JPS6032971A - Fuel injector for internal-combustion engine - Google Patents
Fuel injector for internal-combustion engineInfo
- Publication number
- JPS6032971A JPS6032971A JP58140475A JP14047583A JPS6032971A JP S6032971 A JPS6032971 A JP S6032971A JP 58140475 A JP58140475 A JP 58140475A JP 14047583 A JP14047583 A JP 14047583A JP S6032971 A JPS6032971 A JP S6032971A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- fuel
- pressure
- injection
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M59/00—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
- F02M59/20—Varying fuel delivery in quantity or timing
- F02M59/36—Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
- F02M59/366—Valves being actuated electrically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/30—Fuel-injection apparatus having mechanical parts, the movement of which is damped
- F02M2200/304—Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】
く技術分野〉
本発明は内燃機関における電磁弁を使用した燃料噴射装
置の改良に関し、特に電磁弁の作動の安定、負荷軽減並
びに機関異常時の安全性を図ったユニットインジェクタ
に関する。[Detailed Description of the Invention] [Technical Field] The present invention relates to an improvement of a fuel injection device using a solenoid valve in an internal combustion engine, and in particular to a unit that stabilizes the operation of the solenoid valve, reduces load, and provides safety in the event of an abnormality in the engine. Regarding injectors.
く背景技術〉
内燃機関例えばディーゼル機関における燃料噴射装置は
一般にその燃料噴射量、噴射時期を精度良くかつ簡単に
制御できることが要求され、この要求に沿って例えばS
AEペーパー750773号に見られる如く、噴射ポン
プと噴射弁とを一体的に構成することにより、長大な噴
射パイプを省いてデッドスペースを大巾に減少し、もっ
て噴射特性を良好にしたいわゆるユニットインジェクタ
が提案されている。Background Art> Fuel injection devices for internal combustion engines, such as diesel engines, are generally required to be able to accurately and easily control the fuel injection amount and injection timing, and in line with this requirement, for example, S
As seen in AE Paper No. 750773, the so-called unit injector eliminates a long injection pipe and greatly reduces dead space by integrally configuring the injection pump and injection valve, thereby improving injection characteristics. is proposed.
しかしこのものは、コントロールラックの制御位置によ
りプランジャの回動位置が定まり、ひいては噴射時期及
び噴射量も一義的に決定される構成であるから、これら
噴射時期と噴射量の制御を相互に独立してなし得ないと
いう不都合があった。However, in this case, the rotating position of the plunger is determined by the control position of the control rack, and the injection timing and injection amount are also uniquely determined, so the control of the injection timing and injection amount is not mutually independent. There was an inconvenience that it could not be done.
そこで、このような不都合を解消するために、電磁弁を
利用して噴射量及び噴射時期を独立かつ精度良く電子制
御しようとしたもの力t、例えば、特開昭54−507
26号公報に見うけられる。Therefore, in order to solve this problem, an attempt was made to electronically control the injection amount and injection timing independently and accurately using a solenoid valve.
It can be found in Publication No. 26.
このものは第1図に示すように、機関回転に同期して往
復動するプランジャ1によってポンプ室2内の燃料を噴
射燃料通路4を介しニードル室5内に圧送し、このニー
ドル室5内の燃料圧力がニードルバルブ6に作用して、
閉弁方向に作用するスプリング70弾性力に抗しニード
ルパルプ6をリフトして噴口8を開弁することにより、
該噴口8から9図示しない燃焼室内に燃料を噴射供給す
るよう罠なっている。As shown in FIG. 1, this device uses a plunger 1 that reciprocates in synchronization with engine rotation to forcefully feed fuel in a pump chamber 2 through an injection fuel passage 4 into a needle chamber 5. Fuel pressure acts on the needle valve 6,
By lifting the needle pulp 6 against the elastic force of the spring 70 acting in the valve closing direction and opening the nozzle 8,
The nozzles 8 and 9 are traps so as to inject and supply fuel into a combustion chamber (not shown).
前記ポンプ室2には図示しない燃料タンクからフィード
ポンプによって低圧燃料が送られる燃料供給通路11が
接続されており、該燃料供給通路11を電磁弁12によ
って開閉する。即ち機関運転状態に応じて電磁弁12の
ソレノイド12aの通電励磁を行い、もって弁体13を
開弁方向に作用するスプリング140弾性力に抗して閉
弁するのである。A fuel supply passage 11 to which low-pressure fuel is sent by a feed pump from a fuel tank (not shown) is connected to the pump chamber 2, and the fuel supply passage 11 is opened and closed by a solenoid valve 12. That is, the solenoid 12a of the solenoid valve 12 is energized and excited in accordance with the engine operating state, thereby closing the valve body 13 against the elastic force of the spring 140 acting in the valve opening direction.
従って、プランジャ1の圧縮行程(図で下動)があって
も電磁弁12が開弁していれば、ポンプ室2内の燃料が
燃料供給通路11を通じて低圧側にリリーフされるから
、ニードル室5内の燃料圧力が上昇せず、このためニー
ドルバルブ6が開弁しないので燃料噴射がなされなくな
る。一方、電磁弁12が閉弁されれば、その時点からニ
ードル室5内の燃料圧力が急上昇し、スプリングTの弾
性力に抗してニードルパルプ6をリフトし噴口8を開弁
して燃料噴射がなされる。Therefore, even if there is a compression stroke (downward movement in the figure) of the plunger 1, if the solenoid valve 12 is open, the fuel in the pump chamber 2 will be relieved to the low pressure side through the fuel supply passage 11, so the needle chamber The fuel pressure in the fuel pump 5 does not rise, and therefore the needle valve 6 does not open, so fuel injection is not performed. On the other hand, when the solenoid valve 12 is closed, the fuel pressure in the needle chamber 5 rises rapidly from that point on, lifting the needle pulp 6 against the elastic force of the spring T, opening the nozzle 8, and injecting fuel. will be done.
このように電磁弁12の開閉により燃料噴射時期ひいて
は噴射期間が自由に制御できるのである。In this way, by opening and closing the electromagnetic valve 12, the fuel injection timing and eventually the injection period can be freely controlled.
ところが、上記従来のユニットインジェクタでは、電磁
弁12がソレノイド非通電時にスプリング140弾性力
で常時開弁状態を維持するいわゆる常開型である。この
ため、燃料噴射期間中ソレノイド12aによって大きな
電磁力を弁体13に付与して閉弁状態を維持しなければ
ならず、いぎおいソレノイド12aが大型となってしま
う。また閉弁時に弁体13を弁座に着座させたとき、閉
弁力に抗してポンプ室2内の大きな燃料圧力とスプリン
グ14の開弁力とが作用するから、着座後列び弁体13
がはね返るいわゆるバウンシング現象が生じ、このため
噴射率の精度良い制御を期待することができない。However, in the conventional unit injector described above, the solenoid valve 12 is of a so-called normally open type, in which the solenoid valve 12 is always kept open by the elastic force of the spring 140 when the solenoid is not energized. Therefore, during the fuel injection period, a large electromagnetic force must be applied to the valve body 13 by the solenoid 12a to maintain the valve closed state, resulting in the large size of the solenoid 12a. Furthermore, when the valve body 13 is seated on the valve seat during valve closing, the large fuel pressure in the pump chamber 2 and the valve opening force of the spring 14 act against the valve closing force.
A so-called bouncing phenomenon occurs, and for this reason, accurate control of the injection rate cannot be expected.
〈発明の目的〉
本発明は電磁弁を利用したユニットインジェクタにおい
て、電磁弁を常閉型として上記従来装置の欠点を解消す
ると共に電磁弁の負荷をも低減し更には電磁弁のひいて
はユニットインジェクタの応答性及び精度の向上を図る
ことを目的とする。<Object of the Invention> The present invention is a unit injector using a solenoid valve, which uses a normally closed type solenoid valve to eliminate the drawbacks of the conventional device described above, and also reduces the load on the solenoid valve. The purpose is to improve responsiveness and accuracy.
また本発明は常閉型電磁弁では電磁弁等の誤動作成いは
故障があったときに電磁弁が閉弁するから、このときユ
ニットインジェクタから最大の燃料量が噴射されること
となって内燃機関が暴走することになるおそれがあるた
めに、その場合には電磁弁が閉弁しても適当な燃料量を
低圧側にIJ IJ−フして噴射量を安全な値に維持す
るいわゆるフェールセーフ機構を付設して機関を保護す
ることを目的とする。In addition, in the present invention, the normally closed solenoid valve closes when there is a malfunction or failure of the solenoid valve, so at this time the maximum amount of fuel is injected from the unit injector, causing internal combustion. Since there is a risk that the engine will run out of control, in such a case, a so-called "fail" method is used to maintain the injection amount at a safe value by pumping an appropriate amount of fuel to the low pressure side even if the solenoid valve closes. The purpose is to protect the institution by attaching a safety mechanism.
〈発明の構成〉
上記目的達成のため罠本発明に係る内燃機関の燃料装置
は、噴射燃料をポンプ部からノズル部に導く噴射燃料通
路に連通した燃料供給通路に、ポンプ部方向への流れの
み許容する逆止弁と、前記噴射燃料通路内圧力と弾性ぜ
勢力とを閉弁方向に受ける常閉型電磁弁と、常閉型のリ
リーフ弁装置と、を相互に並列に介装すると共に、機関
異常状態検出装置の信号に基づき前記IJ IJ−フ弁
装置の開弁設定圧力を所定値に低下させるリリーフ弁調
整装置を設けたことを特徴とする。<Structure of the Invention> In order to achieve the above object, the fuel system for an internal combustion engine according to the present invention has a fuel supply passage communicating with an injection fuel passage that guides injected fuel from a pump part to a nozzle part, in which only a flow is directed toward the pump part. A permissible check valve, a normally closed solenoid valve that receives the injected fuel passage internal pressure and the elastic force in a valve closing direction, and a normally closed relief valve device are interposed in parallel with each other, The present invention is characterized in that a relief valve adjustment device is provided that reduces the valve opening setting pressure of the IJ-F valve device to a predetermined value based on a signal from an engine abnormal state detection device.
く実 施 例〉 以下に本発明の実施例を図面に基づいて説明する。Example of implementation Embodiments of the present invention will be described below based on the drawings.
構成
第2図に示す一実施例において、ユニットインジェクタ
21のプランジャ22は図示しない圧縮着火式内燃機関
例えばディーゼル機関のクランク軸に同期して回転する
カム機構23により押し下げられると共に、リターンス
プリング24のばね力を受けて上動し、もってシリンダ
25内を往復摺動する。Structure In one embodiment shown in FIG. 2, the plunger 22 of the unit injector 21 is pushed down by a cam mechanism 23 that rotates in synchronization with the crankshaft of a compression ignition internal combustion engine (not shown), such as a diesel engine, and is pushed down by a spring of a return spring 24. It moves upward in response to the force and slides back and forth within the cylinder 25.
そしてプランジャ22の圧縮(下動)行程によリ、その
先端に臨むポンプ室26内の燃料を噴射燃料通路27に
圧送する一方、吸引(上動)行程によりポンプ室26内
に燃料供給通路28を介して低圧燃料を吸引するポンプ
部が構成される。燃料供給通路28ヲヨ、燃料タンク3
1内の燃料をフィルタ32を介してフィードポンプ33
により吸引しこれを低圧で圧送してプレッシャレギュレ
ータ34の調圧作用により所定の低圧力に維持してポン
プ室26に導く。The compression (downward) stroke of the plunger 22 forces the fuel in the pump chamber 26 facing the tip of the plunger 22 into the injection fuel passage 27, while the suction (upward) stroke forces the fuel into the fuel supply passage 28 in the pump chamber 26. A pump unit is configured to suck low-pressure fuel through the pump. Fuel supply passage 28, fuel tank 3
1 through a filter 32 to a feed pump 33
This is sucked in by the pump, and is force-fed at low pressure, maintained at a predetermined low pressure by the pressure regulating action of the pressure regulator 34, and guided into the pump chamber 26.
燃料供給通路28の中間には後述の逆止弁50゜電磁弁
60及びリリーフ弁装置70が相互に並列に介装されて
いる。In the middle of the fuel supply passage 28, a check valve 50°, a solenoid valve 60, and a relief valve device 70, which will be described later, are arranged in parallel with each other.
一方、上記ポンプ部から圧送される高圧燃料な噴口41
から機関燃焼室に噴射供給するノズル部においては、前
記噴射燃料通路27にニードル室42が介装されており
、該ニードル室42に受圧面が臨むニードルパルプ43
に対し、ニードル室42内の燃料圧力が噴口開弁方向に
作用するよう罠なっている。ニードルバルブ43を閉弁
方向に弾性付勢するパルプスゲリング44が介装されて
通路46の一部として利用されており、該余剰燃料通路
46はリターン通路41を介して燃料夕/り31に接続
される。On the other hand, the nozzle 41 is a high-pressure fuel that is pumped from the pump section.
In the nozzle section for injecting fuel into the combustion chamber of the engine, a needle chamber 42 is interposed in the injection fuel passage 27, and a needle pulp 43 whose pressure receiving surface faces the needle chamber 42 is interposed in the injection fuel passage 27.
On the other hand, the fuel pressure in the needle chamber 42 acts in the direction of opening the nozzle valve. A pulp gelling 44 that elastically biases the needle valve 43 in the valve closing direction is interposed and used as a part of the passage 46, and the surplus fuel passage 46 is supplied to the fuel outlet 31 via the return passage 41. Connected.
従ツ′〔、前記ニードルパルプ43は、開弁方向に作用
する噴射燃料圧力がパルプスプリング44の閉弁方向の
単性付勢力に抗して所建値以上に達したとき開弁するこ
ととなる。尚、図中48はニードルパルプ43の支持体
、49はポンプ部と噴射弁部とを一体的に連結するホル
ダである。The needle pulp 43 opens the valve when the injected fuel pressure acting in the valve opening direction reaches a predetermined value or more against the unidirectional biasing force of the pulp spring 44 in the valve closing direction. Become. In the figure, 48 is a support for the needle pulp 43, and 49 is a holder that integrally connects the pump section and the injection valve section.
前記燃料供給通路28は中間において3つの並列な通路
部28a〜28cに分岐され、このうちの1つの通路部
28aに介装された逆止弁50はポンプ室26方向への
燃料流れのみを許容する。The fuel supply passage 28 is branched into three parallel passage parts 28a to 28c in the middle, and a check valve 50 installed in one of the passage parts 28a allows fuel to flow only in the direction of the pump chamber 26. do.
他の通路部28b K介装された電磁弁60は常閉型で
あって噴射燃料通路27内の燃料圧力とスプリング61
0弾性力とを共に閉弁方向に受ける弁体62を有し、該
弁体62に連結したアーマチュア63と、ソレノイド6
4により励磁されるコア65と、をギャップ66を介し
て対峙させている。The solenoid valve 60 installed in the other passage section 28b is of a normally closed type, and the fuel pressure in the injection fuel passage 27 is controlled by the spring 61.
It has a valve body 62 that receives both zero elastic force in the valve closing direction, and an armature 63 connected to the valve body 62, and a solenoid 6.
A core 65, which is excited by 4, is opposed to each other through a gap 66.
そして、該コア65又はアーマチュア63の相対の最大
リフト時にアーマチュア63がこわに衝突した際罠該衝
突力を緩衝する作用を営む。When the armature 63 collides with the core 65 or the armature 63 at its maximum relative lift, it acts to buffer the collision force.
また、残りの通路部28cに介装したリリーフ弁装置7
θは、通路部28cを開閉する弁体71とピストンT2
を介して弁体71を閉弁方向に付勢するスプリングT3
とを有する。そしてスプリングT3が収納されたスプリ
ング室T4には、フィルタ32を介して燃料タンク31
内の燃料がフィードポンプ75により圧送され、プレッ
シャレギュレータ76により所定圧に調整されて導入さ
れていて、該燃料圧とスプリング610弾性力勢力とが
ピストン72を介して弁体71を閉弁させる。In addition, the relief valve device 7 interposed in the remaining passage portion 28c
θ is the valve body 71 that opens and closes the passage portion 28c and the piston T2.
Spring T3 biases the valve body 71 in the valve closing direction via
and has. A fuel tank 31 is connected to the spring chamber T4 in which the spring T3 is housed via a filter 32.
The fuel inside is pumped by a feed pump 75 and adjusted to a predetermined pressure by a pressure regulator 76 before being introduced, and the fuel pressure and the elastic force of the spring 610 close the valve body 71 via the piston 72.
該弁体T1には噴射燃料通路27の燃料圧力が開弁方向
に作用するが、正常時にはこれよりも閉弁方向の力が充
分大なるようにプレッシャレギュレータ76の一調整圧
を設定しておく。Although the fuel pressure of the injection fuel passage 27 acts on the valve body T1 in the valve opening direction, one adjustment pressure of the pressure regulator 76 is set so that the force in the valve closing direction is sufficiently larger than this in normal conditions. .
そして、リリーフ弁調整装置として機能する電磁アクチ
ュエータ80は、電磁弁60が故障する等機関に異常が
生じた場合に通電励磁されプレッシャレギュレータ76
のレギュレータパルプをシフトしてレギュレータ吐出圧
を所定値まで低下させる。The electromagnetic actuator 80, which functions as a relief valve adjustment device, is energized and energized when an abnormality occurs in the engine such as when the electromagnetic valve 60 breaks down.
The regulator pulp is shifted to lower the regulator discharge pressure to a predetermined value.
このため、スプリング室74内の圧力が低下して弁体T
1の閉弁力が弱まり、噴射燃料通路2T内の燃料圧によ
る開弁力が勝ったときに弁体T1が開弁し噴射燃料通路
27内の燃料を通路部28cを通って低圧側にリリーフ
させる。Therefore, the pressure inside the spring chamber 74 decreases and the valve body T
When the closing force of valve 1 weakens and the valve opening force due to the fuel pressure in the injection fuel passage 2T becomes stronger, the valve body T1 opens and relieves the fuel in the injection fuel passage 27 to the low pressure side through the passage part 28c. let
電磁弁60及び電磁アクチュエータ80は機関異常状態
検出装置をも兼ねるコンピュータ等の制御装置90によ
って制御される。即ち1機関回転速度9機関負荷等の関
連要素並びに機関冷却水温度等の機関運転状態に関連す
る信号を制御装置90に入力させ、ここで予め定めてお
いた燃料噴射量。The electromagnetic valve 60 and the electromagnetic actuator 80 are controlled by a control device 90 such as a computer that also serves as an engine abnormal state detection device. That is, signals related to related factors such as 1 engine rotational speed 9 engine load and engine operating conditions such as engine cooling water temperature are input to the control device 90, and the fuel injection amount is predetermined here.
噴射時期を前記機関運転状態に応じて読み出し、これを
ドライバー91を介して電磁弁60のソレノイド64に
出力して弁体62の開閉時期を制御する。また、前記機
関運転状態により例えば電磁弁60の故障等に基づく機
関異常を検出したとき、ドライバ−92を介して電磁ア
クチュエータ80にプレッシャレギュレータ76の吐出
圧を低下させるべく出力信号を供給する。The injection timing is read out according to the engine operating state, and is output to the solenoid 64 of the electromagnetic valve 60 via the driver 91 to control the opening/closing timing of the valve body 62. Further, when an abnormality in the engine due to a failure of the electromagnetic valve 60 or the like is detected based on the engine operating state, an output signal is supplied to the electromagnetic actuator 80 via the driver 92 in order to reduce the discharge pressure of the pressure regulator 76.
作用 上記構成の作用を説明する。action The operation of the above configuration will be explained.
カム機構23によるプランジャ22の圧送(押し下げ)
行程開始前においては、制御装置90の出力信号により
ドライバー91を介してソレノイド64を通電励磁し、
アーマチュア63を介し弁体62を図で下方に吸引して
通路部28bを開弁しておく。Force feeding (pushing down) of plunger 22 by cam mechanism 23
Before starting the stroke, the solenoid 64 is energized and excited via the driver 91 by the output signal of the control device 90.
The valve body 62 is sucked downward as shown in the figure through the armature 63 to open the passage portion 28b.
従って、カム機構23によってプランジャ22が下降し
圧縮行程に入っても、ポンプ室26内の燃料は開弁され
た電磁弁60を介して燃料供給通路28を通り、低圧燃
料源にリリーフされるから、この段階ではまだ燃料噴射
がなされない。Therefore, even if the plunger 22 is lowered by the cam mechanism 23 and enters the compression stroke, the fuel in the pump chamber 26 passes through the fuel supply passage 28 via the opened electromagnetic valve 60 and is relieved to the low-pressure fuel source. , fuel injection is not yet performed at this stage.
そして、燃料噴射開始時点において制御装置90の出力
信号により、ソレノイド64への通電な断つ。これによ
り弁体62はスプリング610弾性力により上動され、
通路部28bを閉弁する。Then, at the start of fuel injection, the output signal from the control device 90 causes the solenoid 64 to be energized. As a result, the valve body 62 is moved upward by the elastic force of the spring 610.
The passage portion 28b is closed.
この弁体62の閉弁着座の際、弁体62とそのシート部
とのクリアランスが減少すればポンプ室26内の圧力は
これにつれて増大する。この増大した燃料圧力は弁体6
2に対し閉弁方向(図で上方)K作用する。従って弁体
62は徐々に増大する大きな閉弁力によって閉弁される
一方、スプリング61の収納室側圧力は逆に小さくなる
から。When the valve body 62 is closed and seated, if the clearance between the valve body 62 and its seat portion decreases, the pressure within the pump chamber 26 increases accordingly. This increased fuel pressure
2 in the valve closing direction (upward in the figure). Therefore, while the valve body 62 is closed by a large valve closing force that gradually increases, the pressure of the spring 61 on the storage chamber side decreases.
閉弁が確実になされてバウンシングが非常に小さくなる
。このため、ポンプ室26内の燃料の圧縮は効率良く行
われ、ニードル呈42内の噴射燃料圧力はすみやか罠上
昇し、ニードルパルプ43をバ 。The valve is reliably closed and bouncing is minimized. Therefore, the fuel in the pump chamber 26 is efficiently compressed, and the pressure of the injected fuel in the needle valve 42 quickly rises to the point where the needle pulp 43 is blown.
ルブスプリング440弾性付勢力に抗して応答性良く開
弁させ、噴口41から直ちに噴射がなされる。このこと
から明らかなように、電磁弁60の閉弁時期が燃料噴射
開始時点を決定することとなる。The valve is opened with good response against the elastic biasing force of the lube spring 440, and injection is immediately made from the injection port 41. As is clear from this, the closing timing of the solenoid valve 60 determines the fuel injection start point.
尚、このとき逆上弁50が閉鎖されていてポンプ室26
内から低圧側への燃料リリーフはない。Note that at this time, the reverse valve 50 is closed and the pump chamber 26 is closed.
There is no fuel relief from the inside to the low pressure side.
燃料噴射の終了は制御装置90の判断に基づき、ソレノ
イド64に電流を印加する。するとソレノイド64はコ
ア65を励磁してアーマチュア63を吸引し弁体62を
図で下方にリフトする。The end of fuel injection is determined by the control device 90, which applies current to the solenoid 64. Then, the solenoid 64 excites the core 65, attracts the armature 63, and lifts the valve body 62 downward in the figure.
このようにして電磁弁60が開弁することにより、ポン
プ室26内の燃料が燃料通路28を介して低圧燃料側に
リリーフされ、ニードル室42内の燃料圧力が低下して
、パルプスプリング44の弾性付勢力によりニードルパ
ルプ43が噴口41を閉弁して、燃料噴射を終了する。By opening the solenoid valve 60 in this way, the fuel in the pump chamber 26 is relieved to the low-pressure fuel side via the fuel passage 28, and the fuel pressure in the needle chamber 42 decreases, causing the pulp spring 44 to The needle pulp 43 closes the nozzle 41 due to the elastic biasing force, and fuel injection ends.
このことかられかるよ5に、ソレノイド64へ通電する
時期によって噴射時期が決定されるのである。From this, the injection timing is determined by the timing when the solenoid 64 is energized.
また、電磁弁60が一旦開弁ずれば、噴射燃料通路27
内の高圧燃料が弁体62の低圧側にまわり込むから、弁
体62の開弁力はスプリング610弾性力に抗するだけ
で足りるようになり、電磁弁60の負荷はさほど大きく
なくなる。Moreover, once the solenoid valve 60 is opened, the injection fuel passage 27
Since the high-pressure fuel inside flows around to the low-pressure side of the valve body 62, the valve-opening force of the valve body 62 only needs to resist the elastic force of the spring 610, and the load on the solenoid valve 60 is not so large.
更に、アーマチュア63を収納しているアーマチュア6
3aには弁体62下流の燃料供給通路28内の燃料が通
路69を介して導入されている。従って前記電磁弁60
の開弁動作において、アーマチュア63とシート材6T
との間に存在する燃料のダンピング作用により及びシー
ト材67の弾性緩衝作用によりアーマチュア63はダン
ピングされつつコア65に当接する。このため、弁体6
2バウンシングを非常に小さく抑制することができる。Furthermore, the armature 6 that houses the armature 63
Fuel in the fuel supply passage 28 downstream of the valve body 62 is introduced into the fuel passage 3 a through a passage 69 . Therefore, the solenoid valve 60
In the valve opening operation, the armature 63 and the sheet material 6T
The armature 63 comes into contact with the core 65 while being damped due to the damping effect of the fuel existing between the two and the elastic damping effect of the sheet material 67. For this reason, the valve body 6
2 bouncing can be suppressed to a very low level.
従って、前記電磁弁60の閉弁時においても開弁時にお
いても弁体62のバウンシングが小さくなり、ニードル
室4ス内の燃料圧力の立上がり、立下がりを速やかに行
うことができ、もって大流量から小流量に至る燃料噴射
時期及び噴射量の制御が精度良く行えるのである。Therefore, the bouncing of the valve body 62 is reduced both when the electromagnetic valve 60 is closed and when it is opened, and the fuel pressure in the needle chamber 4 can quickly rise and fall, resulting in a large flow rate. The fuel injection timing and injection amount can be controlled accurately from low to low flow rates.
プランジャ22の圧送行程終了時点でソレノイド64へ
の通電が遮断され電磁弁60が閉弁する。At the end of the pumping stroke of the plunger 22, the solenoid 64 is de-energized and the solenoid valve 60 is closed.
そしてプランジャ22が図で上動する吸入行程に移行す
ると、逆止弁50が開弁じて通路部28aを通じポンプ
室26内に燃料が吸入される。When the plunger 22 enters the suction stroke in which it moves upward in the figure, the check valve 50 opens and fuel is sucked into the pump chamber 26 through the passage 28a.
従って、吸入行程罠あってはソレノイド64への通電が
不用となり電磁弁60の負荷が軽減される。Therefore, in the suction stroke trap, it is not necessary to energize the solenoid 64, and the load on the solenoid valve 60 is reduced.
プランジャ22が圧送行程に移行する直前でソレノイド
64に通電し電磁弁6oを開いて次期噴射制御のために
備える。Immediately before the plunger 22 shifts to the pressure feeding stroke, the solenoid 64 is energized to open the solenoid valve 6o in preparation for the next injection control.
尚、電磁弁600通電励磁は、アーマチュア63が=7
65に吸引された後の印加電圧を下げるよ5にするのが
よい。これKよってソレノイド640発熱を防止し或い
は通電遮断時の磁束立下がりに対して応答性を速めるこ
とができる。In addition, when the solenoid valve 600 is energized and excited, the armature 63 is =7.
It is better to set the voltage to 5 to lower the applied voltage after being attracted to 65. This can prevent the solenoid 640 from generating heat or speed up the response to the fall of the magnetic flux when the current is cut off.
これまでの作用の説明は電磁弁60等が正常に機能する
状態であってリリーフ弁装置7oがまだ開弁機能してい
ない段階を示す。そこで、第3図(p4リリーフ弁装置
70等を省いた図を示し、電磁弁60等の故障による不
都合発生を説明する。The explanation of the operation so far shows a state in which the electromagnetic valve 60 and the like function normally, and the relief valve device 7o has not yet performed its opening function. Therefore, FIG. 3 (a diagram in which the P4 relief valve device 70 and the like are omitted) is shown to explain the occurrence of inconvenience due to a failure of the solenoid valve 60 and the like.
一般に、常閉型の電磁弁は伺らがの故障・誤動作が発生
すると閉弁状態を保持する傾向にある。Generally, normally closed solenoid valves tend to remain closed when a failure or malfunction occurs.
即ち、ソレノイド64への電気信号大刀が遮断されると
スプリング610作用で閉弁状態となる。That is, when the electric signal to the solenoid 64 is cut off, the valve is closed by the action of the spring 610.
そこで、第3図に示すような電磁弁6o閉弁状態になる
と、プランジャ22の圧送行程開始時点から終了時点に
至るまでポンプ室26内の燃料が噴射燃料通路27に圧
送され噴射に供されて燃料噴射量は最大となり1機関を
暴走させ、最悪の場合機関破損に至らしめる。Therefore, when the electromagnetic valve 6o is closed as shown in FIG. 3, the fuel in the pump chamber 26 is forced into the injection fuel passage 27 from the start to the end of the pumping stroke of the plunger 22 and is used for injection. The amount of fuel injected reaches its maximum, causing one engine to run out of control, and in the worst case, leading to engine damage.
このような危険状襲になったときに、第2図に立返って
説明すると、本発明では機関運転状態から制御装置90
が機関に異常が発生したことを知ってこれをドライバー
92に出力し、電磁アクチュエータ80を作動させて、
プレッシャレギュレータT6の吐出圧を低下させる。従
って、リリーフ弁装置TOのスプリング室74内の燃料
圧力(通常は噴射燃料通路2T内の溶料圧力がいかに上
昇しようともリリーフ弁装置TOを閉弁保持できるだけ
のプレッシャレギュレータ76の吐出圧としである。)
が低下する。When such a dangerous situation occurs, referring back to FIG. 2, in the present invention, the control device 90 is
learns that an abnormality has occurred in the engine, outputs this to the driver 92, activates the electromagnetic actuator 80,
Decrease the discharge pressure of pressure regulator T6. Therefore, the fuel pressure in the spring chamber 74 of the relief valve device TO (usually the discharge pressure of the pressure regulator 76 is sufficient to keep the relief valve device TO closed no matter how much the solvent pressure in the injection fuel passage 2T rises). .)
decreases.
一方、電磁弁60が閉弁、逆止弁50が閉弁という状態
であるから、プランジャ22の圧送により噴射燃料通路
27内の圧力が急上昇する。On the other hand, since the electromagnetic valve 60 is closed and the check valve 50 is closed, the pressure in the injection fuel passage 27 rapidly increases due to the pressure feeding of the plunger 22.
このため、弁体71に対して開弁方向に作用する噴射燃
料通路27内の圧力と、ピストン72に対して弁体T1
の閉弁方向に作用するスプリング73の弾性力及びスプ
リング室T4内の圧力と、のバランスが崩れ、弁体T1
が前記力のバランス位置までリフトし、それまで確実に
閉鎖していた通路部28cを所定通路面積まで開放する
。これによって得られる噴射燃料通路2T内の燃料圧力
P1がニードルパルプ43の開弁圧Po以下であれば、
ニードルパルプ43はリフトすることなく噴口41を閉
弁して何ら噴射を行うことがないし、Pl がPoより
大きければ、その差に応じたニードルパルプ43のリフ
ト量を得て、このリフト量に応じた燃料量が噴口41か
ら噴射供給される。Therefore, the pressure in the injection fuel passage 27 that acts on the valve body 71 in the valve opening direction and the pressure on the valve body T1 that acts on the piston 72
The balance between the elastic force of the spring 73 acting in the valve closing direction and the pressure inside the spring chamber T4 is lost, and the valve body T1
is lifted to the force balance position, and the passage portion 28c, which had been reliably closed until then, is opened to a predetermined passage area. If the fuel pressure P1 in the injection fuel passage 2T obtained by this is equal to or lower than the valve opening pressure Po of the needle pulp 43,
The needle pulp 43 does not lift, the nozzle 41 is closed, and no injection is performed. If Pl is larger than Po, the needle pulp 43 is lifted in accordance with the difference, and The amount of fuel is injected and supplied from the injection port 41.
従って、スプリング73のセット荷重と、プレッシャレ
ギュレータ76の調整された吐出圧とを適当に選ぶこと
によって、後間異常時に燃料を全く噴射させずに標:関
を停止させてしまうが、或いは所望の小さな噴射量を得
て、走行中の急激な減速を防止することにより後続車と
の不慮の事故を未然に防ぎ、史には近くの修理所まで車
両を走らせることかできるようにするかを自由に選択設
計することが可能となる。勿論このときKは噴射燃料通
路27内の燃料圧力がPl に維持されるからユニット
インジェクタの破壊9機関の暴走1機関の破壊等は確実
に防止できる。Therefore, by appropriately selecting the set load of the spring 73 and the adjusted discharge pressure of the pressure regulator 76, it is possible to stop the target valve without injecting any fuel in the event of an abnormality, or to stop the target valve at the desired time. By obtaining a small amount of injection and preventing sudden deceleration while driving, it is possible to prevent an unexpected accident with a following vehicle, and in history, to make it possible to drive the vehicle to a nearby repair shop. It becomes possible to freely select and design. Of course, at this time, since the fuel pressure in the injection fuel passage 27 is maintained at Pl, it is possible to reliably prevent the destruction of the unit injector, the runaway of the nine engines, and the destruction of the first engine.
尚、多気筒機関に本発明を適用した場合、プレッシャレ
ギュレータ76及び電磁アクチュエータ80は気筒側々
に股、けることも全体をまとめて1個ずつにすることも
可能である。In addition, when the present invention is applied to a multi-cylinder engine, the pressure regulator 76 and the electromagnetic actuator 80 can be placed on either side of the cylinders, or they can be combined into one piece each.
上記実施例において、IJ IJ−フ弁調整装置として
のプレッシャレギュレータ76及び電磁アクチュエータ
80は、これに限らず、油圧又は機械的手段によってプ
レッシャレギュレータ76f7)吐出圧を制御するよう
にしてもよいし、リリーフ弁装置70も他の構成の採用
は自由である。In the above embodiment, the pressure regulator 76 and the electromagnetic actuator 80 as the IJ IJ valve adjustment device are not limited to this, and the pressure regulator 76f7) discharge pressure may be controlled by hydraulic or mechanical means, Other configurations of the relief valve device 70 may also be freely adopted.
〈発明の効果〉
以上説明したよ5に本発明では、噴射燃料通路内圧力と
弾性付勢力とを閉弁方向に受ける常閉型電磁弁を、噴射
燃料通路に接続した燃料供給通路に介装したので、燃料
圧力な閉弁力として利用できるから、電磁弁の負荷を軽
減できると共に、弁体のバウンシングを小さくして電磁
弁のひいてはユニ”ットインジエクタの応答性及び精度
を向上することができる。また、該電、磁弁に並列に逆
止弁を介装したので、−1−ニットインジェクタのポン
プ部吸入行程にあっても電磁弁を閉弁状態にしても逆止
弁を通じてポンプ部に燃料を供給できるから、同じく電
磁弁の負荷を軽減できる。更に、これらと並列にリリー
フ弁装置を設け、リリーフ弁装置の開弁圧を機関異常時
に制御するリリーフ弁調整装置を設けたので、常閉型電
磁弁に特有な欠点即ち機関異常時例えば電磁弁故障時の
ユニットインジェクタの破損或いは機関の暴走、破損を
未然に防止できる。このとき、リリーフ弁装置の開弁圧
の調整値によっては、燃料噴射量を零にして機関を停止
方向に持ってい(か、ある所定量を噴射して機関暴走に
至らない程度の機関回転を得るかを選択することができ
る。<Effects of the Invention> As explained above, in the present invention, a normally closed electromagnetic valve that receives the pressure inside the injection fuel passage and the elastic biasing force in the valve closing direction is interposed in the fuel supply passage connected to the injection fuel passage. Therefore, since the fuel pressure can be used as a valve closing force, the load on the solenoid valve can be reduced, and the bouncing of the valve body can be reduced, thereby improving the responsiveness and accuracy of the solenoid valve and, by extension, the unit injector. In addition, since a check valve is installed in parallel with the electromagnetic valve, even if the electromagnetic valve is closed during the suction stroke of the pump part of the -1-knit injector, the fuel is supplied to the pump part through the check valve. This also reduces the load on the solenoid valve.Furthermore, a relief valve device is installed in parallel with these, and a relief valve adjustment device is installed to control the valve opening pressure of the relief valve device in the event of an engine abnormality. It is possible to prevent damage to the unit injector or engine runaway or damage when an engine abnormality occurs, such as when a solenoid valve malfunctions.Depending on the adjustment value of the valve opening pressure of the relief valve device, fuel You can choose to either reduce the injection amount to zero and keep the engine in the stopping direction, or inject a predetermined amount to obtain engine rotation that does not cause the engine to run out of control.
第1図は燃料噴射装置として従来のユニットインジェク
タの例を示す縦断面図、第2図は本発明の一実施例を示
すユニットインジェクタの縦断面図、第3図は同上の作
用を説明するためにリリーフ弁装置等を省略した説明的
縦断面図である。
21・・・ユニットインジェクタ 22・・・プランジ
ャ26・・・ボング室 2T・・・噴射燃料通路28・
・・燃料供給通路 28a〜28c・・・通路部41・
・・噴口 42・・・ニードル室 43・・・ニードル
バルブ 50・・・逆止弁 6o・・・電磁弁70・・
・リリーフ弁装置 76・・・プレッシャレギュレータ
80川電磁アクチユエータ
90・・・制御装置
特許出願人 日産自動車株式会社
代理人 弁理士 笹 島 富二雄Fig. 1 is a vertical cross-sectional view showing an example of a conventional unit injector as a fuel injection device, Fig. 2 is a longitudinal cross-sectional view of a unit injector showing an embodiment of the present invention, and Fig. 3 is for explaining the operation of the same. FIG. 3 is an explanatory longitudinal cross-sectional view in which a relief valve device and the like are omitted. 21...Unit injector 22...Plunger 26...Bong chamber 2T...Injection fuel passage 28.
...Fuel supply passages 28a to 28c...Passage portion 41.
... Nozzle port 42 ... Needle chamber 43 ... Needle valve 50 ... Check valve 6o ... Solenoid valve 70 ...
・Relief valve device 76... Pressure regulator 80 River electromagnetic actuator 90... Control device patent applicant Fujio Sasashima, agent of Nissan Motor Co., Ltd., patent attorney
Claims (1)
おいて、噴射燃料をポンプ部からノズル部罠導く噴射燃
料通路に連通した燃料供給通路に、ポンプ部方向への流
れのみ許容する逆止弁と、前記噴射燃料通路内圧力と弾
性付勢力とを閉弁方向に受ける常閉型電磁弁と、常閉型
のIJ IJ−フ弁装置と、を相互に並列に介装すると
共に、機関異常状態検出装置の信号圧基づき前記リリー
フ弁装置の開弁設定圧力を所定値に低下させるすIJ−
フ弁調整装置を設けたことを特徴とする内燃機関の燃料
噴射装置。In a fuel injection device that integrally includes a pump part and a nozzle part, a check valve that allows flow only in the direction of the pump part is provided in a fuel supply passage communicating with an injection fuel passage that guides injected fuel from the pump part to the nozzle part. , a normally closed solenoid valve that receives the pressure in the injected fuel passage and the elastic biasing force in the valve closing direction, and a normally closed IJ valve device are interposed in parallel with each other, and the engine abnormality IJ- lowering the valve opening setting pressure of the relief valve device to a predetermined value based on the signal pressure of the state detection device.
A fuel injection device for an internal combustion engine, characterized in that it is provided with a valve adjustment device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58140475A JPS6032971A (en) | 1983-08-02 | 1983-08-02 | Fuel injector for internal-combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58140475A JPS6032971A (en) | 1983-08-02 | 1983-08-02 | Fuel injector for internal-combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6032971A true JPS6032971A (en) | 1985-02-20 |
Family
ID=15269463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58140475A Pending JPS6032971A (en) | 1983-08-02 | 1983-08-02 | Fuel injector for internal-combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6032971A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63259156A (en) * | 1987-04-15 | 1988-10-26 | Hino Motors Ltd | Fuel injection device of diesel engine |
EP0391366A2 (en) * | 1989-04-04 | 1990-10-10 | Klöckner-Humboldt-Deutz Aktiengesellschaft | Fuel injection apparatus |
JPH0419354A (en) * | 1990-05-09 | 1992-01-23 | Yanmar Diesel Engine Co Ltd | Fuel injector for internal combustion engine |
WO2001081753A1 (en) * | 2000-04-20 | 2001-11-01 | Bosch Automotive Systems Corporation | High-pressure fuel feed pump |
EP2055931A1 (en) * | 2007-10-29 | 2009-05-06 | Hitachi Ltd. | Plunger type high-pressure fuel pump |
GB2553140A (en) * | 2016-08-25 | 2018-02-28 | Delphi Int Operations Luxembourg Sarl | Control valve assembly of a fuel injector |
-
1983
- 1983-08-02 JP JP58140475A patent/JPS6032971A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63259156A (en) * | 1987-04-15 | 1988-10-26 | Hino Motors Ltd | Fuel injection device of diesel engine |
EP0391366A2 (en) * | 1989-04-04 | 1990-10-10 | Klöckner-Humboldt-Deutz Aktiengesellschaft | Fuel injection apparatus |
JPH0419354A (en) * | 1990-05-09 | 1992-01-23 | Yanmar Diesel Engine Co Ltd | Fuel injector for internal combustion engine |
WO2001081753A1 (en) * | 2000-04-20 | 2001-11-01 | Bosch Automotive Systems Corporation | High-pressure fuel feed pump |
EP2055931A1 (en) * | 2007-10-29 | 2009-05-06 | Hitachi Ltd. | Plunger type high-pressure fuel pump |
GB2553140A (en) * | 2016-08-25 | 2018-02-28 | Delphi Int Operations Luxembourg Sarl | Control valve assembly of a fuel injector |
GB2553140B (en) * | 2016-08-25 | 2020-04-01 | Delphi Tech Ip Ltd | Control valve assembly of a fuel injector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4093696B2 (en) | Depressurization regulating valve for fuel injection device | |
US5975053A (en) | Electronic fuel injection quiet operation | |
US20090116976A1 (en) | High-pressure liquid supply pump | |
US5839412A (en) | Method for electronic fuel injector operation | |
EP3296558B1 (en) | High-pressure fuel pump | |
US6422209B1 (en) | Magnet injector for fuel reservoir injection systems | |
US6000379A (en) | Electronic fuel injection quiet operation | |
JP3555588B2 (en) | Common rail fuel injector | |
JPS6032971A (en) | Fuel injector for internal-combustion engine | |
US6837451B2 (en) | Seat/slide valve with pressure-equalizing pin | |
US7216669B2 (en) | Pressure regulating valve for common rail fuel injection systems | |
EP0974750B1 (en) | Fuel-injection pump having a vapor-prevention accumulator | |
JP2008232026A (en) | Injector | |
JPH09170512A (en) | Pressure control device in accumulator fuel injection device | |
US20050022791A1 (en) | Pressure regulating valve for common rail fuel injection systems | |
JP4404056B2 (en) | Fuel injection device for internal combustion engine | |
JPH1077892A (en) | Accumulator fuel system for vehicle | |
JP3452850B2 (en) | Injection valve for internal combustion engine | |
JP3693463B2 (en) | Variable discharge high pressure pump | |
JPS5951156A (en) | Fuel injection device of internal-combustion engine | |
US20040099246A1 (en) | Fuel injector with multiple control valves | |
JP3334525B2 (en) | Variable discharge high pressure pump and fuel injection device using the same | |
JP3134740B2 (en) | Fuel injection device | |
US6526942B2 (en) | Common rail type fuel injecting device | |
JPH11324854A (en) | Accumulating fuel injection device |