JPS6033513A - Single linear polarization optical fiber - Google Patents
Single linear polarization optical fiberInfo
- Publication number
- JPS6033513A JPS6033513A JP58142420A JP14242083A JPS6033513A JP S6033513 A JPS6033513 A JP S6033513A JP 58142420 A JP58142420 A JP 58142420A JP 14242083 A JP14242083 A JP 14242083A JP S6033513 A JPS6033513 A JP S6033513A
- Authority
- JP
- Japan
- Prior art keywords
- core
- refractive index
- optical fiber
- stress applying
- refractive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/105—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01211—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
- C03B37/01217—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
ド変換により生ずる不要モードを速やかに減衰さ1・せ
、長距離にわたり単一直線偏波モードのみを伝搬させる
光ファイバに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber that quickly attenuates unnecessary modes caused by decoding and propagates only a single linearly polarized mode over a long distance.
従来、偏波保持光ファイバとしては基底伝搬モードであ
るHE,□モードの二つの直交偏波モード間の伝搬定数
差Δβと自由空間中の波数にの比と・・して定義される
モード複屈折り=Δβ/kt−できlるだけ大きくする
ことにより、゛直交する偏波モード間のモード結合が起
こらないようにし、偏波を保持するものであった。しか
じ本・a的に二つの直交モードの伝搬が可能であるので
、外乱によりー)たびモード変換が起こると、受信系の
S/N劣化の原因となる。偏波保持光ファイバとして第
1図に示すようなりラッド2の中心に楕円コア1を設け
た構造( 0. Yeh ’ Elliptical
(iieleotricwaveguides ’ 、
J. Appl. Phys. + 8 8 t T
)p. 1”8285−13248 、1961 1や
、第2図に示すようなコア1の両側に、コアlおよびク
ラッド2&こ用いた材料と線膨張係数の異なる材料で構
成した応力付与部3を配置し、コア1に応力複屈折を付
加する構造( T. Hosaka 、 et al.
、 ’ Singlle −mode fibres
with asymmetrical refrac
tive −index pits on both
sides of core , Electron。Conventionally, polarization-maintaining optical fibers have a mode complex defined as the ratio of the propagation constant difference Δβ between two orthogonal polarization modes, the fundamental propagation mode HE and □ mode, to the wave number in free space. By making bending = Δβ/kt - as large as possible, "mode coupling between orthogonal polarization modes is prevented from occurring, and the polarization is maintained." Actually, propagation of two orthogonal modes is possible, so if mode conversion occurs frequently due to disturbance, it causes S/N deterioration in the receiving system. As shown in Fig. 1, the polarization-maintaining optical fiber has a structure in which an elliptical core 1 is provided at the center of a rad 2 (0.
(iieleotricwaveguides',
J. Appl. Phys. + 8 8 t T
) p. 1"8285-13248, 1961 1, and on both sides of the core 1 as shown in FIG. Structure that adds stress birefringence to the core 1 (T. Hosaka, et al.
, 'Single-mode fibers
with asymmetric refrac
tive-index pits on both
sides of core, Electron.
Lett. 、 1 7 、 pp. 1 9 1 −
1 1) 8 、 1 9 8 1 )および第3図
に示すようなコアlのまわりにコア1およびクラッド部
82と線膨張係数の異なる楕J円ジャケット応力付与部
38を設けた構造(T。1Katsuyama 、et
al、、’ ]、ow −Loss Single
−pOlariZatiOn fibres /l、
Electron Lett、 、 17 。Lett. , 17, pp. 1 9 1 -
1 1) 8, 19 8 1) and a structure in which an elliptical J-circular jacket stress applying portion 38 having a different coefficient of linear expansion from the core 1 and the cladding portion 82 is provided around the core 1 as shown in FIG. 3 (T. 1Katsuyama, etc.
al,,'],ow -Loss Single
-pOlariZatiOn fibers/l,
Electron Lett, 17.
pp、 473−474,198])によりモード複屈
折13を大きくすることが提案されている。 ・しかし
、これら前記の喝波保持光ファイバは一方の異方性主軸
に合致した偏波モード全励振しても、導波構漬上二つの
偏波モードが伝搬可能であり、モード変換が起こると二
つのモードが伝搬し直Ul偏波を保持することはできな
い。−万、二つ1・・の主軸方向の屈折率分布を変える
ことにより、一方の伝搬モードをカットオフとし、一つ
の励振モードのみを伝搬させるファイバ構造の提案(T
。pp. 473-474, 198]) proposed increasing the mode birefringence 13.・However, in these wave-maintaining optical fibers, even if the polarization mode that matches one of the anisotropic principal axes is fully excited, the two polarization modes can propagate due to the waveguide structure, and mode conversion occurs. and two modes propagate, making it impossible to maintain direct Ul polarization. -Proposal of a fiber structure that cuts off one propagation mode and propagates only one excitation mode by changing the refractive index distribution in the principal axis direction of
.
okoshi and K、Oyamada 、 W
Single −polarizationSingl
e −mode optical fiber wit
h refractive ’−1ndex pits
on both 5ides of core ’
、 Electron。Okoshi and K, Oyamada, W
Single-polarizationSingl
e-mode optical fiber wit
h refractive '-1ndex pits
on both 5ides of core'
, Electron.
Lett、 、 16 、 pp、 712−713
、1980 )がある。しかし励振モードのみ伝搬する
規格化周波数領域が狭く、伝搬モードの損失も大きく、
長距離伝送には不向きである。Lett, 16, pp, 712-713
, 1980). However, the normalized frequency range in which only the excitation mode propagates is narrow, and the loss of the propagation mode is large.
It is not suitable for long distance transmission.
本発明はこれらの欠点を解決するため、異方性1主軸方
向のコア・クラッド間の比屈折率差と、屈折率分布およ
び応力付与部の屈折率、線膨張係数等のパラメータを設
定することにより、直交制波モード間の減衰定数に差を
つけ、モード変換によ。In order to solve these drawbacks, the present invention sets parameters such as the relative refractive index difference between the core and cladding in the direction of the first principal axis of anisotropy, the refractive index distribution, the refractive index of the stress applying part, and the coefficient of linear expansion. By making a difference in the attenuation constant between the orthogonal control modes, and by mode conversion.
り生じた不要モードを除去することにより、単一直線偏
波を伝搬させる単一モード光ファイバを提供することを
目的とする。The object of the present invention is to provide a single mode optical fiber that propagates a single linearly polarized wave by removing unnecessary modes caused by the above.
第4図は本発明の一実11.lli例の断面図で、コア
1と低屈折率部42および応力付与部48により、1・
・異方性主軸(x、y軸)間の屈折率分布に差をもたせ
る構造となっている。低屈折率部42は純粋石英510
2よりも低い屈折率をもたせることを目的とし、コア1
と隣接しているので、近赤外領域の特に波長1.8μm
および1.5μmで吸収のないドi・−パント、たとえ
ばフッ素Fを添加して作製することができる。応力付与
部48はコア1、低屈折率部42およびクラッド部44
.45の線膨張係数と大きく異なる線膨張係数をもたせ
るため、たとえばB2O3,P2O5,G60.をドー
プして図のX −′11(3)
軸方向に引張り張力として応力をコア1に付与すするこ
とができる。クラッド部44と45は屈折率分布はほぼ
同じであるが、44は低損失にしている。Figure 4 shows part 11 of the present invention. In the cross-sectional view of the lli example, the core 1, the low refractive index portion 42, and the stress applying portion 48 form a
・It has a structure that provides a difference in the refractive index distribution between the anisotropic principal axes (x, y axes). The low refractive index portion 42 is made of pure quartz 510
The purpose is to have a refractive index lower than that of core 1.
Because it is adjacent to
It can be prepared by adding a dopant having no absorption at 1.5 μm, such as fluorine F. The stress applying section 48 includes the core 1, the low refractive index section 42, and the cladding section 44.
.. For example, B2O3, P2O5, G60. It is possible to apply stress to the core 1 in the axial direction as shown in FIG. The cladding parts 44 and 45 have almost the same refractive index distribution, but the cladding part 44 has a low loss.
第5図(a)、(b)は第4図の構造を設けた−。FIGS. 5(a) and 5(b) show the structure shown in FIG. 4.
場合のそれぞれX、y軸方向の屈折率分布を表わす。低
屈折率部42および応力付与部43のドーパントa邸を
制限することにより、X軸方向はコア径の5培以上の領
域にわたり、yl1411方向の比屈折率差に比べて大
きな比屈折率差を有する構造と1・・することができる
。以下に詳細な説明を行う。The refractive index distributions in the X and y axis directions are shown in each case. By limiting the amount of dopant a in the low refractive index portion 42 and the stress applying portion 43, the X-axis direction spans an area of 5 times or more of the core diameter, and a large relative refractive index difference is created compared to the relative refractive index difference in the yl1411 direction. It is possible to have a structure with 1. A detailed explanation will be given below.
コアlにGem2を2 mo/%ドープすることにより
、クラッド部44に比べて比屈折率差ΔG””1−n2
/ nx (nt :コア1の屈折率、n2:クラッド
部44の屈折率)を0.2%とし、低屈折率部にFl・
をドムプすることにより、コア部と相対的にΔL−n1
−n8/n1 ’ n8 ’低屈折率部 412 (D
屈折率)を1%程闇とすることができる。また応力付与
部は8g08を211 m01%ドープすることにより
、はぼクラッド部44に比べΔ5−n4−n s /I
’14・・(4)
(n4:応力付与部Φ8の屈折率)−0,7%の比l屈
折率差となり、低屈折率部とほぼ同等の屈折率とするこ
とができる。従ってX軸方向の偏波モードは見かけ上、
比屈折率差が約1%の導波構造のファイバと等化の形で
伝搬し、y軸方向の偏波モ)−ドに対しては比屈折率差
0.2%の導波構造を有するファイバと等化の形で伝搬
する。By doping the core l with 2 mo/% of Gem2, the relative refractive index difference ΔG""1-n2 compared to the cladding part 44 is
/nx (nt: refractive index of core 1, n2: refractive index of cladding part 44) is 0.2%, and Fl.
By domming ΔL−n1 relative to the core part
-n8/n1'n8' Low refractive index part 412 (D
refractive index) can be made dark by about 1%. Furthermore, by doping the stress applying part with 211 m01% of 8g08, the stress-applying part is Δ5-n4-n s /I compared to the cladding part 44.
'14...(4) (n4: refractive index of stress applying part Φ8) The relative refractive index difference is -0.7%, and the refractive index can be almost the same as that of the low refractive index part. Therefore, the polarization mode in the X-axis direction is apparently
The fiber propagates in the form of a waveguide structure with a relative refractive index difference of approximately 1%, and for the polarization mode in the y-axis direction, a waveguide structure with a relative refractive index difference of 0.2% is used. It propagates in a fiber with equalization.
第6文はΔ=0.2%とΔ=1%の光ファイバに対する
マイクロベンディング(N (1/R)” =613m
、W=l、9闘ここでN:単位長あたりの1.。The sixth sentence is microbending for optical fibers with Δ=0.2% and Δ=1% (N (1/R)” = 613 m
, W=l, 9th, where N: 1.0 per unit length. .
曲がり数、(1/R)g:曲がりの曲率の2乗平均、W
:曲がりの平均継続長〕を生じた際の遮断波長λ。とし
て規格化した規格化波長λ/λ0とマイクロベンディン
グによる損失増の関係を示す。第6図から外乱に対して
第4図の構造のファイバは、1、たとえばλ/2゜=1
.7において一5odBi度の損失差を生じ、y方向の
偏波モードは存在するものの損失が極めて大きい。従っ
てX方向の偏波モードは損失増なしに長距離にわたり伝
搬させることができ、しかもたとえモード変換を起こし
て12.。Number of bends, (1/R)g: root mean square of curvature of bends, W
: Average continuation length of bend] is the cutoff wavelength λ. The relationship between the normalized wavelength λ/λ0 and the increase in loss due to microbending is shown. From FIG. 6, it can be seen that the fiber of the structure shown in FIG.
.. 7, a loss difference of 15 odBi degrees occurs, and although the polarization mode in the y direction exists, the loss is extremely large. Therefore, the polarization mode in the X direction can be propagated over a long distance without increasing loss, and even if mode conversion occurs, 12. .
、Y 方向偏波モードとなっても再度のモード変換な1
しに減衰消滅する。コア周方向の屈折率分布が均一で単
に応力付与部43を設けたファイバのモード率換の様子
は消光比η=Py/PX(Px、Pyは各々x、y方向
の偏波モードの光電力であり、人・・射条件はPx=1
. 、 Py=0 )の距離依存性をめることにより知
ることができる。, even if it becomes the Y direction polarization mode, there is no mode conversion again.
It decays and disappears. The mode ratio conversion of a fiber with a uniform refractive index distribution in the circumferential direction of the core and simply provided with the stress applying section 43 is as follows: extinction ratio η=Py/PX (Px and Py are the optical powers of the polarization modes in the x and y directions, respectively) , and the shooting condition for humans is Px=1
.. , Py=0).
第7図はその測定結果を示し、I Km長でη=−25
dB程度であるが、第6図より低屈折率部42を設ける
ことにより直線偏波を保持したまま1gIKm長で−5
0dB近い消光比をもたせることができる。Figure 7 shows the measurement results, where η=-25 at I Km length.
dB, but as shown in Figure 6, by providing the low refractive index section 42, the linear polarization is maintained and the length is -5
It is possible to provide an extinction ratio close to 0 dB.
また第4図に示した構造の池に第8図に示す低屈折率部
82と応力付与部88を直交して配置することもできる
。この場合応力付与部88に使用1するドーパントはク
ラッド部84と可能な限り等しくするため、B2O3と
Gem2をSin、に添加することにより作製する。Furthermore, the low refractive index section 82 and the stress applying section 88 shown in FIG. 8 can be arranged orthogonally to the pond having the structure shown in FIG. 4. In this case, in order to make the dopant 1 used for the stress applying part 88 as equal as possible to that of the cladding part 84, B2O3 and Gem2 are added to Sin.
第9図(a l + I b )に第8図の構造に対す
る直交主軸(x、y軸)方向の屈折率分布ご示す。訃第
4図および第8図の実施例ではコアlを円形1で描いて
いるが、それ以外の形状、たとえば楕円、矩形等の任意
の形状でもよい。また低屈折率部42および82は扇形
で描いているが、現実のファイバでは円形形状その他任
意の形状とすることへができる。FIG. 9 (a l + I b ) shows the refractive index distribution in the orthogonal principal axes (x, y axes) directions for the structure of FIG. 8. In the embodiments shown in FIGS. 4 and 8, the core l is drawn as a circle 1, but it may be in any other shape, such as an ellipse or a rectangle. Furthermore, although the low refractive index portions 42 and 82 are depicted as fan-shaped, in an actual fiber, they may be circular or any other arbitrary shape.
次に第8図のファイバ構造を例に本発明の単−直線圓波
光ファイバの製造方法について説明する。Next, a method for manufacturing a single-linear cross-wave optical fiber according to the present invention will be explained using the fiber structure shown in FIG. 8 as an example.
第10図はファイバ母材の各ガラス母材の配置図を示し
、1O−1はコアガラス、10−2は低Ill屈折率部
のガラス(たとえばF添加ガラス)、10−8は応力付
与ガラス(たとえばB2O3十GeO2添加ガラス)、
1O−4は純粋石英のクラッド部のガラスである。第8
図に示す構造のファイバは第10図に示す配置のガラス
材をロッドインチュ1)−ブ法により作製することがで
きる。Figure 10 shows the layout of each glass base material of the fiber base material, 1O-1 is the core glass, 10-2 is the glass in the low Ill refractive index portion (for example, F-doped glass), and 10-8 is the stress-applied glass. (e.g. B2O30 GeO2 doped glass),
1O-4 is pure quartz cladding glass. 8th
The fiber having the structure shown in the figure can be produced by the rod intube method using glass materials arranged as shown in FIG.
第11図はV A D (Vertical Axia
l Deposition)法による光ファイバの製造
法を利用して、第4図に示すコア1、クラッド部42.
44の部分を製造する方法の説明図であり、第111f
fl(a+はバー□・・−すの配置およびスートの関係
を示す図であり、1第1]図(blは第11図(a3を
下方から見た図である。Figure 11 shows V A D (Vertical Axia
The core 1 and cladding portion 42. shown in FIG.
44 is an explanatory diagram of the method for manufacturing the 111f part.
fl (a+ is a diagram showing the arrangement of bars □...- and the relationship between suits, 1] Figure (bl is Figure 11 (a3 viewed from below).
第11図Cal 、(blにおいて、11−1はコア1
に対応するスート、11−2は低屈折率部・42に対応
するスー)、11−8はクラット部44に対応するスー
トである。また11−4はス−)11−2の部分を形成
させるためのガスバーナ、11−5はスー)11−8の
部分を形成させるためのガスバーナ、1】−6はスート
1l−IHlの部分を形成させるためのガスバーナであ
る。各ガスバーナから所要のドーパントを含むガスが出
て、加水分解反応によってスートを堆積してゆく。Figure 11 Cal, (in bl, 11-1 is core 1
11-2 is a soot corresponding to the low refractive index portion 42), and 11-8 is a soot corresponding to the crut portion 44. Also, 11-4 is a gas burner for forming the soot 11-2 part, 11-5 is a gas burner for forming the soot 11-8 part, and 1]-6 is a gas burner for forming the soot 1l-IHL part. This is a gas burner for forming. A gas containing the required dopant is emitted from each gas burner, and soot is deposited through a hydrolysis reaction.
このように作成されたスートを脱水処理を織しながらガ
ラス化することにより、コア1、低屈折率1′□部42
およびクラッド部44の部分を作成することができる。By vitrifying the soot created in this way while undergoing dehydration treatment, the core 1 and the low refractive index 1'□ part 42 are formed.
and the cladding portion 44 can be created.
これを第】0図の中心部に挿入し、線引きすることによ
り、本発明の光ファイバを製造することができる。この
方法ではVAD法の低損失化技術を利用できるので、極
めて低園失な光′□。The optical fiber of the present invention can be manufactured by inserting this into the center of FIG. 0 and drawing it. This method can utilize the low loss technology of the VAD method, so it produces extremely low loss of light.
ファイバを作成することができる。なおVAD法Iでは
ガスの流れを安定にする必要があるので、11−4 、
]、 I −5および】1−6のガスバーナの配It
は第11図に示す方法とは別な方法もあるが、公知の技
術であるので、ここでは説明を省略)する。Fiber can be created. Note that in VAD method I, it is necessary to stabilize the gas flow, so 11-4,
], I-5 and ]1-6 Gas burner arrangement It
There is a method other than the method shown in FIG. 11, but since it is a known technique, the explanation will be omitted here).
以上説明したように、本発明により、たとえモード変換
が起こっても不要モードを速やかに減衰させ、単一直線
偏波のみ伝搬可能な光ファイバを提供することができる
ので、コヒーレント光通信1・・方式、光フアイバ応用
計測、光集積回路との高効率結合等において大きな利点
があるばかりでなく、これまで実用化されているPOM
−II変調−復調方式を用いた光ファイバ云送糸におい
ても偏波分散を生じない長距離・大容量光伝送線路を構
成]−・することが可能となる利点がある。As explained above, according to the present invention, even if mode conversion occurs, unnecessary modes can be quickly attenuated and an optical fiber capable of propagating only a single linearly polarized wave can be provided. , optical fiber applied measurement, highly efficient coupling with optical integrated circuits, etc., as well as having great advantages, POM has been put into practical use so far.
There is an advantage that it is possible to construct a long-distance, large-capacity optical transmission line that does not cause polarization dispersion even in optical fiber threads using the II modulation-demodulation method.
第1図は楕円コアファイバの光フアイバ構造を示す断面
図、
第2図は応力異方性をコアに付加するための応・・力付
与部を設けた光フアイバ構造を示す断面図、1第3図は
楕円ジャケットをコア周囲に設はコアに応力異方性を寸
前する光フアイバ構造を示す断面図、
第4図は異方性主軸間の屈折率分布を変えかつ・応力付
与部を有する単一直線偏波保持ファイバの光ファイバ構
造全示す断面図、
第5図(a)、(b)はそれぞれ異方性主軸X。
y方向の屈折率分布図、
第6図は外乱としてマイクロベンディング(不・・規則
曲がり)を考えた際の両生軸方向の開演に対する損失増
と規格化波長の関係を示す図、第7図は低屈折率部がな
く栄に応力付与部が存在する場合の消光比の距離依存性
の測定結果を示す図、
第8図は杢発明の光ファイバの他の実1也例の断面図、
第9図(a)、(b)は第8図に示した光ファイバの屈
折率分布を示す図、
第1θ図は杢発明の元ファイバをロツドインヂ・1ユー
ブ法で製造する方法の説明図、
第11図(a)、(b)は本発明の光7アイノくをVA
D法で製造する方法の説明図である。
1・・・コア、2・・・クラッド部、8・・・応力付与
部、82・・・クラッド部、38・・・楕円ジャケット
応力付・4部、42 m 82・・・低屈折率部、48
.88・・・応力付与部、44.84・・・低損失クラ
ッド部、45゜85・・・通常のクラッド部、1O−1
・・・コアガラス、1O−2・・・低屈折率部のガラス
、10−3・・・応力団与ガラス、10−4・・・純粋
石英のクラッド部の111ガラス、11−1・・・コア
に対応したスート、11−2・・・低屈折率部に対応し
たスート、11−3・・・低損失クラッド部に対応した
スート、11−4・・・低屈折率部を形成するバーナ、
11−5・・・低損失クラッド部を形成するバーナ、1
1−6・・・コアを]゛・形成するバーナ。
(’)f/gl’)戸Vシ署獣Figure 1 is a cross-sectional view showing the optical fiber structure of an elliptical core fiber. Figure 2 is a cross-sectional view showing the optical fiber structure provided with a stress applying section for adding stress anisotropy to the core. Figure 3 is a cross-sectional view showing an optical fiber structure in which an elliptical jacket is placed around the core and the core is on the verge of stress anisotropy, and Figure 4 is an optical fiber structure that changes the refractive index distribution between the anisotropic principal axes and has a stress applying part. Figures 5(a) and 5(b) are cross-sectional views showing the entire optical fiber structure of a single linear polarization-maintaining fiber, and the principal axis of anisotropy is X. The refractive index distribution diagram in the y direction. Figure 6 is a diagram showing the relationship between the loss increase and the normalized wavelength for the opening in the amphibatic axis direction when microbending (irregular... regular bending) is considered as a disturbance. Figure 7 is Figure 8 is a diagram showing the measurement results of the distance dependence of the extinction ratio in the case where there is no low refractive index part and a stress-applying part is present; Figures 9 (a) and (b) are diagrams showing the refractive index distribution of the optical fiber shown in Figure 8; Figures 11 (a) and (b) show the VA of the optical 7-innocent of the present invention.
FIG. 2 is an explanatory diagram of a method of manufacturing by method D. DESCRIPTION OF SYMBOLS 1... Core, 2... Clad part, 8... Stress applying part, 82... Clad part, 38... Elliptical jacket with stress, 4 parts, 42 m 82... Low refractive index part , 48
.. 88...Stress applying part, 44.84...Low loss cladding part, 45°85...Normal cladding part, 1O-1
... Core glass, 1O-2 ... Glass of low refractive index part, 10-3 ... Stress-harvesting glass, 10-4 ... 111 glass of pure quartz cladding part, 11-1 ... - Soot corresponding to the core, 11-2... Soot corresponding to the low refractive index part, 11-3... Soot corresponding to the low loss cladding part, 11-4... Forming the low refractive index part Burna,
11-5... Burner forming a low loss cladding part, 1
1-6... Burner that forms the core. (')f/gl') door Vshi station beast
Claims (1)
が形成され、断面においてクラッド−。 内のコアを中心としてコアから離れた対称の限られた位
置にコアおよびクラッドとは線膨張係数が異なる材料か
らなる応力付与部を有し、コアと応力付与部の間のクラ
ッドの屈折率n8が、その他の部分のクラッドの屈折率
I・・n、と異なり、かつn 、n が、n□より小ざ
8 いことを特徴とする単一直線偏波光ファイバ。[Claims] 1. A cladding is formed around a core having a refractive index of n0, and the cladding is formed in a cross section. A stress applying part made of a material having a coefficient of linear expansion different from that of the core and the cladding is located at a symmetrical limited position centered on the core and away from the core, and the refractive index of the cladding between the core and the stress applying part is n8. is different from the refractive index I...n of the cladding in other parts, and n and n are smaller than n□.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58142420A JPS6033513A (en) | 1983-08-05 | 1983-08-05 | Single linear polarization optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58142420A JPS6033513A (en) | 1983-08-05 | 1983-08-05 | Single linear polarization optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6033513A true JPS6033513A (en) | 1985-02-20 |
Family
ID=15314912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58142420A Pending JPS6033513A (en) | 1983-08-05 | 1983-08-05 | Single linear polarization optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6033513A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0319319A2 (en) * | 1987-12-04 | 1989-06-07 | Nippon Telegraph and Telephone Corporation | Single-polarization optical fiber |
JP2001244535A (en) * | 2000-02-29 | 2001-09-07 | Fujikura Ltd | Polarization maintaining optical amplification fiber |
CN104932052A (en) * | 2014-03-20 | 2015-09-23 | 株式会社藤仓 | Polarization-maintaining optical fiber |
WO2015173089A1 (en) * | 2014-05-12 | 2015-11-19 | J-Fiber Gmbh | Polarization-maintaining optical fibre and preform and method for producing the same |
-
1983
- 1983-08-05 JP JP58142420A patent/JPS6033513A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0319319A2 (en) * | 1987-12-04 | 1989-06-07 | Nippon Telegraph and Telephone Corporation | Single-polarization optical fiber |
JP2001244535A (en) * | 2000-02-29 | 2001-09-07 | Fujikura Ltd | Polarization maintaining optical amplification fiber |
CN104932052A (en) * | 2014-03-20 | 2015-09-23 | 株式会社藤仓 | Polarization-maintaining optical fiber |
WO2015173089A1 (en) * | 2014-05-12 | 2015-11-19 | J-Fiber Gmbh | Polarization-maintaining optical fibre and preform and method for producing the same |
US9720264B2 (en) | 2014-05-12 | 2017-08-01 | J-Fiber Gmbh | Polarization-maintaining optical fibre and preform and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Simpson et al. | A single-polarization fiber | |
Yablon | Optical and mechanical effects of frozen-in stresses and strains in optical fibers | |
CA1320372C (en) | Non-adiabatically-tapered connector | |
US4447127A (en) | Low loss single mode fiber | |
CN108333671B (en) | Anti-bending multimode fiber | |
JPH01237507A (en) | Absolute single polarizing optical fiber | |
CA2565879C (en) | Long wavelength, pure silica core single mode fiber and method of forming the same | |
JPH0524484B2 (en) | ||
US6463195B1 (en) | Method of manufacturing polarization-maintaining optical fiber coupler | |
EP0099891A1 (en) | Single mode fiber with graded index of refraction | |
JPS6033513A (en) | Single linear polarization optical fiber | |
US4711525A (en) | Polarizing optical fiber with absorbing jacket | |
RU2627018C1 (en) | Radiation-resistant single-mode light guide with large linear birefringence for fiber-optic gyroscope | |
JPH0685005B2 (en) | Constant polarization fiber and manufacturing method thereof | |
JP2005140857A (en) | Dispersion-flat fiber | |
JPS61200509A (en) | Constant polarization fiber with absolute single polarization band | |
Pearson et al. | Optical transmission in dispersion-shifted single mode spliced fibers and cables | |
JPH11119036A (en) | Plastic clad fiber | |
Ghatak et al. | Single Mode Fibre Characteristics | |
JP2828276B2 (en) | Manufacturing method of polarization maintaining optical fiber coupler | |
JPS59139005A (en) | Fiber for maintaining linearly polarized light | |
US20240085618A1 (en) | Polarization maintaining optical fiber and polarization maintaining optical fiber manufacturing method | |
JPS61228404A (en) | Optical fiber for constant polarized wave | |
RU2223522C2 (en) | Single-mode single-polarization light guide | |
WO2023012946A1 (en) | Optical fiber |