the compacted body to be sintered.
It varied between ~14%. However, in the case of suitable raw material alloys and solidification in an oxygen-free atmosphere, it is also conceivable to produce sintered magnets with additives. In addition to Sm-Co alloy, SE60-Co40 alloy (here SE is Ce, L
Also suitable as sintering additives are light rare metals of the form A, Pr, Nd). In addition to melting from the elements, powdered raw material alloys were also produced by mixing ground CeMMC and SEC alloys and subsequent milling.
The ground sintering additive was added to the similarly ground raw material alloy, and the mixture was ground into powder using a jet grinder. Four series of alloys CeMM, -XCeXCeMM, -X melted by this method
LaXC et CeMM, -xPrxC Takumi and CeMM,
-xNdxC Takumi (CeMM, SEX), -ySm
yC Takumi±〇. 2 [SE NiCe, La, Nd, Pr
A permanent magnet material having a composition of: 0<x<0.5 and OSy 0.25 was produced.
これらの材料の滅磁曲線は振動磁力計により50KOe
の最大磁場で測定した。代表的材料の測定結果は表およ
び第1〜5図に総括される。The demagnetization curve of these materials was determined by a vibration magnetometer at 50 KOe.
Measured at maximum magnetic field. Measurement results for representative materials are summarized in the table and Figures 1-5.
表:溶解した合金の組成およびSm6にo40焼結添加
剤使用のもとにそれから製造した永久磁石材料の硬磁性
データ磁石材料の綾磁性データ
CeMM=Ceo.歌7Lら.釘2NdM2oPro.
o4により合金1〜13は次の式で表わすこともできる
:‘a} 合金1〜3
(Ceh4M),MCexC鴇〔x=0:0.15およ
び0.30〕‘b’合金4〜6
(CeMM),すりxC広〔x:0.10:0.20お
よび0.30〕〔cl 合金7〜8
(CeMM),‐XPrXC巧〔x=0.05および0
.10〕{d} 合金9〜13(CeMM),★NdX
C巧〔×ニ0.05;0.10;0.15;0.30お
よび0.50〕合金1、2および3から製造された永久
磁石材料の測定に基き、表および第1図からセルミッシ
メタル(合金1、第1〜4図ではこれからつくられた永
久磁石材料は1で示される)中のセリウム分の上昇は最
初保磁力の増大に作用し(付加的セリウム分x=0.1
5を有する合金2)、しかしさらにセリウム分が上昇す
ると保磁力、残留磁気の低下およびMH曲線の矩形性の
悪化が生ずるので、表によれば式(CeMM),‐xC
exC公のx値0.05〜0.25に相当するセルミッ
シメタルのセリウムの割合約55〜65原子%が磁気袴
性に有利に作用する。Table: Composition of the molten alloy and hard magnetic properties of the permanent magnet material produced therefrom using Sm6 with O40 sintering additives. Song 7L et al. Nail 2NdM2oPro.
By o4, Alloys 1-13 can also be expressed by the following formula: 'a} Alloys 1-3 (Ceh4M), MCexC [x=0:0.15 and 0.30]'b' Alloys 4-6 ( CeMM), -XPrXC Hiro [x:0.10:0.20 and 0.30]
.. 10] {d} Alloy 9-13 (CeMM), ★NdX
Based on measurements of permanent magnet materials made from C-Taku [xni 0.05; 0.10; The increase in the cerium content in the missmetal (alloy 1, the permanent magnet material made from it is denoted by 1 in Figures 1-4) initially acts to increase the coercive force (additional cerium content x = 0.1
However, as the cerium content further increases, the coercive force, remanence decreases, and the rectangularity of the MH curve deteriorates, so according to the table, the formula (CeMM), -xC
The proportion of cerium in the cermisci metal, which corresponds to an exC value of 0.05 to 0.25, of about 55 to 65 atom % has an advantageous effect on the magnetic properties.
組成(CeMM,へCex),‐ySmyC$〔0.0
5<×<0.25およびOSyミ.25〕の永久磁石材
料はそれゆえ意外に良好な磁気特性を示す。表(合金1
、4、5、6)および第2図からランタン分の上昇は付
加的ランタン分のないセルミッシメタル合金(合金1)
のJHc〕=7.4KOeから全ランタン分51.1原
子%に対するJHc=12,7K戊への保磁力上昇を伴
うことが明らかである。Composition (CeMM, Cex), -ySmyC$[0.0
5<x<0.25 and OSy mi. The permanent magnetic material of [25] therefore exhibits surprisingly good magnetic properties. Table (alloy 1
, 4, 5, 6) and Fig. 2, the increase in lanthanum content is due to the increase in the lanthanum content in the Celmissi metal alloy (alloy 1) with no additional lanthanum content.
It is clear that this is accompanied by an increase in coercive force from JHc of 7.4 KOe to JHc of 12.7K for a total lanthanum content of 51.1 at%.
残留磁気BRは測定精度内では不変化にとどまり、磁化
曲線の矩形性およびエネルギー積(BH)maxも同様
である。この結果から式(CeMM)rxいXC巧のX
値0.15〜0.50に相当する0.40〜0.65の
ランタン分は保磁力の顕著な改善に作用することが確認
される。表(合金1、7、8)によれば式(CeMM)
,−xPrxC巧のx値0.03〜0.06に相当する
プラセオジム分の5〜10原子%への上昇は磁気特性に
有利に作用する。The residual magnetism BR remains unchanged within the measurement accuracy, as do the rectangularity of the magnetization curve and the energy product (BH) max. From this result, the formula (CeMM) rx
It is confirmed that a lanthanum content of 0.40 to 0.65, which corresponds to a value of 0.15 to 0.50, significantly improves the coercive force. According to the table (alloys 1, 7, 8) the formula (CeMM)
, -xPrxC An increase in the praseodymium content to 5 to 10 atomic %, which corresponds to an x value of 0.03 to 0.06, has an advantageous effect on the magnetic properties.
表(合金1、9〜13)および第4図から明らかなよう
にネオジム量の上昇は保磁力の最大の上昇に作用する。As is clear from the table (alloys 1, 9 to 13) and FIG. 4, increasing the amount of neodymium affects the maximum increase in coercive force.
付加的ネオジム分のないセルミッシメタル合金1におけ
る12原子%からたとえば合金10の20.8重量%へ
の上昇はJHcを7.巡oeから16.1K戊へ上昇す
るとともに残留磁気も上昇する。ネオジム分が35原子
%を越えて上昇する場合(合金12)、保磁力JHcは
明白に低下し、56.0原子%で僅か4.7KOeの値
に達する。しかしこの組成排残留磁気は8.鰍Gになる
。それゆえセルミッシメタルーコバルト合金の磁気特性
の改善はとくに第5図から明らかなように式(CeMM
),〜NdxCらのX値0〜0.45に相当する約12
〜50原子%のネオジム量で生ずる。本発明の材料はす
べての他のSECら含有、とくにCeMM含有永久磁石
材料と同様、適当な温度における嫌鯖および引続く熱処
理によってその磁気特性を大きく改善することができる
。An increase from 12 atomic % in Celmissimetal Alloy 1 without additional neodymium to 20.8 atomic % in Alloy 10, for example, increases the JHc to 7. The remanent magnetism also increases as the rotation temperature increases from OE to 16.1K. When the neodymium content increases above 35 at.% (alloy 12), the coercive force JHc decreases appreciably and reaches a value of only 4.7 KOe at 56.0 at.%. However, the residual magnetism of this composition is 8. Become a mackerel G. Therefore, as is clear from Fig. 5, the improvement in the magnetic properties of the cermiscimetal-cobalt alloy is achieved by the equation (CeMM
), ~12 corresponding to the X value of 0 to 0.45 in NdxC et al.
Occurs with neodymium amounts of ~50 atom %. The material of the invention, like all other SEC-containing, especially CeMM-containing, permanent magnetic materials, can have its magnetic properties greatly improved by heat treatment at appropriate temperatures and subsequent heat treatment.
最適の焼経温度をCeMMC法磁石で求めた。The optimum annealing temperature was determined using a CeMMC method magnet.
磁石はSm60重量%およびCo4の重量%よりなる暁
結添加剤8〜1亀重量%を使用して製造した。この場合
CeMMC巧合金およびSm6にo4川合金は別個にジ
ェット粉砕機で磨砕し、1/2時間混合し、60KOe
の磁場で配向し、10ぴ気圧の圧力でアィソスタチック
に圧縮した。添加剤8、10、14および1錠雲量%を
含む混合物に対し試料を1015<Tsく1055qo
の範囲の種々の温度で焼結した。密度pおよび残留磁気
はつねに競結温度とともに上昇することが明らかになっ
た。これに対しエネルギー積は第6図のように顕著な最
大を示し、この最大値は暁結添加剤の量の増大とともに
小さい値に移行し、かつ近似的に最適の焼結温度に相当
する。この実験から1035〜104yoの暁結温度が
すべてのセルミッシメタル含有コバルト磁石に有利なこ
とが明らかになった。磁石材料は続く熱処理でまず95
0〜1020ooの温度に加熱した。The magnets were made using 8-1 wt.% crystallization additives consisting of 60 wt.% Sm and 8-1 wt.% Co4. In this case, CeMMC Kou alloy and Sm6 O4 river alloy were ground separately in a jet crusher and mixed for 1/2 hour, resulting in 60KOe
The sample was oriented in a magnetic field of 10 mm and compressed isostatically at a pressure of 10 pi atmospheres. For mixtures containing additives 8, 10, 14 and 1 tablet cloud content 1015<Ts>1055qo
sintered at various temperatures in the range of . It has been found that the density p and the remanence always increase with the coupling temperature. On the other hand, the energy product exhibits a pronounced maximum as shown in FIG. 6, which decreases with increasing amount of sintering additive and corresponds approximately to the optimum sintering temperature. This experiment revealed that a dawning temperature of 1035-104yo is favorable for all selmismetal-containing cobalt magnets. The magnet material is first heated to 95% by subsequent heat treatment.
Heated to a temperature of 0-1020 oo.
保持時間は20分なし50時間である。加熱後試料をた
とえば液体チッ素、グリセリンまたは他の油状有機液体
たとえばシリコーン油のような液体中で急冷した。低温
の保護ガス雰囲気たとえばアルゴンまたはチッ素下の冷
却も非常に適当であることが明らかになった。引続く3
00〜600qCで10〜3び分にわたる焼戻し処理に
より磁気特性はさらに改善された。永久磁石特性の改善
を第7図に示す
CeM地.8Smo.2C巧の組成の磁石の滅磁曲線に
より説明する。The holding time is 20 minutes to 50 hours. After heating the sample was quenched in a liquid such as liquid nitrogen, glycerin or other oily organic liquid such as silicone oil. Cooling under a low-temperature protective gas atmosphere, such as argon or nitrogen, has also proven to be very suitable. successive 3
The magnetic properties were further improved by tempering at 00 to 600 qC for 10 to 3 minutes. The improvement of permanent magnet properties is shown in Fig. 7 with CeM magnet. 8Smo. This will be explained using the demagnetization curve of a magnet with a composition of 2C Takumi.
前記熱処理による永久磁石材料の改善はもちろん他のす
べてのセルミツシメタルーコバルト含有磁石に対しても
考えられる。第7図に実線で示す曲線はTs=1040
q0で焼結した後の減磁曲線を示す。鎖線は980℃の
加熱および液体チッ素中の急袷後の減磁曲線を示し、点
線、破線および長破線で示す滅磁曲線は3000○、3
50℃および400oCの焼戻し後である。この曲線か
ら加熱および急冷により保磁力が2.23割こ上昇し、
それに続く焼戻し処理はさらにJHcを1〜跳び上昇さ
せることが明らかである。他の実験により加熱には98
0土10℃の温度が最適であることが示された。The improvement of the permanent magnet material by the heat treatment described above is of course also conceivable for all other magnets containing cobalt. The curve shown as a solid line in Figure 7 is Ts = 1040
The demagnetization curve after sintering at q0 is shown. The chain line shows the demagnetization curve after heating at 980°C and steepening in liquid nitrogen.
After tempering at 50°C and 400oC. From this curve, the coercive force increases by 2.23% due to heating and rapid cooling.
It is clear that the subsequent tempering treatment further increases the JHc by 1. Other experiments show that heating requires 98
A temperature of 0°C and 10°C was shown to be optimal.
保磁力の上限はこの場合温度と無関係である。JHcの
2.3音までの上昇のほかにさらに滅磁曲線の矩形への
接近および残留磁気BRの上昇が加熱時間6時間以上の
場合に認められる。さらに冷却速度はこの方法にきわめ
て重要なパラメータであることが明らかになった。この
場合チッ素による急冷はとくに望ましい。というのはJ
Hc値の著しい上昇が生じ、エネルギー積が6時間を超
える加熱時間で上昇するからである(第7図の例で16
力)ら17MG戊へ)。焼戻し処理の温度と時間は重要
である。磁気特性の最適の改善は焼戻し温度350℃、
燃戻し時間30〜4び分で達成される。The upper limit of coercivity is in this case independent of temperature. In addition to the increase in JHc to 2.3 sounds, the demagnetization curve approaches a rectangular shape and the residual magnetism BR increases when the heating time is 6 hours or more. Furthermore, the cooling rate was found to be a very important parameter for this method. In this case, quenching with nitrogen is particularly desirable. That is J
This is because a significant increase in Hc value occurs and the energy product increases with heating time exceeding 6 hours (16 in the example in Figure 7).
force) to 17MG 戊). The temperature and time of the tempering process are important. The optimum improvement in magnetic properties is achieved at a tempering temperature of 350°C.
This is achieved with a burn-back time of 30 to 4 minutes.
第1図セリウムの過剰分xが0、0.15および0.3
0である組成CeMM,−xCexC巧の合金1、2、
3の減磁曲線、第2図はランタンの過剰分xが0 、0
.1、0.2および03であ る組成CeMM,‐xL
axC生の合金1、4、5、6の滅磁曲線、第3図はプ
ラセオジムの過剰分xが0、0.05および0.1であ
る組成CeMM,〜PrxC巧の合金1、7、8の滅磁
曲線、第4図はネオジムの過剰分が0、0.25、0.
1、0.15 0.3および0.5である組成CeMM
.‐xNdxC広の合金1、9、10、11、12、1
3の減滋曲線、第5図はセルミッシメタル−コバルト含
有永久磁石材料のネオジム含量と保磁力JHcおよび残
留磁気BRの関係、第6図はCeMM含有合金の焼結温
度Tsとエネルギー積(BH)maxの関係、第7図は
980oCで20分加熱後、液体チッ素冷却および約3
00、350、40000で競戻した平均粒子サイズ約
4〃のCeMMo.8S凧.2C巧の組成の永久磁石材
料の滅滋曲線を示す図である。
第6図
第、図
第2図
第3図
第4図
第5図
第7図Figure 1 Excess amount of cerium x is 0, 0.15 and 0.3
Alloys 1, 2 with composition CeMM, -xCexC
Figure 2 shows the demagnetization curve of 3 when the lanthanum excess x is 0 and 0.
.. 1, 0.2 and 03 with the composition CeMM,-xL
Demagnetization curves of axC raw alloys 1, 4, 5, and 6, Figure 3 shows alloys 1, 7, 8 of composition CeMM, ~ PrxC with praseodymium excess x of 0, 0.05, and 0.1. Figure 4 shows the demagnetization curves for neodymium excesses of 0, 0.25, 0.
Composition CeMM which is 1, 0.15 0.3 and 0.5
.. -xNdxC wide alloys 1, 9, 10, 11, 12, 1
Figure 5 shows the relationship between the neodymium content and coercive force JHc and remanence BR of the CeMM-containing permanent magnet material, and Figure 6 shows the relationship between the sintering temperature Ts and the energy product (BH) of the CeMM-containing alloy. ) max relationship, Figure 7 shows the relationship between heating at 980oC for 20 minutes, cooling with liquid nitrogen, and approx.
CeMMo.00, 350, and 40000 were competitively returned with an average particle size of about 4〃. 8S kite. FIG. 2 is a diagram showing an extinction curve of a permanent magnet material having a composition of 2C Takumi. Figure 6, Figure 2, Figure 3, Figure 4, Figure 5, Figure 7.
Claims (1)
ルトを含む永久磁石材料において、材料が一般式:(C
eMM_1_−_xSE_x)_1_−_ySm_yC
o_5±_0_._2〔ここに0.05<x<0.5;
0<y<0.25であり、SEは希土類セリウム、ラン
タン、ネオジムおよびプラセオジムの1つを表わす)の
組成を有し、その際セルミツシメタルがほぼCeαLa
βNdγPrδ〔ここに0.45<α<0.55;0.
20<β<0.40;0.05<γ<0.15;0.0
0<δ<0.05およびα+β+γ+δ■1である〕の
組成を有し、かつ製品磁石材料におけるセリウムとラン
タン、ネオジムまたはプラセオジムの原子%の比が0.
20/0.55≧La/CeもしくはLa/Ce≧0.
40/0.45 または0.05/0.55≧Nd/CeもしくはNd/
Ce≧0.15/0.45またはPr/Ce≧0.05
/0.45 の条件を充足することを特徴とする永久磁石材料。 2 特許請求の範囲第1項記載の永久磁石材料の製法に
おいて、原料合金および場合により焼結添加剤を粗く粉
砕した形でミルに装入し、保護ガス下に粒子サイズ数μ
の粉末に磨砕し、形成された粉末を約50KOeの磁場
で配向し、アイソスタチツクに成形体に圧縮し、103
5〜1045℃で焼結し、300℃を超える温度で熱処
理することを特徴とする永久磁石材料の製法。[Claims] 1. A permanent magnet material mainly containing CeMM and cobalt, the material having the general formula: (CeMM) and cobalt.
eMM_1_-_xSE_x)_1_-_ySm_yC
o_5±_0_. _2 [0.05<x<0.5 here;
0<y<0.25 and SE stands for one of the rare earths cerium, lanthanum, neodymium and praseodymium), where the cermitsimetal is approximately CeαLa
βNdγPrδ [where 0.45<α<0.55;0.
20<β<0.40;0.05<γ<0.15;0.0
0<δ<0.05 and α+β+γ+δ■1], and the atomic percent ratio of cerium to lanthanum, neodymium or praseodymium in the product magnet material is 0.
20/0.55≧La/Ce or La/Ce≧0.
40/0.45 or 0.05/0.55≧Nd/Ce or Nd/
Ce≧0.15/0.45 or Pr/Ce≧0.05
A permanent magnetic material characterized by satisfying the condition of /0.45. 2. In the method for producing a permanent magnet material according to claim 1, the raw material alloy and optionally the sintering additive are charged into a mill in a coarsely pulverized form, and then heated under a protective gas to reduce the particle size to several μm.
The powder formed is oriented in a magnetic field of about 50 KOe and isostatically compressed into a compact, 103
A method for producing a permanent magnet material, characterized by sintering at 5 to 1045°C and heat treating at a temperature exceeding 300°C.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH11025/74 | 1974-08-13 | ||
CH1102574A CH618537A5 (en) | 1974-08-13 | 1974-08-13 | Permanent-magnetic material containing rare earths and cobalt. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5155993A JPS5155993A (en) | 1976-05-17 |
JPS6037602B2 true JPS6037602B2 (en) | 1985-08-27 |
Family
ID=4369273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50098032A Expired JPS6037602B2 (en) | 1974-08-13 | 1975-08-12 | Permanent magnet material and its manufacturing method |
Country Status (10)
Country | Link |
---|---|
JP (1) | JPS6037602B2 (en) |
BE (1) | BE832313A (en) |
CA (1) | CA1033970A (en) |
CH (1) | CH618537A5 (en) |
DE (1) | DE2449361C2 (en) |
FR (1) | FR2281993A1 (en) |
GB (1) | GB1505574A (en) |
IT (1) | IT1040305B (en) |
NL (1) | NL182678C (en) |
SE (1) | SE7508965L (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH599661A5 (en) * | 1975-01-14 | 1978-05-31 | Bbc Brown Boveri & Cie | |
DE3040342C2 (en) * | 1980-10-25 | 1982-08-12 | Th. Goldschmidt Ag, 4300 Essen | Alloy suitable for making a permanent magnet |
JPS6057601A (en) * | 1983-09-08 | 1985-04-03 | Sumitomo Special Metals Co Ltd | Material of permanent magnet |
JP6927906B2 (en) * | 2017-09-29 | 2021-09-01 | トヨタ自動車株式会社 | Rare earth magnet |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4930225A (en) * | 1972-07-18 | 1974-03-18 |
-
1974
- 1974-08-13 CH CH1102574A patent/CH618537A5/en not_active IP Right Cessation
- 1974-10-17 DE DE2449361A patent/DE2449361C2/en not_active Expired
-
1975
- 1975-08-01 IT IT26014/75A patent/IT1040305B/en active
- 1975-08-08 SE SE7508965A patent/SE7508965L/en unknown
- 1975-08-11 GB GB33375/75A patent/GB1505574A/en not_active Expired
- 1975-08-11 BE BE159098A patent/BE832313A/en unknown
- 1975-08-11 FR FR7525008A patent/FR2281993A1/en active Granted
- 1975-08-11 NL NLAANVRAGE7509524,A patent/NL182678C/en not_active IP Right Cessation
- 1975-08-11 CA CA233,251A patent/CA1033970A/en not_active Expired
- 1975-08-12 JP JP50098032A patent/JPS6037602B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4930225A (en) * | 1972-07-18 | 1974-03-18 |
Also Published As
Publication number | Publication date |
---|---|
NL182678B (en) | 1987-11-16 |
JPS5155993A (en) | 1976-05-17 |
FR2281993A1 (en) | 1976-03-12 |
NL182678C (en) | 1988-04-18 |
DE2449361C2 (en) | 1985-10-17 |
IT1040305B (en) | 1979-12-20 |
FR2281993B1 (en) | 1981-10-09 |
DE2449361A1 (en) | 1976-02-26 |
SE7508965L (en) | 1976-02-16 |
BE832313A (en) | 1975-12-01 |
CH618537A5 (en) | 1980-07-31 |
CA1033970A (en) | 1978-07-04 |
GB1505574A (en) | 1978-03-30 |
NL7509524A (en) | 1976-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6325904A (en) | Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet | |
JPH03236202A (en) | Sintered permanent magnet | |
US4087291A (en) | Cerium misch-metal/cobalt magnets | |
JPH0685369B2 (en) | Permanent magnet manufacturing method | |
JPS60204862A (en) | Rare earth element-iron type permanent magnet alloy | |
JPH06207203A (en) | Production of rare earth permanent magnet | |
RU2675417C2 (en) | Manganese antimonide doped with boron as a useful material of a permanent magnet | |
JPS6037602B2 (en) | Permanent magnet material and its manufacturing method | |
JPH05247601A (en) | Alloy for corrosion resistant permanent magnet and method for producing permanent magnet therefrom | |
US4116726A (en) | As-cast permanent magnet Sm-Co-Cu material with iron, produced by annealing and rapid quenching | |
JPS6348805A (en) | Manufacture of rare-earth magnet | |
JPS5841336B2 (en) | Sonoseihou | |
US4090892A (en) | Permanent magnetic material which contains rare earth metals, especially neodymium, and cobalt process for its production and its use | |
JPH0146575B2 (en) | ||
US3950194A (en) | Permanent magnet materials | |
JPS6320411A (en) | Production of material for permanent magnet | |
JPH0146574B2 (en) | ||
US3919001A (en) | Sintered rare-earth cobalt magnets comprising mischmetal plus cerium-free mischmetal | |
JP2002285276A (en) | R-t-b-c based sintered magnet and production method therefor | |
JPS619551A (en) | Rare earth element-iron type permanent magnet alloy | |
JPS63216307A (en) | Alloy powder for magnet | |
JPH0796694B2 (en) | Method of manufacturing permanent magnet material | |
JPH03162546A (en) | Manufacture of permanent magnet alloy having excellent oxidation resistance | |
JPH0142338B2 (en) | ||
JPH0582319A (en) | Permanent magnet |