[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6036377A - Manufacture of high density silicon carbide sintered body - Google Patents

Manufacture of high density silicon carbide sintered body

Info

Publication number
JPS6036377A
JPS6036377A JP59130077A JP13007784A JPS6036377A JP S6036377 A JPS6036377 A JP S6036377A JP 59130077 A JP59130077 A JP 59130077A JP 13007784 A JP13007784 A JP 13007784A JP S6036377 A JPS6036377 A JP S6036377A
Authority
JP
Japan
Prior art keywords
silicon carbide
silicon
carbon
sintered body
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59130077A
Other languages
Japanese (ja)
Other versions
JPH0225868B2 (en
Inventor
恵一郎 鈴木
拓郎 小野
伸広 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP59130077A priority Critical patent/JPS6036377A/en
Publication of JPS6036377A publication Critical patent/JPS6036377A/en
Publication of JPH0225868B2 publication Critical patent/JPH0225868B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 Ll上二上月±■ 本発明は高密度炭化珪素質焼結体の製造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high-density silicon carbide sintered body.

更釆五且遺 炭化珪素は従来より硬度が高く、耐摩耗性にすぐれ、熱
膨張率が小さく、また分解温度が高く、11w酸化性が
太きく、化学的に安定でかつ一般にかなりの電気伝導性
を有する有用なセラミックス材料として知られている。
Silicon carbide has higher hardness than conventional silicon carbide, excellent wear resistance, low coefficient of thermal expansion, high decomposition temperature, high 11W oxidation property, chemical stability, and generally high electrical conductivity. It is known as a useful ceramic material with properties.

この炭化珪素質の高密度焼結体は上記の性質に加え強度
が高温まで大きく、耐熱衝撃性にすぐれ、高温構造材料
として有望とされ、ガスタービン用をはじめとして種々
の用途にその応用か試みられている。
In addition to the above-mentioned properties, this high-density sintered body made of silicon carbide has high strength up to high temperatures and excellent thermal shock resistance, making it a promising high-temperature structural material, and attempts are being made to apply it to various uses including gas turbines. It is being

炭化珪素質焼結体はホットプレス焼結、常圧焼結、反応
焼結、再結晶、化学的蒸着などの方法によって作製され
る。これらの方法のなかで1業的に最も有利な方法は常
圧焼結法と考えられる。常圧焼結法によればセラミック
ス材料の成形に一般に用いられるプレス法、泥漿鋳込法
、押出成形法、射出成形法などの方法により成形するこ
とができ、複雑形状品、大寸注量、肉厚品を最も容易に
生産性良く製造することができる。しかもこの方法によ
る製品には反応焼結、再結晶法による製品に比べ高性能
が期待できる。
The silicon carbide sintered body is produced by methods such as hot press sintering, pressureless sintering, reaction sintering, recrystallization, and chemical vapor deposition. Among these methods, the most industrially advantageous method is considered to be the pressureless sintering method. The pressureless sintering method can be molded using methods commonly used for molding ceramic materials, such as pressing, slurry casting, extrusion molding, and injection molding. Thick-walled products can be manufactured most easily and with high productivity. Furthermore, products produced by this method can be expected to have higher performance than products produced by reaction sintering and recrystallization methods.

一日が 1!しようと るPo 点 しかし、炭化珪素は共有結合性の強い化合物であるため
常圧焼結法の場合、ホットプレス焼結法の場合も同様で
あるが単独では焼結が困難であり、高密度の焼結体を得
るためには何らかの焼結助剤の添加が必要である。焼結
助剤としてはホウ素あるいはホウ素化合物などが知られ
ている。さらにこれらに炭素を添加することもある。
One day! However, since silicon carbide is a compound with strong covalent bonding, it is difficult to sinter it alone in the case of normal pressure sintering method and hot press sintering method, and it is difficult to sinter it by itself. In order to obtain a sintered body, it is necessary to add some kind of sintering aid. Boron or boron compounds are known as sintering aids. Furthermore, carbon may be added to these.

しかし、常圧焼結法の場合このような焼結助剤を加えて
も通常の方法により良好な高性能高密度焼結体を得るこ
とは難しい。特に焼結時に、焼結助剤を含む炭化珪素質
成形体が分解しやすく、このために成形体が充分に緻密
化しないことが問題となる。
However, in the case of pressureless sintering, even if such a sintering aid is added, it is difficult to obtain a good high-performance, high-density sintered body using normal methods. Particularly during sintering, a silicon carbide molded body containing a sintering aid is easily decomposed, which causes a problem in that the molded body is not sufficiently densified.

この問題は、小さな試料成形体を作る場合もそうである
が、複雑形状品、大寸注量、肉厚品を均質な高密度量と
してしかも生産性良く製造しようとする時、特に大きな
問題となる。
This problem is true when making small sample molded bodies, but it becomes a particularly big problem when trying to manufacture products with complex shapes, large quantities, or thick walls as homogeneous, high-density quantities with good productivity. Become.

本発明は炭化珪素質成形体(ただしアルミニウム及び/
又はアルミニウム化合物を焼結助剤として含有するもの
を除く)を常圧焼結する際に成形体が分解し、緻密化が
抑制されるのを防1にし、高密度な焼結体を得るだめの
方法を提供するものである。
The present invention relates to a silicon carbide molded body (however, aluminum and/or
(excluding those containing an aluminum compound as a sintering aid) to prevent the molded body from decomposing and suppressing densification when sintering at normal pressure, and to obtain a high-density sintered body. This method provides a method for

炭化珪素は炭化珪素質成形体の焼結温度では分解を開始
する。すなわち炭化珪素は大気圧下では溶融せず、20
00°C以上になると昇華し始め、さらに高温になると
炭素と珪素リッチな蒸気に分解する。炭化珪素質の高密
度焼結体を得るのに必要な成形体の焼結温度は一般に1
800〜2300°Cであり、この高温度域では炭化珪
素は昇華、分解をはじめ、珪素、 Si2 Cなどの気
体を発生する。そこで炭化珪素質成形体を珪素、Si2
 Cなどの気体を含む雰囲気中で焼成すれば成形体の炭
化珪素の昇華、分解を抑えるとかできる。しかし実際に
は炭化珪素の分解は単純ではない。すなわち成形体中に
含まれる焼結助剤あるいは炭化珪素粒子表面のシリカ層
あるいは他の不純物あるいは雰囲気中に含まれる微祉酪
素などの相互反応が起こる。
Silicon carbide begins to decompose at the sintering temperature of the silicon carbide compact. In other words, silicon carbide does not melt under atmospheric pressure and has a temperature of 20
At temperatures above 00°C, it begins to sublimate, and at even higher temperatures it decomposes into carbon and silicon-rich vapor. The sintering temperature of the molded body required to obtain a high-density sintered body of silicon carbide is generally 1
The temperature is 800 to 2300°C, and in this high temperature range, silicon carbide sublimes, decomposes, and generates gases such as silicon and Si2C. Therefore, the silicon carbide molded body is made of silicon, Si2
By firing in an atmosphere containing a gas such as C, sublimation and decomposition of silicon carbide in the molded body can be suppressed. However, in reality, decomposition of silicon carbide is not simple. That is, an interaction occurs with the sintering aid contained in the molded body, the silica layer on the surface of the silicon carbide particles, other impurities, or the weak butyric acid contained in the atmosphere.

Uへ 快 るための千四 そこで焼成中における成形体の分解を防Iトし、より高
密度の焼結体を作るためには成形体の分解により発生す
る気体の平衡蒸気正置」二に雰囲気中のそれらの気体の
分圧を保持することが好ましい。
Therefore, in order to prevent the decomposition of the molded body during firing and to create a sintered body with higher density, it is necessary to place the gas generated by the decomposition of the molded body in an equilibrium vapor position. Preferably, the partial pressure of those gases in the atmosphere is maintained.

1−に記したような理由により炭化珪素の分解には酸素
が関与することが多く、酸素が存在すると、−酸化珪素
(Sin) 、−酸化炭素(CO)などの気体が発生す
ると考えられる。そこでこれらの気体の焼成雰囲気にお
ける分圧を高めることも成形体の分解を抑えるためには
必要となる。
For the reasons described in 1-, oxygen is often involved in the decomposition of silicon carbide, and when oxygen is present, gases such as -silicon oxide (Sin) and -carbon oxide (CO) are thought to be generated. Therefore, it is necessary to increase the partial pressure of these gases in the firing atmosphere in order to suppress the decomposition of the compact.

以」−のような観点から炭化珪素質成形体の分解防止に
つき種々検討した結果、本発明に至ったもので、本発明
は炭化珪素質成形体(ただしアルミニウム及び/又はア
ルミニウム化合物を焼結助剤として含有するものを除く
)を珪素及び/又は炭素を成分として含む雰囲気のもと
で焼成することを#+f徴とする高密度炭化付票質焼結
体の製造法を要旨とするものである。
As a result of various studies on preventing the decomposition of silicon carbide molded bodies from the following points of view, the present invention was developed. The gist of this article is a method for producing a high-density carbonized sintered body, in which the material (excluding those containing it as an agent) is fired in an atmosphere containing silicon and/or carbon as a component. be.

次に実施の方法について説明する。Next, the implementation method will be explained.

珪素及び/又は炭素を成分として含む雰囲気は各種の方
法で作られるが、1つの方法としては焼成炉中にこれら
気体を導入あるいは封入して達せられる。珪素を含むガ
スはSi、 5iC14。
An atmosphere containing silicon and/or carbon as a component can be created by various methods, but one method is to introduce or enclose these gases into a firing furnace. The gas containing silicon is Si, 5iC14.

5il14. SiOなととして、炭素を含むカスは炭
化水素、COなどとして導入、することができる。通常
、雰囲気は窒素、アルゴン、ヘリウムなどの不活性ガス
にこれらの気体を混合して使用される。また別の方法と
して、これら気体を焼結温度において発生するような粉
末、成形体、又は焼結体を炭化珪素質成形体の周囲に配
しておくことも有効な方法である。かかる粉末、成形体
、又は焼結体は、好ましくは、珪素、珪素化合物のいず
れか1つ又は2つ以り及び/又は炭素、炭素化合物のい
ずれか1つ又は2つ以上からなる。
5il14. In addition to SiO, carbon-containing residues can be introduced as hydrocarbons, CO, and the like. Usually, the atmosphere is an inert gas such as nitrogen, argon, helium, etc. mixed with these gases. Another effective method is to arrange a powder, compact, or sintered compact around the silicon carbide compact that generates these gases at the sintering temperature. Such a powder, molded body, or sintered body preferably consists of one or more of silicon and a silicon compound, and/or one or more of carbon and a carbon compound.

これらの粉末を炭化珪素質成形体の周囲に配す方法とし
ては該粉末中に成形体を埋設する方法と該粉末を内面に
塗布した炭素製または炭化珪素製サヤ材中に成形体を載
置する方法が考えられる。該粉末中に埋設する方法は成
形体の分解をよく抑制し好ましい。しかし大寸法、複雑
形状の成形体には不適である。これに対し、該粉末をサ
ヤ材に塗布するカノノ、は種々の形状の製造に適し、該
粉末中に埋設する場合と同等の高密度焼結体を得ること
ができる。粉末塗布の方法においては粉末はアルコール
、アセトンなどの有機溶媒あるいは水と混合され泥漿と
されサヤ材に塗布されてもよい。
Methods for placing these powders around a silicon carbide molded body include embedding the molded body in the powder, and placing the molded body in a carbon or silicon carbide pod coated with the powder on its inner surface. There are ways to do this. The method of embedding in the powder is preferred because it effectively suppresses decomposition of the molded body. However, it is unsuitable for molded products of large dimensions and complex shapes. On the other hand, the method in which the powder is applied to the sheath material is suitable for manufacturing various shapes, and it is possible to obtain a high-density sintered body equivalent to that obtained by embedding the powder in the powder. In the powder coating method, the powder may be mixed with an organic solvent such as alcohol, acetone, or water to form a slurry and then applied to the pod material.

またこの時ポリビニルアルコールなどの結合剤を泥漿に
4fQ合することもできる。
At this time, a binder such as polyvinyl alcohol can also be combined with 4fQ in the slurry.

上記の粉末埋設の方法においては粉末として炭化珪素、
シリカ、−耐化珪素、炭素等の種々のものを使用できる
が好ましいのは炭化珪素粉及び/又は炭素粉からなる粉
末である。
In the above powder embedding method, silicon carbide is used as powder,
Although various materials such as silica, -resistant silicon, and carbon can be used, powders made of silicon carbide powder and/or carbon powder are preferred.

粉末塗布の場合には炭化珪素粉、炭素粉の他にフェノー
ル樹脂、ポリメチルフェニレンなどの残iRMの多い高
分子芳香族化合物を使用することも可能である。また、
粉末あるいは未焼成の成形体を使用する代わりに焼結体
を使用することもできる。
In the case of powder coating, in addition to silicon carbide powder and carbon powder, it is also possible to use a polymeric aromatic compound with a large amount of residual iRM, such as phenol resin and polymethylphenylene. Also,
Instead of using powder or unsintered compacts, it is also possible to use sintered compacts.

1 j女化珪素粉末としては市販の純度98%、平均粒径1
ミクロン以下のものを用いた。この炭化珪素粉末に焼結
助剤を第1表に示す配合割合にて配合し、プラスチック
製ポットに入れ、プラスチックス製ボールによりアセト
ンの存在下で充分l昆合した。次いでこれを乾燥し、機
械プレスにより200Kg/cv+tで成形し20 X
 20 X 40mmの成形体を1)だ。(ただしNo
6については2000Kg/cfflの圧力でラバープ
レス成形して外径50mm、内径40)、長さ150m
mのパイプ状の成形体を得た。)次にこれを抵抗加熱炉
により第1表に示す各種の雰囲気条件により2000 
’Cにて1時間焼成した。
1j Feminized silicon powder is commercially available with a purity of 98% and an average particle size of 1
A material of micron or smaller was used. This silicon carbide powder was mixed with a sintering aid in the proportions shown in Table 1, placed in a plastic pot, and thoroughly mixed with a plastic ball in the presence of acetone. Next, this was dried and molded using a mechanical press at 200Kg/cv+t to form a 20X
1) A molded object of 20 x 40 mm. (However, no
6 is rubber press molded at a pressure of 2000Kg/cffl to have an outer diameter of 50mm, an inner diameter of 40), and a length of 150m.
A pipe-shaped molded body of m was obtained. ) Next, this was heated in a resistance heating furnace for 2,000 degrees under various atmospheric conditions shown in Table 1.
It was baked at 'C for 1 hour.

以1−の結果、比較例に示した通常の方法による場合に
比べ、本発明の方法のよる場合には高密度の炭化珪素質
焼結体が得られることがわかる。
As a result of the following 1-, it can be seen that a silicon carbide sintered body having a higher density can be obtained by the method of the present invention than by the conventional method shown in the comparative example.

第1表 Llt No1.は比較例 F2 粉末の重量に対するSiC,Cなどの側合孝3 
焼結体密度は理論密度に対する相対冨度第1表において 雰囲気条件 なし:成形体計゛容器なしで炉中に設置埋設:成形体を
、方式の右欄の種類、配合量よりなる粉末中に埋設 塗′1Ij=炭素容器内面に、方式の右欄の種類、配合
量よりなる粉末にエチルアルコー ルを加えた泥漿を塗布し乾燥後、この
Table 1 Llt No.1. is Comparative Example F2. Side weight ratio of SiC, C, etc. to the weight of powder 3
The density of the sintered compact is relative to the theoretical density in Table 1. No atmospheric conditions: The compact is placed in the furnace without a container and buried: The compact is placed in the powder according to the type and amount in the right column of the method. Buried coating '1Ij = Apply a slurry made by adding ethyl alcohol to the powder according to the type and compounding amount in the right column of the method on the inner surface of the carbon container, and after drying, apply this slurry.

Claims (5)

【特許請求の範囲】[Claims] (1)炭化珪素質成形体(ただしアルミニウム及び/又
はアルミニウム化合物を焼結助剤として含有するものを
除く)を、珪素及び/又は炭素を成分として含む雰囲気
のもとで焼成することを特徴とする高密度炭化珪素質焼
結体の製造法。
(1) A silicon carbide molded body (excluding those containing aluminum and/or an aluminum compound as a sintering aid) is fired in an atmosphere containing silicon and/or carbon as a component. A method for producing a high-density silicon carbide sintered body.
(2)雰囲気が前記炭化珪素質成形体の周囲に配された
珪素、珪素化合物のいずれか1つ又は2つ以]二及び/
又は炭素、炭素化合物のいずれか1つ又は2つ以上から
形成される特許請求の範囲第(1)項の製造法。
(2) an atmosphere containing one or more of silicon and silicon compounds arranged around the silicon carbide molded body] and/or
The manufacturing method according to claim (1), wherein the material is formed from one or more of carbon and carbon compounds.
(3)雰囲気が不活性ガスを含む特許請求の範囲第(1
)項又は第(2)項の製造法。
(3) Claim No. 1 in which the atmosphere contains an inert gas
) or the manufacturing method in paragraph (2).
(4)珪素化合物が炭化珪素、シリカ、−酸化珪素であ
る特許請求の範囲第(2)項の製造法。
(4) The manufacturing method according to claim (2), wherein the silicon compound is silicon carbide, silica, or silicon oxide.
(5)炭素化合物がフェノール樹脂、ポリメチルフェニ
レンなどの高分子男香族化合物である特許請求の範囲第
(2)項の製造法。
(5) The manufacturing method according to claim (2), wherein the carbon compound is a polymeric androaromatic compound such as a phenol resin or polymethylphenylene.
JP59130077A 1984-06-26 1984-06-26 Manufacture of high density silicon carbide sintered body Granted JPS6036377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59130077A JPS6036377A (en) 1984-06-26 1984-06-26 Manufacture of high density silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59130077A JPS6036377A (en) 1984-06-26 1984-06-26 Manufacture of high density silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPS6036377A true JPS6036377A (en) 1985-02-25
JPH0225868B2 JPH0225868B2 (en) 1990-06-06

Family

ID=15025434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59130077A Granted JPS6036377A (en) 1984-06-26 1984-06-26 Manufacture of high density silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPS6036377A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070049A (en) * 1987-12-16 1991-12-03 Ibiden, Co. Ltd. Starting composition for the production of silicon carbide and method of producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144411A (en) * 1978-05-01 1979-11-10 Carborundum Co Alphaasilicon carbide sintered ceramic body having isometric micro structure
JPS55167178A (en) * 1979-06-18 1980-12-26 Toyota Motor Co Ltd Manufacture of silicon carbide sintered body
JPS565377A (en) * 1979-06-25 1981-01-20 Atomic Energy Authority Uk Manufacture of fine ceramic product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144411A (en) * 1978-05-01 1979-11-10 Carborundum Co Alphaasilicon carbide sintered ceramic body having isometric micro structure
JPS55167178A (en) * 1979-06-18 1980-12-26 Toyota Motor Co Ltd Manufacture of silicon carbide sintered body
JPS565377A (en) * 1979-06-25 1981-01-20 Atomic Energy Authority Uk Manufacture of fine ceramic product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070049A (en) * 1987-12-16 1991-12-03 Ibiden, Co. Ltd. Starting composition for the production of silicon carbide and method of producing the same

Also Published As

Publication number Publication date
JPH0225868B2 (en) 1990-06-06

Similar Documents

Publication Publication Date Title
US4004934A (en) Sintered dense silicon carbide
US4354991A (en) Dense sintered silicon carbide ceramic
IE43834B1 (en) Sintered silicon carbide ceramic body
CA2189516A1 (en) Sintering alpha silicon carbide powder with multiple sintering aids
JPS61155263A (en) Manufacture of high heat conductivity ceramic body
GB2048953A (en) Sintering silicon carbide in boron containing atmosphere
JPS621346B2 (en)
JPS6036377A (en) Manufacture of high density silicon carbide sintered body
JPH0127993B2 (en)
JP2005298304A (en) Highly dense silicon carbide ceramic and its producing method
JPH0329743B2 (en)
JPS61201662A (en) Manufacture of composite ceramics
US3956193A (en) Conductivity of silicon nitride
JPS6328873B2 (en)
JPH0138075B2 (en)
JP2005335992A (en) Method of manufacturing aluminum nitride sintered compact
JP2916934B2 (en) Method for producing sialon-based sintered body
JPH08119741A (en) Carbon-boron carbide sintered compact and carbon-boron carbide-silicon carbide sintered compact
JPS5891060A (en) Manufacture of silicon carbide sintered body
JPS6369758A (en) Manufacture of silicon carbide sintered body
JPS61286267A (en) Manufacture of aluminum nitride base sintered body
JPS62100480A (en) Method of dewaxing ceramic formed body
JPH0733286B2 (en) Method for manufacturing silicon carbide sintered body
JPS61256975A (en) Silicon carbide sintered body
JPS62275066A (en) Manufacture of silicon carbide sintered body