[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6036136A - Manufacture of long-sized product of thermoplastic resin reinforced with fiber - Google Patents

Manufacture of long-sized product of thermoplastic resin reinforced with fiber

Info

Publication number
JPS6036136A
JPS6036136A JP58144921A JP14492183A JPS6036136A JP S6036136 A JPS6036136 A JP S6036136A JP 58144921 A JP58144921 A JP 58144921A JP 14492183 A JP14492183 A JP 14492183A JP S6036136 A JPS6036136 A JP S6036136A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber bundle
fibers
resin
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58144921A
Other languages
Japanese (ja)
Other versions
JPH0144144B2 (en
Inventor
Hirokazu Kobayashi
裕和 小林
Minoru Kitanaka
北中 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP58144921A priority Critical patent/JPS6036136A/en
Publication of JPS6036136A publication Critical patent/JPS6036136A/en
Publication of JPH0144144B2 publication Critical patent/JPH0144144B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To effectively manufacture a thermoplastic resin composite material reinforced with a long fiber by a method wherein a reinforced fiber bundle is brought continuously into contact with a thermoplastic resin below a specified melt viscosity and being transferred being pinched with a plate-like unit having a heating region heated above the softening point but below the decomposition temperature of the thermoplastic resin and a cooling region coinciding with it in the moving direction and the direction of fiber. CONSTITUTION:A carbon fiber bundle 1 made up by 3,000 pieces of carbon fibers 7mum in the diameter is fed to a resin bath 3 to which a polyphenylene sulfide PPS with the melt viscosity of 1,500 poise heated up to 310 deg.C from an extruder 2 and then, taken up from dies 4 with the diameter of 1mm. to obtain a 0.7mm.- diameter PPS-attached carbon fiber bundle 5. Subsequently, the bundle is driven with a pair of heating rolls 6 and cooling rolls 7 rotating in the direction of the arrow and fed between a pair of stainless steel endless belts 9 heated with an infrared heater 8 from the side of the heating rolls 6. Finally, it is taken up with a pair of rubber rolls 10 rotating in the direction of the arrow to obtain a long- sized product 11.

Description

【発明の詳細な説明】 本発明は補強繊維束に熱可塑性樹脂を均一かつ十分に含
浸せしめた繊維補強熱可塑性樹脂の長尺物を製造する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a fiber-reinforced thermoplastic resin elongate article in which a reinforcing fiber bundle is uniformly and sufficiently impregnated with a thermoplastic resin.

炭素繊維、ガラス繊維等の補強繊維で補強された熱可塑
性樹脂複合材料は、補強繊維に由来するすぐれた力学的
性質と、樹脂の熱可塑性に由来するすぐれた成形性、熱
融着性、補修の容易さ、およびリサイクル性とを兼ねそ
なえた月料としてよく知られている。なかでも、長繊維
により補強された熱可塑性樹脂複合材料は、従来の補強
t、′々に1[の短繊維を熱可塑性樹脂中に分散してな
る、いわゆるFRTPに比べ、力学的性質の改善効果が
著しくすぐれているため、近年と(に注目を集めてぃる
。しかしながら、これら長繊維により補強された熱可塑
性樹脂複合材料のなかで、最も基本的な一方向に引きそ
ろえられた長繊維により補強された複合材料は、性能面
での期待が大きいにもかかわらず、効率的に製造する方
法が確立していないのが現状である。
Thermoplastic resin composite materials reinforced with reinforcing fibers such as carbon fibers and glass fibers have excellent mechanical properties derived from the reinforcing fibers, and excellent moldability, heat fusion properties, and repair properties derived from the thermoplasticity of the resin. It is well known as a monthly fee that is both easy to use and recyclable. In particular, thermoplastic resin composite materials reinforced with long fibers have improved mechanical properties compared to the so-called FRTP, which is made by dispersing short fibers in thermoplastic resin for each reinforcement. Due to its remarkable effectiveness, it has been attracting attention in recent years. However, among these thermoplastic resin composite materials reinforced with long fibers, the most basic long fibers aligned in one direction Although there are high expectations for the performance of composite materials reinforced by this, there is currently no established method for efficiently manufacturing them.

すなわち、繊維補強複合材料が補強繊維の所期の補強効
果を発現するためには、複合材料中において補強繊維間
の空隙が樹脂で完全に充たされていることが必要である
が、長繊維が一方向に引きそろえられた補強形態を維持
しつつ、この良好な含浸状態を従来技術により実現する
こと(裏困鱈である。
In other words, in order for a fiber-reinforced composite material to exhibit the desired reinforcing effect of the reinforcing fibers, it is necessary that the voids between the reinforcing fibers in the composite material be completely filled with resin. It is difficult to achieve this good impregnated state using conventional techniques while maintaining a reinforcing form in which the reinforcing materials are aligned in one direction.

長繊維により補強された熱可塑性樹脂複合材料のなかで
も補強形態が、補強繊維をランダムに分散せしめてなる
もの、補強繊維を製編織してなるものにおいては、それ
ぞれ、マット状物、あるいは織物、編物、組物、網状物
等の布状物と熱可塑性樹脂とを積層し、加熱、加圧下に
一体化する効率的な溶融含浸法がよく知られており、こ
の方法においては、良好な含浸状態を実現するため、粘
稠な溶融樹脂を流動せしめることが不可欠であり、前記
マット状物のように樹脂の流動に伴う補強繊維の流動が
補強繊維の補強効果を著しく損わない補強形態、または
、前記布状物のように補強繊維が相互に補強構造を規制
し、樹脂の流動によっても補強繊維の移動が生じに(い
補強形態でなければ所期の補強形態、補強効果が得られ
ず、従って一方的に引きそろえられた長繊維により補強
された複合材料を、この方法を適用し、通常のプレス成
形等で製造することは困難である。
Among thermoplastic resin composite materials reinforced with long fibers, those in which the reinforcing form is made by randomly dispersing reinforcing fibers, those made by weaving and weaving reinforcing fibers are respectively mat-like materials, woven materials, An efficient melt impregnation method is well known in which a fabric material such as a knitted fabric, braided fabric, or net-like fabric and a thermoplastic resin are laminated and integrated under heating and pressure. In order to achieve this state, it is essential to make the viscous molten resin flow, and the reinforcing form is such that the flow of the reinforcing fibers accompanying the flow of the resin does not significantly impair the reinforcing effect of the reinforcing fibers, as in the case of the above-mentioned mat-like material. Alternatively, as in the above-mentioned cloth-like material, the reinforcing fibers mutually regulate the reinforcing structure, and the flow of the resin causes movement of the reinforcing fibers (if the reinforcing form is not strong enough, the desired reinforcing form and reinforcing effect cannot be obtained). Therefore, it is difficult to apply this method to produce a composite material reinforced with long fibers that are unilaterally aligned by ordinary press molding or the like.

また、熱硬化性樹脂の分野で行われている方法。This method is also used in the field of thermosetting resins.

すなわち、補強繊維束を樹脂浴中を通ifMせしめるこ
とにより繊維束中に樹脂を含浸せしめたのち、一方向に
引きそろえて配置せしめる方法等を適用するため、熱可
塑性樹脂を適当な溶媒に溶解せしめた粘度の低い溶液の
形で補強繊維中に含浸せしめることからなるいわゆる湿
式含浸法も行われているが、この方法では溶媒除去工程
が煩雑で、作業環境上の問題もあり、熱可塑性樹脂の特
徴を生かした効率的な成形法とはいいがたい。
That is, in order to apply a method such as impregnating the reinforcing fiber bundle with resin by passing it through a resin bath and then aligning it in one direction, the thermoplastic resin is dissolved in an appropriate solvent. The so-called wet impregnation method, which involves impregnating reinforcing fibers in the form of a low-viscosity solution, is also used, but this method requires a complicated solvent removal process and poses problems in the working environment. It cannot be said that this is an efficient molding method that takes advantage of the characteristics of

一方、一方向に引きそろえられた長繊維により補強され
た複合材料を効率的に製造する方法として、たとえば、
米国特許5..995,726号に、連続長の補強繊維
束をクロスヘッド押出機を通過せしめ、高圧下で熱可塑
性樹脂を繊維束中をこ含浸昼しめ、ダイスを通して押出
機から引き抜き、冷却、賦形することにより、所望の断
面形枦の成形品を得る方法が開示されている。しかしな
がら、実施例で開示されているガラス繊維とポリプロピ
シンからなる複合材料の曲げ強度は、ガラス繊維含有率
が73重iチで、16.4ゆ−であり、理論的に推定さ
れる値、約90kg/−に対する達成率が20チ以下で
あり良好な含浸状態、所期の補強形態の両者をともに実
現する有効な方法ではない。なお曲げ強度は複合材料の
含浸状態に敏感な特性値であり、理論的に推定される値
とは、次式で計算される値である。
On the other hand, as a method for efficiently manufacturing a composite material reinforced with long fibers aligned in one direction, for example,
US Patent 5. .. No. 995,726, a continuous length of reinforcing fiber bundle is passed through a crosshead extruder, the fiber bundle is impregnated with a thermoplastic resin under high pressure, and the fiber bundle is pulled out from the extruder through a die, cooled, and shaped. discloses a method for obtaining a molded product with a desired cross-sectional shape. However, the bending strength of the composite material made of glass fibers and polypropycin disclosed in the examples is 16.4 yuan when the glass fiber content is 73 folds, which is a theoretically estimated value. The achievement rate for about 90 kg/- is less than 20 inches, which is not an effective method for achieving both a good impregnation state and the desired reinforcement form. Note that the bending strength is a characteristic value that is sensitive to the impregnation state of the composite material, and the theoretically estimated value is the value calculated by the following formula.

nb= ’f−vf+ %・(j ”f)ここで σL
は補合材料の繊維方向の強度σfは補強繊維の強度 σtは複合材料の破壊ひずみで樹脂に生ずる応力 Vfは繊維の容積分率 である。
nb='f-vf+%・(j"f) where σL
is the strength of the complementary material in the fiber direction σf is the strength of the reinforcing fibers σt is the fracture strain of the composite material, and the stress Vf generated in the resin is the volume fraction of the fibers.

また、特開昭57−IEM852には、熱可塑性樹脂の
溶融物中を通して複数の連続繊維を引いて、繊維を溶融
した樹脂でぬらす方法が開示されている。しかしながら
、この方法は溶融粘度が50 NEJld (約300
ポアズ)より小さい熱可塑性樹脂についてしか有効では
なく、通常利用されている熱可塑性樹脂の溶融粘度レベ
ルから判断して特殊な領域であり、一般的に有効な方法
ではない。
Further, Japanese Patent Application Laid-open No. 57-IEM852 discloses a method in which a plurality of continuous fibers are drawn through a melt of a thermoplastic resin and the fibers are wetted with the melted resin. However, this method has a melt viscosity of 50 NEJld (approximately 300
This method is only effective for thermoplastic resins smaller than 1.0 mm (Poise), and is in a special field judging from the melt viscosity level of commonly used thermoplastic resins, and is not generally an effective method.

そこで本発明者らは、一方向に引きそろえられた補強繊
維により補強された熱可塑性樹脂の長尺物で、補強繊維
間の空隙が樹脂で十分に満たされた長尺物を効率的に製
造する方法で、がっ、通常利用されている比較的溶融粘
度の高い熱可塑性樹脂に有効な方法について鋭意検討を
行い、下記の特定の工程を実施することが有効であるこ
とを見出し本発明に到達した。
Therefore, the present inventors efficiently manufactured a long article of thermoplastic resin reinforced with reinforcing fibers aligned in one direction, in which the voids between the reinforcing fibers were sufficiently filled with resin. We conducted extensive research on methods that are effective for commonly used thermoplastic resins with relatively high melt viscosity, and discovered that it is effective to carry out the following specific steps, resulting in the present invention. Reached.

すなわち、本発明は、 (A) 補強繊維の束状物または帯状物(補強繊維束)
を溶融粘度が20000ポアズ以下の熱可塑性樹脂分音
量セに連続的に接触させ、補強繊維束に熱可塑性樹脂が
付着した付着物を得ること、(B) 前記付着物を、繊
維方向に適当な張力を付与しつつ、2枚の移動している
板状物であって、移動方向に向って前記熱可塑性樹脂の
軟化点以上、かつ分解温度以下に加熱された加熱領域と
前記軟化点以下の温度を有する冷却領域とを有する板状
物に、移動方向と繊維方向とを一致させて挟持しながら
移送すること、 (q 前記加熱領域で、前記板状物の間隔を減少せしめ
て、前記付着物に抑圧を加え、熱可塑性樹脂の溶融物が
補強繊維束の横断面全体にわたって含浸している含浸物
を得ること、および、(ロ) 前記冷却領域において、
前記含浸物の表面にイ」着している熱可塑性樹脂と前記
板状物とが剥離可能な位置より下流側で、前記含浸物を
前記板状物から分離することからなる、補強繊維で補強
された熱可塑性樹脂の長尺物を製造する方法を提供する
ものである。
That is, the present invention provides: (A) a bundle or band of reinforcing fibers (reinforcing fiber bundle);
(B) to obtain a deposit in which the thermoplastic resin is attached to the reinforcing fiber bundle by continuously contacting the thermoplastic resin with a melt viscosity of 20,000 poise or less, While applying tension, two moving plate-like objects are heated in the direction of movement to a temperature above the softening point of the thermoplastic resin and below the decomposition temperature, and a heated region below the softening point of the thermoplastic resin. (q) In the heating area, reducing the interval between the plate-like objects, applying pressure to the kimono to obtain an impregnated product in which the entire cross section of the reinforcing fiber bundle is impregnated with the melt of the thermoplastic resin, and (b) in the cooling region,
Reinforcement with reinforcing fibers, comprising separating the impregnated material from the plate-like material downstream of a position where the thermoplastic resin adhering to the surface of the impregnated material and the plate-like material can be separated. The present invention provides a method for manufacturing a long thermoplastic resin article.

本発明方法によれば、前記(A)項において樹脂を付着
せしめられた補強繊維束中においては、好ましい条件に
おいて付着せしめられた場合においても繊維束の外層以
外の繊維間の空隙に樹脂は十分tこ含浸していないが、
前記(B)、(C)および(D)項の方法において、前
記熱可塑性樹脂の軟化点以」二の温度で、前記付着物に
押圧を加えることにより補強繊維間の空隙が樹脂で十分
に満たされ、補強繊維のたて方向に適当な張力を加える
ことにより補強繊維が一方向に引きそろえられた補強形
態が&(I持され、さらに、2枚の板状物で挟持された
状態で押圧を加え冷却後まで板状物との分離が行われな
いため、補強繊維と樹脂との一体性が損われず、しかも
、前記(B)、(C)および(D)の各項が移動しつつ
行われるため、補強繊維が一方向に引きそろえられ、か
つ、補強繊維間の空隙が樹脂で十分に満たされた長尺物
を極めて効率的に製造することが可能となる。
According to the method of the present invention, in the reinforcing fiber bundle to which the resin is attached in the above item (A), even when the resin is attached under preferable conditions, the resin is sufficiently filled in the voids between the fibers other than the outer layer of the fiber bundle. Although it is not impregnated,
In the methods of (B), (C), and (D) above, the voids between the reinforcing fibers are sufficiently filled with the resin by applying pressure to the deposits at a temperature of 2" above the softening point of the thermoplastic resin. By applying appropriate tension in the vertical direction of the reinforcing fibers, the reinforcing fibers are aligned in one direction. Since separation from the plate-like object is not performed until after the pressure is applied and the resin is cooled, the integrity of the reinforcing fibers and the resin is not impaired, and each of the items (B), (C), and (D) above is moved. Since the reinforcing fibers are aligned in one direction, and the voids between the reinforcing fibers are sufficiently filled with resin, it is possible to extremely efficiently manufacture a long article.

本発明で用いる補強繊維の束状物とは実質+’trz教
百本〜数十万本、好ましくは1,000〜302000
本の補強繊維をたて方向に集束した束であって、撚りの
有無、繊維長の連続および不連続などは適宜選択するこ
とができるが、繊維束自体のハンドリング性の点では撚
られているものが、補強効果の点ではたて方向にできる
だけ長く連続しているものが、さらに操作性の意味では
繊維束中の50%以上が連続長であるものがより好まし
い。また、補l1iJi繊維の帯状物とは、補強繊維を
繊維方向と垂直な方向に広がりを有するように集束せし
めたものであり、帯状物断面での繊維分布が均一なもの
、および前記束状物を平行に配置せしめたものに対応す
る繊維分布が不均一なもののいずれ魁も含む。
The bundle of reinforcing fibers used in the present invention consists of approximately 100 to several hundred thousand fibers, preferably 1,000 to 302,000 fibers.
It is a bundle of book reinforcing fibers gathered in the warp direction, and the presence or absence of twisting and the continuous or discontinuous fiber length can be selected as appropriate, but from the point of view of handling of the fiber bundle itself, it is twisted. From the viewpoint of reinforcing effect, it is preferable that the fiber bundle is continuous for as long as possible in the warp direction, and from the viewpoint of operability, it is more preferable that 50% or more of the fiber bundle is continuous. In addition, a belt-like material of supplementary l1iJi fibers is one in which reinforcing fibers are bundled so as to spread in a direction perpendicular to the fiber direction, and the fiber distribution in the cross section of the belt-like material is uniform; This includes both those in which the fibers are arranged in parallel and those in which the fiber distribution is non-uniform.

本発明で用いられる補強繊維のm類にも、成形時に溶融
しないものであれ°ば特に制限゛はなく、ポリアクリロ
ニトリμ系、レーヨン系、ピッチ系すどの炭素繊維、ガ
ラス繊維、アスベスト繊維、金属繊維などの無機繊維や
ポリエチレンテレフタレート繊維やポリアミド繊維など
の合成繊維などが挙げられ、これらのうち1mまたは2
種以上を組み合せて用いることができる。また、これら
補強繊維は熱可塑性樹脂との密着性を良くするため、各
種の表面処理を施して用いることもできる。なお、補強
繊維のなかでも、力学的性質の改善効果軽量性の意味で
炭素繊維、芳香族ポリアミド繊維がより好ましく、さら
に、耐熱性の意味では炭素繊維が特に好ましく用いられ
得る。
The reinforcing fibers used in the present invention are not particularly limited as long as they do not melt during molding, and include carbon fibers such as polyacrylonitrile μ-based, rayon-based, and pitch-based fibers, glass fibers, asbestos fibers, Examples include inorganic fibers such as metal fibers and synthetic fibers such as polyethylene terephthalate fibers and polyamide fibers.
More than one species can be used in combination. Furthermore, these reinforcing fibers can be used after being subjected to various surface treatments in order to improve their adhesion to the thermoplastic resin. Among the reinforcing fibers, carbon fibers and aromatic polyamide fibers are more preferable in terms of improving mechanical properties and being lightweight, and carbon fibers are particularly preferably used in terms of heat resistance.

本発明で用いる熱可塑性樹脂は、本発明の方法における
加熱領域の温度での溶融粘度が20000ポアズ以下で
あることが必要であり、含浸性の意味で15000ポア
ズ以下がより好ましく、溶融粘度が20000ポアズな
超えると本発明の方法によっても補強繊維束中に樹脂を
十分に含浸せしめることが困難であり好ましくない。一
方、溶融粘度の下限については、特に制限はないが、極
端に溶11?11粘度の低いものでは、分子量の低いこ
とに対応して、すぐれた複合材料性能が期待し難く、ま
た、溶融粘度が低いこと自体に由来して、成形時に微細
なボイドを排除することが困難な場合が多いため、好ま
しくは200ポアズ以上、より好ましくは350ポアズ
以上が選択され得る。なお、本発明における溶融粘度と
は、比較的小さな寸断速度下での溶融粘度をさし、簡便
には、直径0,5朋、長さ1朋のダイを用いる毛管粘度
計で、ニュートン粘性を仮定して、寸断速度50〜50
0 sec””の範囲で測定される。
The thermoplastic resin used in the present invention needs to have a melt viscosity of 20,000 poise or less at the temperature of the heating region in the method of the present invention, and more preferably 15,000 poise or less in terms of impregnation. If the poise is exceeded, it is difficult to sufficiently impregnate the reinforcing fiber bundle with the resin even by the method of the present invention, which is not preferable. On the other hand, there is no particular limit on the lower limit of the melt viscosity, but if the melt viscosity is extremely low, it is difficult to expect excellent composite material performance due to the low molecular weight. Since it is often difficult to eliminate fine voids during molding due to the low poise itself, a value of 200 poise or more, more preferably 350 poise or more may be selected. Note that the melt viscosity in the present invention refers to the melt viscosity under a relatively low shredding speed, and it is convenient to measure Newtonian viscosity using a capillary viscometer using a die with a diameter of 0.5 mm and a length of 1 mm. Assuming a shredding speed of 50-50
Measured in the range of 0 sec"".

本発明で用いる熱可塑性樹脂の種類には、特に制限はな
いが、なかでもナイロン6、ナイロン66ナイロン11
、ナイロン12、ナイロン610、ナイロン612など
のポリアミドまたはこれらの共重合ポリアミド、ポリエ
チレンテレフタレート、ポリブチレンテレフグレートな
どのポリエステlしまたは共重合ポリエステル、ポリビ
スフェノールAカーボネートなどのポリカーボネート、
ポリアミ ド イ ミ ド 、ポ リ エ − テ ル
 ア ミ ド 、ポ リ エ − テ ルイミド、ポリ
フェニレンスルフィド、ポリフェニレンオキシド、ポリ
スルポン、ポリエーテルスルホン、ポリエーテルエーテ
ルケトン、ポリオレフィン、スチレン系樹脂およびアク
リル系樹脂などが好ましく使用できる。また、これらの
熱可塑性樹脂にはその特性を改善するための種々の添加
剤。
The type of thermoplastic resin used in the present invention is not particularly limited, but among them, nylon 6, nylon 66, nylon 11
, polyamides such as nylon 12, nylon 610, and nylon 612, or copolymerized polyamides thereof, polyesters such as polyethylene terephthalate, polybutylene terephthalate, or copolymerized polyesters, polycarbonates such as polybisphenol A carbonate,
Polyamide imide, polyether amide, polyether imide, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyether sulfone, polyether ether ketone, polyolefin, styrene resin, acrylic resin, etc. can be preferably used. Additionally, these thermoplastic resins contain various additives to improve their properties.

たとえば、耐熱剤、耐候剤、紫外線劣化防止剤、帯電防
止剤、滑剤、離型剤、染料、顔料などの+1色剤、結晶
化促進剤および難燃剤などを含有せしめることができる
For example, heat resisting agents, weathering agents, ultraviolet deterioration inhibitors, antistatic agents, lubricants, mold release agents, +1 color agents such as dyes and pigments, crystallization accelerators, flame retardants, etc. can be contained.

本発明の前記(A)項において補強繊維束を熱0J塑性
樹脂の溶融物と連続的に接触させ、補強繊維束に熱可塑
性樹脂が付着した例着物を得る方法tこはとくに制限が
なく、たとえば、 (1) 溶融状態の樹脂浴中に補強繊維束を浸漬または
通過させる方法、(2) 通常のワイヤーコーティング
用のダイスを用いて溶融樹脂で補強繊維束を溶融被覆す
る方法、(6)押出機から供給される溶融樹脂を補強繊
維束表面にイ」着せしめるラミネート法、および、(4
) 粉末状の熱可塑性(V1脂を補強繊維束に付着させ
る方法などが例示され、なかでも上記(1)〜(3)の
方法は樹脂を何着した直後の(II(脂がまだ溶融状態
にあるままで引き続く工程に供給す。ことができる点で
効率的である。この際の樹脂のイ」着量にも特に制限は
ないが付着物中の補強繊維分率が10〜70容量−の範
囲になることが補強効果の点で好ましい。このように得
られた付着物はそのまま連続的tこまたは時間をおいて
引き続く工程に供給することが可能であり、また、束状
物については、引き続く工程で帯状物を得る目的で相互
に平行に並べき引き続く工程に供給することも可能であ
る。
There are no particular limitations on the method of obtaining an example kimono in which the thermoplastic resin is attached to the reinforcing fiber bundle by continuously bringing the reinforcing fiber bundle into contact with the melt of the thermoplastic resin in the above-mentioned (A) of the present invention. For example, (1) a method in which the reinforcing fiber bundle is immersed or passed through a resin bath in a molten state, (2) a method in which the reinforcing fiber bundle is melt-coated with molten resin using a normal wire coating die, (6) A lamination method in which the surface of the reinforcing fiber bundle is coated with molten resin supplied from an extruder, and (4)
) Examples include a method of attaching powdered thermoplastic (V1 fat) to reinforcing fiber bundles, among which methods (1) to (3) above apply immediately after applying the resin (II (the fat is still in a molten state). It is efficient in that it can be supplied to the subsequent process as it is.There is no particular limit to the amount of resin deposited at this time, but if the reinforcing fiber fraction in the deposit is 10 to 70 volume. From the viewpoint of reinforcing effect, it is preferable that the deposit be within the range of , it is also possible to arrange them parallel to each other and feed them to a subsequent process in order to obtain a strip in the subsequent process.

本発明において、繊維方向に付与する適当な張力とは、
補強繊維束な切断せしめない範囲で、前記付着物に抑圧
を加える際に補強繊維束中への樹脂の含浸な阻害しない
程度に十分弱く、かつ、補強繊維が一方向に引ぎそろえ
られた形態を維持できる程度に十分強い範囲の張力をさ
し、この範囲で適宜選択し得るが、通常、補強繊維の断
面積基準で10〜1009Am”の張力が選択され得る
。また張力を付与する方法にも特に制限はないが、例え
ば、一対の回転するロールで挟持しつつ張力を付与する
方法、あるいは、前記熱可塑性樹脂をイ」着せしめる工
程と引き続く工程とを連続的に行う場合においては、繊
維束をボビン等から供給する際の抵抗、または、樹脂浴
またはダイス等を通堝する際の抵抗により張力を伺与す
る方法等が例示される。
In the present invention, the appropriate tension applied in the fiber direction is
The structure is sufficiently weak that it does not inhibit the impregnation of the resin into the reinforcing fiber bundle when applying pressure to the adhesion without causing the reinforcing fiber bundle to break, and the reinforcing fibers are aligned in one direction. It refers to a tension in a range strong enough to maintain the tension, and can be selected as appropriate within this range, but usually a tension of 10 to 1009 Am'' based on the cross-sectional area of the reinforcing fibers is selected. There are no particular restrictions on the fibers, but for example, if the fibers are held between a pair of rotating rolls while applying tension, or if the process of applying the thermoplastic resin and the subsequent process are performed continuously, Examples include a method of applying tension by resistance when the bundle is fed from a bobbin or the like, or resistance when passing the bundle through a resin bath, a die, or the like.

本発明において、前記付着物を挟持しつつ移送する2枚
の板状物についても、前記(B) (C)および(I)
)項を満足するものであれば特に制限はなく、金属製、
紙製、合成樹脂製あるいはそれらを組み合せたものを使
用することが可能であり、必要により離型剤等を塗布し
て使用することもiJ能であるが、本発明における加熱
領域の温度において、抑圧を前記11着物に加えるに十
分な形態保持性を有することが必要であり、特に紙製、
合成樹脂製のものについては材質の選択eこ性態を要す
る。なお、祠質面で操作性の意味では可撓性を有する相
性が、耐熱性の意味ではステンレスス−f−−/I/u
Q カ、pH+l型性の意味ではフッ素系樹脂製がより
好ましく、また、形状的には、実質的に板状物とみなせ
る一対の無端ベルトを用いるのが効率面でより好ましい
In the present invention, the above-mentioned (B) (C) and (I)
) There is no particular restriction as long as it satisfies the requirements, metal,
It is possible to use paper, synthetic resin, or a combination thereof, and if necessary, it is also possible to apply a mold release agent etc., but at the temperature of the heating area in the present invention, It is necessary to have sufficient shape retention to add compression to the above-mentioned 11 kimono, especially paper,
For those made of synthetic resin, the selection of the material and the following properties are required. In addition, in terms of abrasiveness and operability, it is compatible with flexibility, but in terms of heat resistance, it is compatible with stainless steel f--/I/u.
Q: In terms of pH+L type property, it is more preferable to use a fluororesin, and in terms of shape, it is more preferable to use a pair of endless belts that can be substantially regarded as plate-like objects in terms of efficiency.

また、前記(A)項で付着物を得るのと実質的に同じ効
果をもた・らす方法として、2枚の板状物の間に補強繊
維束と熱可塑性樹脂シートまたはテープ等とを重ねて供
給することも可能である。
In addition, as a method to achieve substantially the same effect as obtaining deposits in item (A) above, a reinforcing fiber bundle and a thermoplastic resin sheet or tape, etc. are placed between two plate-like objects. It is also possible to supply them in duplicate.

本発明の加熱領域の熱可塑性樹脂の軟化点以上の温度と
は、実質的1こ前記付着物が抑圧を加えられる際の樹脂
温度であり、これは、前記付着物の予熱および/または
前記付着物を挟持している2枚の板状物を介してもたら
される。この樹脂温度は少なくとも熱可塑性樹脂の軟化
点以上の温度であり、かつ、本発明の4)項における溶
融粘度2000ポアズ以下を実現する必要があり、この
条件が満たされない場合は、補強繊維束中への樹脂の十
分な含浸が実現されない。温度制御のより具体的な方法
としては、(イ)前記付着物を樹脂の軟化点以上の温度
に十分子熱し、これを板状物で挟持する方法、(ロ)板
状物を直接、輻射熱等で加熱する方法、C9押圧を加え
2る機構自体を加熱し、板状物を伝導加熱する方法、(
→(イ)、(ロ)、e)のうち二つ以上を組み合わせる
方法などが挙げられる。また、ここで定義される熱可塑
性樹脂の軟化点とは、結晶性熱可塑性樹脂においては結
晶の融解温度、非晶性熱可塑性樹脂においてはガラス転
移温度である。
The temperature equal to or higher than the softening point of the thermoplastic resin in the heating region of the present invention is substantially the temperature of the resin when the deposit is suppressed, and this is the temperature at which the deposit is preheated and/or the deposit is applied. It is delivered via two plate-like objects that sandwich the kimono. This resin temperature must be at least higher than the softening point of the thermoplastic resin, and it is necessary to achieve a melt viscosity of 2000 poise or less according to item 4) of the present invention. Sufficient impregnation of the resin into the resin is not achieved. More specific methods of temperature control include (a) heating the deposit to a temperature higher than the softening point of the resin, and then sandwiching it between plate-shaped objects, and (b) directly heating the plate-shaped object with radiant heat. A method of heating the plate-like object by conduction heating by applying C9 pressure and heating the mechanism itself, (
→ Examples include a method of combining two or more of (a), (b), and e). Furthermore, the softening point of a thermoplastic resin defined herein is the melting temperature of crystals in the case of a crystalline thermoplastic resin, and the glass transition temperature in the case of an amorphous thermoplastic resin.

本発明において、前記イ」着物に加える抑圧は、前記熱
可塑性樹脂の軟化点製上の温度におい°C1前記板状物
の間隔を減少せしめることにより、n11記付着物のm
J記析板状物垂直な方向の寸法を実質的に減少せしめる
程度に加えることが重要であり、この条件が満たされな
い場合も補強繊維束中への樹脂の十分な含浸が実現され
ない。ここでいう前記付着物の前記板状物に垂直な方向
の寸法の減少は、前記付着物の寸法の20〜80チの範
囲が」1ニ当であり、減少率が小さすぎては樹脂の含浸
が不十分となり、また、大ぎすぎては繊維方向の乱れや
繊維の損傷を生ずるため好ましくない。押[−(Eを加
える具体的な方法としては、前記板状物を少なくとも一
対のロール間を通過せしめる方法、i′+11記板状物
に静水圧を加える方法等が例示されるが、これらに限定
されるものではない。
In the present invention, the suppression applied to the kimono (a) is achieved by reducing the distance between the plate-like objects at a temperature above the softening point of the thermoplastic resin (°C1), thereby reducing the m
It is important to add the resin to an extent that substantially reduces the vertical dimension of the plate-shaped object, and if this condition is not met, sufficient impregnation of the resin into the reinforcing fiber bundle will not be achieved. Here, the reduction in the dimension of the deposit in the direction perpendicular to the plate-like object is within the range of 20 to 80 inches, and if the reduction rate is too small, the resin Impregnation will be insufficient, and if it is too large, the fiber direction will be disturbed and the fibers will be damaged, which is not preferable. Specific methods for adding push [-(E) include a method of passing the plate-like object between at least a pair of rolls, a method of applying hydrostatic pressure to the i'+11 plate-like object, etc. It is not limited to.

本発明における冷却領域の温度は熱可塑性樹脂の軟化点
以下の温度であることが必要であり、この条件が満たさ
れない場合、前記含浸物中の熱可塑性樹脂は狡化せず、
溶融状態やこととまるため、前記含浸物をi1j記板状
物から分離する際に、前記含浸物中の各成分が前記板状
物Vこ付着し、前記含浸物の一体性および補強形態が損
われるため好ましくない。冷却領域の温度制御の方法は
特に制限はないが、例えば、自然放冷、前記板状物に強
制的に冷気を吹きつける方法、水を噴霧する方法、冷却
水を通じたローラー等を接触せしめる方法が例示される
。また、前記加熱領域から冷却領域へわたって、前記含
浸物の一体性をより確寮なものとするため、適宜、ロー
ル等で加圧することが可能である。
The temperature of the cooling region in the present invention needs to be below the softening point of the thermoplastic resin; if this condition is not met, the thermoplastic resin in the impregnated material will not become stiff;
Since the molten state remains constant, when the impregnated material is separated from the plate-like material, each component in the impregnated material adheres to the plate-like material V, and the integrity and reinforcement form of the impregnated material are damaged. This is not desirable as it can cause damage. There are no particular restrictions on the method of temperature control in the cooling area, but examples include natural cooling, forcibly blowing cold air onto the plate, spraying water, and bringing rollers into contact with cooling water. is exemplified. Further, in order to ensure the integrity of the impregnated material from the heating region to the cooling region, it is possible to apply pressure with a roll or the like as appropriate.

本発明における前記板状物の移動速度は、前記加熱およ
び冷却領域において所期の温度が得られる程度に十分に
遅く、かつ、前記付着物または含浸物の損傷が生じない
程度に十分に遅い範囲であれば、とくに制限はなく、前
記条件が満たされる範囲では速い程効率上好ましいが、
通常、0.1す〜10111/9の速度が選択され得る
。なお本発明においては、前記(A)項の付yα物を得
る工程、前記(B)(C)および史)項の含浸、固化の
工程を連続的なプロセスで実施することが可能であり、
さらに、得られた長尺物を連続的に以降の成形工程へ移
行させることも可能である。かくして得られる本発明の
補強繊維により補強された熱可塑性樹脂の長尺物は、補
強繊維束中に樹脂が十分に含浸し、積置sc間の空隙が
すべて樹脂で満たされており、補強繊維のすぐれた補強
性能を有効に発揮せしめるものである。また、本発明で
得られる長尺物はそのままで種4の用途に利用できるが
、さらに、例えばこれをドラムに緊張状態で巻き収り、
樹脂の融点以上に加熱して成形品を得る方法および長尺
物をそのまままたは適宜の畏さに切断して所望の配列才
たは分散状態となして、これを加熱加圧する方法などの
成形手段に供し、長繊維により所望の補強形態により補
強された複合シートおよび複合成形品などを得るのに、
とくに好適であり、かくして得られる複合シートや複合
成形品は補強繊維が所望の補強形態で分布し、かつ樹脂
が十分に含浸されており、すぐれた補強効果を奏するも
のである。
In the present invention, the moving speed of the plate-shaped object is within a range that is sufficiently slow to obtain the desired temperature in the heating and cooling regions, and sufficiently slow so as not to cause damage to the deposits or impregnated materials. If so, there are no particular restrictions, and as long as the above conditions are met, the faster the speed, the better in terms of efficiency.
Typically, a speed of 0.1 to 10111/9 may be selected. In addition, in the present invention, it is possible to carry out the step of obtaining the attached yα product in the above (A), the impregnation and solidification steps in the above (B), (C) and history) in a continuous process,
Furthermore, it is also possible to continuously transfer the obtained elongated object to the subsequent molding process. In the thus obtained long article of thermoplastic resin reinforced with the reinforcing fibers of the present invention, the reinforcing fiber bundles are sufficiently impregnated with the resin, all the gaps between the stacked sc are filled with the resin, and the reinforcing fibers are fully impregnated with the resin. This allows the excellent reinforcing performance of the steel to be effectively exhibited. Further, the long material obtained by the present invention can be used as is for the purpose of type 4, but it is also possible to roll it under tension on a drum, for example.
Molding methods include a method of heating the resin to a temperature higher than its melting point to obtain a molded article, and a method of heating and pressurizing a long article as it is or cutting it into appropriate pieces to form a desired arrangement or dispersion state. to obtain composite sheets and composite molded products reinforced with long fibers in a desired form of reinforcement.
It is particularly suitable, and the composite sheets and composite molded products thus obtained have reinforcing fibers distributed in a desired reinforcing form, are sufficiently impregnated with resin, and exhibit excellent reinforcing effects.

以下に実施例を挙げて本発明をさらに具体的に説明する
The present invention will be explained in more detail with reference to Examples below.

実施例1 直径7μの炭素繊維5000木集束してなる炭素繊維束
(東し■製1トレカ’T300)と310℃シこおける
溶融粘度が1500ポアズであるポリフエニレ/サルフ
ァイド(米国フィリップスペトロリアム社製)(以下p
psと略す)を第1図に概略図で示した本発明の工程を
連続的に以下の条件で実施し、炭素繊維で補強されたポ
リフェニレンサルファイドの長尺物を得た。
Example 1 A carbon fiber bundle consisting of 5,000 carbon fibers with a diameter of 7 μm (Torayka 'T300 manufactured by Toshi ■) and polyphenylene/sulfide having a melt viscosity of 1,500 poise at 310° C. (manufactured by Phillips Petroleum, USA). (Below p.
The process of the present invention, which is schematically shown in FIG. 1, was continuously carried out under the following conditions to obtain a carbon fiber-reinforced polyphenylene sulfide elongate product.

すなわち、上記炭素繊維束1を、押出機2より510℃
に加熱されたppsが供給されている樹脂浴3に供給し
、直径11IjIのダイス4より引きとり、直径0.7
■の炭素繊維束のPPS付着物Sを得て、引き続き矢印
の方向に回転している一対のの加熱ロー/I/6および
冷却ロール7により駆動され、赤外線ヒーターaにより
加熱されている一対のステンレス・スチール典の無端ベ
ルト90間に加熱ロー/l/6の側から供給し、矢印の
方向に回転している一対のゴム製ローIし10により引
き取ることにより、長尺物11を得た。
That is, the carbon fiber bundle 1 is heated to 510°C by the extruder 2.
The resin bath 3 is supplied with pps heated to
After obtaining the PPS deposit S of the carbon fiber bundle (2), the pair of heating rollers/I/6 rotating in the direction of the arrow and the cooling roller 7 drive the pair of rollers heated by the infrared heater a. A long object 11 was obtained by feeding it from the heated row/l/6 side between endless belts 90 made of stainless steel and taking it off by a pair of rubber rows 10 rotating in the direction of the arrow. .

ここで、加熱ロール6は電熱により3’20℃に加熱し
、冷却ロール7は室YM1の冷却水を通じて用い、ロー
ルの直径は550■、回転速度は約6回/分、o −)
v 6.7間の軸間距離ハ2000 順であり、ローl
v6.7それぞれの相互の軸間距離は。
Here, the heating roll 6 is heated to 3'20°C by electric heating, and the cooling roll 7 is used through cooling water in the chamber YM1, the diameter of the roll is 550cm, the rotation speed is about 6 times/min, o-)
The center distance between v 6.7 is 2000, and the distance between
v6.7 mutual axis distance.

一対の熱封べμト9間の空隙が0.3間となるJ:うに
設定した。また、無端ベルト9の厚さ、幅はそれぞれ0
.611jl、約25011111であり、加H4ロー
 tv 6により付着物5を加圧する部位、および、冷
却ローIv?近傍で長尺物11を分離する部位でのベル
ト表面温度は、それぞれ310±5tE、オ6よび22
0±5℃の範囲に制御されていた。得られた長尺物は偏
平断面を有し、長尺物中の炭素繊維含有率は約50容量
チであり、長手方向に垂1Hに切り出した約100μ厚
の薄片について光学顕微鏡観察を行ったところ、炭素繊
維とppsとが完全に一体化しており、炭素繊維束中へ
のppsの含浸は良好であった。
The gap between the pair of heat-sealed μ plates 9 was set to J: 0.3 mm. Also, the thickness and width of the endless belt 9 are 0, respectively.
.. 611jl, about 25011111, the part where the deposit 5 is pressurized by the applying H4 low tv 6, and the cooling low Iv? The belt surface temperature at the location where the long object 11 is separated in the vicinity is 310 ± 5 tE, O 6 and 22, respectively.
The temperature was controlled within the range of 0±5°C. The obtained long object had a flat cross section, the carbon fiber content in the long object was about 50 by volume, and an optical microscope observation was performed on a thin section about 100 μ thick cut vertically 1H in the longitudinal direction. However, the carbon fibers and the pps were completely integrated, and the impregnation of the pps into the carbon fiber bundle was good.

次に、この長尺物を150順の長さに切断したものを一
方向に引きそろえ310℃に設定しである一対の平金型
で2 kFIlcaの圧力で一体化し、炭素繊維の配列
に乱れのない外観良好な約2.511#I厚のシート成
形品を得た。このシートから切り出した試験片について
、ASTMil−790に準じて曲げ試験を行ったとこ
ろ2曲げ強度、曲げ弾性率は。
Next, this long material was cut into lengths in the order of 150, aligned in one direction, set at 310°C, and integrated with a pressure of 2 kFIlca in a pair of flat molds, so that the arrangement of the carbon fibers was disturbed. A sheet molded product having a thickness of about 2.511#I and having a good appearance without any cracks was obtained. A bending test was performed on a test piece cut from this sheet according to ASTM Il-790, and the bending strength and bending modulus were as follows.

それぞれ、16 G tqt/c4.10.5ton/
ioFであり、曲げ強度は理論的に推定される値175
 kgArt’に対し91チの達成率であり、含浸状態
、炭素繊維の配列状態がともに良好であることが確認さ
れた。
16G tqt/c4.10.5ton/each
ioF, and the bending strength is a theoretically estimated value of 175
The achievement rate was 91 cm for kgArt', and it was confirmed that both the impregnation state and the alignment state of the carbon fibers were good.

比較例1 実施例1で加熱ローA/6の温度を260℃に設定し、
赤外線ヒーター8を作動させず、また、イ」ja物5を
冷却固化させたのち一対の無端ベルト90間に供給した
ことのほかは、実施例1と全く同様の方法で長1反物を
得た。得られた長尺物は偏平断面を有していたが、実施
例1と同様の方法で観察用切片を作成したところ、炭素
繊維束中へのPpsの含浸は実現されておらず、単なる
被覆構造であり、切片作成時に芯部の炭素繊維が脱落し
た。
Comparative Example 1 In Example 1, the temperature of heating row A/6 was set to 260°C,
A long piece of cloth was obtained in exactly the same manner as in Example 1, except that the infrared heater 8 was not activated and the piece of cloth 5 was cooled and solidified and then fed between a pair of endless belts 90. . The obtained long material had a flat cross section, but when a section for observation was prepared in the same manner as in Example 1, impregnation of Pps into the carbon fiber bundle was not realized, and it was found that it was just a coating. structure, and the carbon fiber in the core fell off during sectioning.

実施例2 実施例1と全く同様の方法で炭素繊維束にppsが付着
した付着物を得て、このイ1着物40本を横方向に10
木71 cmの間隔で並べて1@2図の概略図で示した
工程を連続約1こ以下の条件で実施し、炭素繊維で補強
されたppsのシート状長尺物を得た。
Example 2 A deposit with pps attached to a carbon fiber bundle was obtained in exactly the same manner as in Example 1.
The process shown in the schematic diagram in Figure 1@2 was carried out continuously under conditions of approximately 1 or less pieces of wood, and a carbon fiber-reinforced pps sheet-like elongated product was obtained.

すなわち、上記付着物(12)40本を10木/1(J
lの割合で等間隔に横方向に並べ、矢印の方向に回転し
ている一対のゴム製ローA/13に連続的に供給し、次
いで、赤外線ヒーター14によりr・、備加熱し、引き
続き、矢印の方向に回転し−Cいる一対の加熱ロール1
5および冷却ローlし16により保持され、供給部17
より連続的に供給され、朱印の方向へ移動しつつ巻き取
り部1Bへ連続的に巻きとられる、2枚のアルミ製シー
ト19で表面にシリコーン系離型剤(トーレシリコン■
製S、 H2O2りを塗布されているシートの間に加熱
ローフ1z15の側から供給し、矢印の方向に回転して
いるゴム製ロール20により引き取るととによりシート
状の長尺物21を得た。
That is, 40 pieces of the above-mentioned adhesion (12) are divided into 10 trees/1 (J
It is continuously supplied to a pair of rubber rows A/13 which are arranged horizontally at equal intervals at a ratio of 1 and rotated in the direction of the arrow, and then heated by an infrared heater 14, and then, A pair of heating rolls 1 rotating in the direction of the arrow -C
5 and a cooling roller 16, and a supply section 17
Two aluminum sheets 19 are continuously supplied and wound up continuously to the winding section 1B while moving in the direction of the red stamp, and a silicone-based mold release agent (Toray Silicon ■
A heated loaf 1z15 was fed between the sheets coated with H2O2 and taken up by a rubber roll 20 rotating in the direction of the arrow, thereby obtaining a sheet-like elongated object 21. .

ここで、加熱ロー/l/15の直径は約550順であり
、電熱により630℃tこ加熱して用い、ロー)v l
 5.16間の軸間距離は2000KI11であり、ロ
ール15.16それぞれの相互の間隔は、アルミ製シー
1−19の間隙が0.2龍となるように設定した。また
、アルミ製シート19の厚さは約0.05順であり、加
熱ロー /I/ I Bにより加圧された部位160±
10℃であった。ロー/l/13、Is、16および2
0の回転速度は、前記付着物12および長尺物21の移
動速度が約2m/分となり、かつ前記付着物12に適当
な張力が付与されるように設定した。
Here, the diameter of the heating rho/l/15 is about 550, and it is heated to 630°C by electric heating.
The distance between the axes between the rolls 15 and 16 was 2000 K11, and the mutual spacing between the rolls 15 and 16 was set so that the gap between the aluminum sheets 1 and 19 was 0.2 K. In addition, the thickness of the aluminum sheet 19 is approximately 0.05 mm, and the area 160±
The temperature was 10°C. Rho/l/13, Is, 16 and 2
The rotational speed of 0 was set so that the moving speed of the deposit 12 and the elongated object 21 was approximately 2 m/min, and an appropriate tension was applied to the deposit 12.

得られた長尺物の厚さは約0.2++m、幅は約40順
であり、炭素繊維の含有率は約50容量チであり、実施
例1と同様の方法で観察を行ったところppsの炭素繊
維束への含浸状態は良好であり、また、繊維の配列状態
も良好であった。
The thickness of the obtained long product was about 0.2++ m, the width was about 40 cm, the carbon fiber content was about 50 cm, and when observed in the same manner as in Example 1, it was pps. The state of impregnation into the carbon fiber bundle was good, and the arrangement of the fibers was also good.

実施例6 実施例2で用いた炭素繊維束の代りに、繊度が約0 、
26g/mのガラス繊維束(旭ファイバーグラス■製1
グラスロン・ヤーンIE(:G1501/8)を用い、
ppsO代りに250゛0における溶融粘度“が700
ポアズであるナイロン6(東しく巾製CM1001 )
を用い、アルミ製シートの代りにI’F−サ約0.05
111Iのポリテトラフルオロエチレン製シートにチア
ス■製テフロン・テープ)を用い、樹脂浴3での樹脂の
温度を250℃、加2−〇?ローツー15の温度を25
5°Cに設定したことのは力弓よ、実施側2と全く同様
の方法でガラス繊維で補強されたナイロン60シート状
長尺物を得た。得られた長尺物の厚さは約0.2隼、幅
は約401であり、ガラス繊維の配列状態は良好であり
、実施例1と同様の方法で観がしたところ含浸状態は良
好であった。
Example 6 Instead of the carbon fiber bundle used in Example 2, carbon fiber bundles with a fineness of about 0,
26g/m glass fiber bundle (Made by Asahi Fiberglass 1)
Using Graslon Yarn IE (:G1501/8),
Melt viscosity at 250゛0 is 700 instead of ppsO
Poise nylon 6 (CM1001 manufactured by Toshikuhiba)
using I'F-sa of about 0.05 instead of the aluminum sheet.
111I polytetrafluoroethylene sheet with Teflon tape manufactured by Chias ■), the temperature of the resin in resin bath 3 was set to 250°C, and the temperature was increased to 2-〇? Low two 15 temperature 25
The temperature was set at 5°C, and a long sheet of nylon 60 reinforced with glass fibers was obtained in exactly the same manner as in Example 2. The thickness of the obtained long product was about 0.2mm, the width was about 40mm, the arrangement of the glass fibers was good, and when inspected using the same method as in Example 1, the impregnation state was good. there were.

次に、この長尺物を150flの長さに切断したもの1
2枚を、繊維方向をそろえて積層し、260℃に設定し
である一対の平金型で1 k41/cAの圧力で一体化
し、ガラス繊維の配列に乱れのない外観良好な約2.1
暉厚のシート成形品を得た。このシート中のガラス繊維
含有率は55容量チであり、このシートから切り出した
試験片について測定した曲げ強度、曲げ弾性率は、それ
ぞれ、90 kg/m11”。
Next, cut this long object into a length of 150 fl.
The two sheets are laminated with the fiber directions aligned and integrated with a pair of flat molds set at 260°C under a pressure of 1 k41/cA to form a glass fiber with good appearance and no disturbance in the arrangement of the glass fibers.
A very thick sheet molded product was obtained. The glass fiber content in this sheet was 55% by volume, and the bending strength and bending elastic modulus measured on a test piece cut from this sheet were 90 kg/m11'', respectively.

5.4 ton/aJであり1曲げ強度は理論的に推定
される値97 kg/mJに対し93%の達成率であり
、含浸状態、ガラス繊維の配列状態がともに良好である
ことが確認された。
5.4 ton/aJ, and the bending strength was 93% of the theoretically estimated value of 97 kg/mJ, confirming that both the impregnated state and the arrangement of the glass fibers were good. Ta.

実施例4 実施例1で用いたppsの代りに、表1に記載の樹脂で
、樹脂浴の温度における溶融粘度が表1に記載しである
値のものを用い、樹脂浴の温度、加熱ロール温度を表1
に記載の値に設定したことのほかは、実施例1と全く同
様の方法で炭素繊維で補強された長尺物を得た。
Example 4 Instead of the pps used in Example 1, a resin listed in Table 1 with a melt viscosity at the temperature of the resin bath having a value as listed in Table 1 was used, and the resin bath temperature and heating roll were Table 1 shows the temperature.
A long article reinforced with carbon fibers was obtained in exactly the same manner as in Example 1, except that the values were set as described in .

得られた長尺物中の炭素繊維の配列状態は良好であり、
実施例1と同様の方法で観察した含浸状態も良好であっ
た。
The arrangement of carbon fibers in the obtained long material was good;
The impregnation state observed by the same method as in Example 1 was also good.

表 1Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1で使用する裟1直の概略図で
あり、第2図は実施例2で使用する% 1.ltの概略
図である。 1 ・・・ 補強繊維束 2 ・・・ 押出機 3 ・・・ 樹脂浴 4 ・・・・・ ダイス 5.12 ・・・ 樹脂付着繊維束 6.15 ・・・ 加熱ローラー 7.16 ・・・ 冷却ローラー 8.14 ・・・ 赤外線ヒーター 9、・・・・ ステンレス・スチーμ製無端へtvト1
0、20 ・・・ 引き取りローラー11.21 ・・
・ 樹脂含浸繊維長尺物19 ・・・・・ アルミ製シ
ート 特許出願人 東し株式会社
FIG. 1 is a schematic diagram of the first shift used in Example 1 of the present invention, and FIG. 2 is a schematic diagram of the 1st shift used in Example 2 of the present invention. FIG. 2 is a schematic diagram of lt. 1... Reinforcing fiber bundle 2... Extruder 3... Resin bath 4... Dice 5.12... Resin-attached fiber bundle 6.15... Heating roller 7.16... Cooling roller 8.14 ... Infrared heater 9, ... Stainless steel μ endless tube 1
0, 20... Take-off roller 11.21...
・Resin-impregnated fiber long article 19 ... Aluminum sheet patent applicant Toshi Co., Ltd.

Claims (1)

【特許請求の範囲】 (A) 補強繊維の束状物または帯状物(補強繊維束)
を溶融粘度が20000ポアズ以下の熱可塑性樹脂→丹
薔魯と連続的に接触させ、補強繊維束に熱可塑性樹脂が
付着した付着物を得ること、(B) 前記付着物を、繊
維方向に適当な張力を付与しつつ、2枚の移動している
板状物であって、移動方向に向って前記熱可塑性樹脂の
軟化点以上、かつ分解温度以下に加熱された加熱領域と
(C) 前記加熱領域で前記板状物の間隔を減少せしめ
て前記付着物に抑圧を加え、熱可塑性樹脂の溶融物が補
強繊維束の横断面全域にわたって含浸している含浸物を
得ること、および (ロ) 前記冷却領域において、前記含浸物の表面に付
着している熱可塑性樹脂と前記板状物とが剥離筒−能な
位置より下流側で、前記含浸物を前記板状物から分離す
ること、からなる補強縁A(iで補強された熱可塑性樹
脂の長尺物を製造する方法。
[Claims] (A) Bundle or band of reinforcing fibers (reinforcing fiber bundle)
Thermoplastic resin having a melt viscosity of 20,000 poise or less is brought into continuous contact with Tanbaro to obtain a deposit in which the thermoplastic resin adheres to the reinforcing fiber bundle, (B) The deposit is properly aligned in the fiber direction. (C) two moving plate-shaped objects heated in the direction of movement to a temperature above the softening point and below the decomposition temperature of the thermoplastic resin while applying a certain tension; (b) reducing the interval between the plate-like objects in a heating region to suppress the deposits, and obtaining an impregnated product in which the molten material of the thermoplastic resin is impregnated over the entire cross-sectional area of the reinforcing fiber bundle; In the cooling region, the impregnated material is separated from the plate-like material at a position downstream of a position where the thermoplastic resin adhering to the surface of the impregnated material and the plate-like material can be separated. A method of manufacturing a thermoplastic resin elongate reinforced with a reinforced edge A (i).
JP58144921A 1983-08-10 1983-08-10 Manufacture of long-sized product of thermoplastic resin reinforced with fiber Granted JPS6036136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58144921A JPS6036136A (en) 1983-08-10 1983-08-10 Manufacture of long-sized product of thermoplastic resin reinforced with fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58144921A JPS6036136A (en) 1983-08-10 1983-08-10 Manufacture of long-sized product of thermoplastic resin reinforced with fiber

Publications (2)

Publication Number Publication Date
JPS6036136A true JPS6036136A (en) 1985-02-25
JPH0144144B2 JPH0144144B2 (en) 1989-09-26

Family

ID=15373321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58144921A Granted JPS6036136A (en) 1983-08-10 1983-08-10 Manufacture of long-sized product of thermoplastic resin reinforced with fiber

Country Status (1)

Country Link
JP (1) JPS6036136A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291532A (en) * 1985-10-17 1987-04-27 Kureha Chem Ind Co Ltd Sheet-like molding and its production
JPH02143810A (en) * 1988-11-24 1990-06-01 Toray Ind Inc Compound board of thermoplastic resin and reinforcing fiber
JPH0353928A (en) * 1989-07-20 1991-03-07 Sumitomo Chem Co Ltd Manufacture of fiber-reinforced thermoplastic resin product
JPH05200748A (en) * 1991-09-03 1993-08-10 Kurt Held Method and device for continuously producing material web impregnated with resin
US5529652A (en) * 1987-07-11 1996-06-25 Kabushiki Kaisha Kobe Seiko Sho Method of manufacturing continuous fiber-reinforced thermoplastic prepregs
JP2008231236A (en) * 2007-03-20 2008-10-02 Toray Ind Inc Method for producing fiber-reinforced composite material, and fiber-reinforced composite material
CN102092135A (en) * 2010-12-13 2011-06-15 中国航空工业集团公司北京航空材料研究院 Method for improving rigidity of wing surface structure of composite material
WO2012002417A1 (en) 2010-06-30 2012-01-05 東レ株式会社 Process and apparatus for producing sheet-shaped prepreg
JP2014517092A (en) * 2011-04-12 2014-07-17 ティコナ・エルエルシー Composite core for electric cable
TWI574831B (en) * 2014-11-07 2017-03-21 An LFT Process Method for Enhancing the Immersible Rate of Fibers
JP2022513924A (en) * 2018-12-20 2022-02-09 アルケマ フランス Fiber material impregnated with a thermoplastic polymer of optimum molecular weight and viscosity and its manufacturing method
US11826940B2 (en) 2014-09-17 2023-11-28 Mitsubishi Chemical Corporation Production method for fiber-reinforced thermoplastic resin composite material, production method for fiber-reinforced thermoplastic resin tape, production method for press-molding material, production method for molded article, unidirectional prepreg, and molded article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684917A (en) * 1979-08-24 1981-07-10 Ford Motor Co Reinforcing sheet material and manufacture of its molding article
JPS58132514A (en) * 1982-02-01 1983-08-06 Kato Hatsujo Kaisha Ltd Glass fiber reinforced molding material and manufacturing apparatus thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684917A (en) * 1979-08-24 1981-07-10 Ford Motor Co Reinforcing sheet material and manufacture of its molding article
JPS58132514A (en) * 1982-02-01 1983-08-06 Kato Hatsujo Kaisha Ltd Glass fiber reinforced molding material and manufacturing apparatus thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291532A (en) * 1985-10-17 1987-04-27 Kureha Chem Ind Co Ltd Sheet-like molding and its production
JPH0528252B2 (en) * 1985-10-17 1993-04-23 Kureha Chemical Ind Co Ltd
US5529652A (en) * 1987-07-11 1996-06-25 Kabushiki Kaisha Kobe Seiko Sho Method of manufacturing continuous fiber-reinforced thermoplastic prepregs
JPH02143810A (en) * 1988-11-24 1990-06-01 Toray Ind Inc Compound board of thermoplastic resin and reinforcing fiber
EP0376472A2 (en) * 1988-11-24 1990-07-04 Toray Industries, Inc. Thermoplastic composite plate material and products molded from the same
JP2507565B2 (en) * 1988-11-24 1996-06-12 東レ株式会社 Composite board of thermoplastic resin and reinforcing fiber
JPH0353928A (en) * 1989-07-20 1991-03-07 Sumitomo Chem Co Ltd Manufacture of fiber-reinforced thermoplastic resin product
JPH05200748A (en) * 1991-09-03 1993-08-10 Kurt Held Method and device for continuously producing material web impregnated with resin
JP2008231236A (en) * 2007-03-20 2008-10-02 Toray Ind Inc Method for producing fiber-reinforced composite material, and fiber-reinforced composite material
WO2012002417A1 (en) 2010-06-30 2012-01-05 東レ株式会社 Process and apparatus for producing sheet-shaped prepreg
US9238336B2 (en) 2010-06-30 2016-01-19 Toray Industries, Inc. Process and apparatus for producing sheet-shaped prepreg
CN102092135A (en) * 2010-12-13 2011-06-15 中国航空工业集团公司北京航空材料研究院 Method for improving rigidity of wing surface structure of composite material
JP2014517092A (en) * 2011-04-12 2014-07-17 ティコナ・エルエルシー Composite core for electric cable
US11826940B2 (en) 2014-09-17 2023-11-28 Mitsubishi Chemical Corporation Production method for fiber-reinforced thermoplastic resin composite material, production method for fiber-reinforced thermoplastic resin tape, production method for press-molding material, production method for molded article, unidirectional prepreg, and molded article
TWI574831B (en) * 2014-11-07 2017-03-21 An LFT Process Method for Enhancing the Immersible Rate of Fibers
JP2022513924A (en) * 2018-12-20 2022-02-09 アルケマ フランス Fiber material impregnated with a thermoplastic polymer of optimum molecular weight and viscosity and its manufacturing method

Also Published As

Publication number Publication date
JPH0144144B2 (en) 1989-09-26

Similar Documents

Publication Publication Date Title
CN107735433B (en) Method for producing fiber-reinforced resin sheet
US6517654B1 (en) Process for the production of fiber-reinforced semi-finished articles made of thermoplastics of medium to high viscosity
DE3137098C2 (en)
KR102585419B1 (en) Method for producing fibrous materials pre-impregnated with thermoplastic polymers in powder form
US5201979A (en) Method of manufacturing a sheet-prepreg reinforced with fibers
WO2013118689A1 (en) Carbon fiber composite material
JPH0657407B2 (en) Fiber reinforced pellet structure
JP2009114612A (en) Method for producing chopped fiber bundle and molding material, molding material, and fiber-reinforced plastic
JPH0325340B2 (en)
JP2011073436A (en) Intermediate product and intermediate-product composite
US5445701A (en) Apparatus of manufacturing a sheet-prepreg reinforced with fibers
JPS6036136A (en) Manufacture of long-sized product of thermoplastic resin reinforced with fiber
WO2013129169A1 (en) Carbon fiber composite material
EP3842205B1 (en) Method for producing thermoplastic resin-impregnated sheet-form reinforcing fiber bundle
KR20210061305A (en) Composite sheet molding method and molding device
JP5301132B2 (en) Prepreg manufacturing equipment
WO2020031766A1 (en) Method for manufacturing prepreg, coating device, and apparatus for manufacturing prepreg
JPS61229535A (en) Method and device for manufacturing fiber reinforced resin sheet
KR101913494B1 (en) Manufacturing method and device of carbon fiber sheet molding compound
JPH0248907A (en) Manufacture of fiber-reinforced sheetlike prepreg and its device
JPH0724830A (en) Production of thermoplastic unidirectional prepreg sheet
KR20090072843A (en) Manufacturing process and manufacturing apparatus for unidirectional fiber sheet
JPS646012B2 (en)
JPS61229534A (en) Method and device for manufacturing fiber reinforced resin sheet
JP2004292604A (en) Continuous production process for strand prepreg