[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6030180A - Amorphous thin film photovoltaic element - Google Patents

Amorphous thin film photovoltaic element

Info

Publication number
JPS6030180A
JPS6030180A JP58138027A JP13802783A JPS6030180A JP S6030180 A JPS6030180 A JP S6030180A JP 58138027 A JP58138027 A JP 58138027A JP 13802783 A JP13802783 A JP 13802783A JP S6030180 A JPS6030180 A JP S6030180A
Authority
JP
Japan
Prior art keywords
type layer
layer
type
film
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58138027A
Other languages
Japanese (ja)
Inventor
Masatoshi Kitagawa
雅俊 北川
Takashi Hirao
孝 平尾
Koshiro Mori
森 幸四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58138027A priority Critical patent/JPS6030180A/en
Publication of JPS6030180A publication Critical patent/JPS6030180A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a photovoltaic element of high efficiency at the photovoltaic element having P-I-N structure by a method wherein the element is so constructed as to make the P type layer and the N type layer to have optically forbidden band widths larger than any part of the I type layer. CONSTITUTION:A P type amorphous silicon layer 3 introduced with carbon atoms, an intrinsic amorphous silicon layer 4, an N type amorphous silicon layer 5 introduced with carbon atoms, and a metal electrode 6 of high reflectivity are formed on a transparently conductive film 2 consisting of an ITO film, an SnO2 film or two layer film of the ITO film and the SnO2 film on a glass substrate 1. The P type layer 3 and the N type layer 5 become to junction type photovoltaic elements having larger optically forbidden band widths as compared with the I type layer 4, when light enters from the P type layer 3, light of long wavelength not absorbed completely at the I type layer 4 is not almost absorbed at the N type layer 5, but reflected by the Ag electrode 6, and absorbed again at the I type layer. It can be made as possible to make thickness of only the I type layer thin, and optoelectric conversion efficiency is enhanced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非晶質薄膜光起電力素子に関する。[Detailed description of the invention] Industrial applications The present invention relates to an amorphous thin film photovoltaic device.

従来例の構成とその問題点 最近、非晶質シリコンを主材料とする薄膜光起電力素子
は、安イhL光起電力素子として注目を集めている。し
かし、非晶質シリコンは発生した電子、正孔の拡散長が
非常に短いため、光起電力に寄与する真性(iJ型非晶
質シリコン層を厚くすると、光電変換特性が低下してし
丑う。また、あ1り薄くしすぎると光の吸収率が低下し
、やはり光電変換効率が低下する。そのため非晶質シリ
コンを主材料とする光起電力素子は、一般に結晶型の光
起電力素子に比べ光電変換効率が悪く、実用化が遅れて
いる。
Structure of conventional example and its problems Recently, a thin film photovoltaic device mainly made of amorphous silicon has attracted attention as an inexpensive hL photovoltaic device. However, since the diffusion length of generated electrons and holes in amorphous silicon is very short, increasing the thickness of the iJ type amorphous silicon layer, which contributes to photovoltaic force, reduces the photoelectric conversion characteristics. Furthermore, if the film is made too thin, the light absorption rate will decrease and the photoelectric conversion efficiency will also decrease.For this reason, photovoltaic elements mainly made of amorphous silicon are generally made of crystalline photovoltaic elements. The photoelectric conversion efficiency is lower than that of conventional solar cells, and practical application has been delayed.

発明の目的 本発明は、上記問題点を軽減し、高効率な光起電力素子
を得る新規な構成を提供するものである1、発明の構成 本発明は、導電性基板上に、炭素原子や酸素原子等の原
子を添加したある導電型の非晶質シリコン膜、真性型も
しくは真性型に近い非晶質ンリコたp−1−n構造を有
する光起電力素子に〉いて、p型層およびn型層が1型
層のどの部分」;りも大きな光学的禁止帯幅をもつよう
に構成したことを特徴とする。さらに具体的には、真性
(il型層を従来型の光起電力素子に用いられた真性層
のハ〜↓6程度とし、光を吸収することによって発生し
た′;n子、正孔の拡散長をもって充分に収集可能の厚
さとするものである。
Purpose of the Invention The present invention alleviates the above-mentioned problems and provides a novel configuration for obtaining a highly efficient photovoltaic device. In a photovoltaic device having a p-1-n structure, an amorphous silicon film of a certain conductivity type doped with atoms such as oxygen atoms, an amorphous silicon film of an intrinsic type or close to an intrinsic type, a p-type layer and It is characterized in that the n-type layer has a larger optical band gap than any part of the type-1 layer. More specifically, the intrinsic (il-type layer is about ↓6) of the intrinsic layer used in conventional photovoltaic elements, and the diffusion of ``;n electrons and holes generated by absorbing light. It should be long enough and thick enough to be collected.

実施例の説明 以下、本発明の構成およびその製造法について図面に基
ついて説明する。
DESCRIPTION OF EMBODIMENTS The structure of the present invention and its manufacturing method will be described below with reference to the drawings.

図において、1は例えばガラス基板、2はITOやSn
○2あるいはITOとS n O2の二層膜からなる透
明導電膜である。この透明導電膜2上に炭素原子導入し
たp型非晶質シリコン層3を例えば1o○〜2Q○人程
度の薄膜として形成する。この層の形成にはS I H
4とB2H6ガス以外に例えばCH4ガスを混合したガ
スを原料ガスとして用いる。
In the figure, 1 is a glass substrate, and 2 is an ITO or Sn substrate.
○2 or a transparent conductive film consisting of a two-layer film of ITO and S n O2. On this transparent conductive film 2, a p-type amorphous silicon layer 3 into which carbon atoms are introduced is formed as a thin film having a thickness of, for example, about 10○ to 2Q○. To form this layer, S I H
A mixture of CH4 gas and B2H6 gas, for example, is used as the raw material gas.

このときの条件としては、例えばS I H4に対して
B2H6は0.1voA%、CH4ば50 vot%程
度とし、基板温度200〜250℃で高周波グロー放電
する。4は厚さ2000〜4000八程度の真性非晶質
シリコン層であるが、不純物が入れられていない非晶質
シリコン層は少しn型に近い真性型であるため、原料ガ
スとしてS IH4vC対し10〜60ppm8度のB
2H6を混合し、本来の意味での真性型にする場合もあ
る。6は炭素原子を導入したn型非晶質シリコン層で、
この層の形成にはS i H4゜CHPHの斧ユ混合ガ
スを用い、PH3は5IH4413 に対して1 voA%程度とし、CH4はS I H4
に対して50 vot%程度とし、100〜300人程
度形成する。6は反射率の高い金属電極で、例えばAq
を0.1〜1μm程度に真空蒸着法で形成する。とのよ
うにして目的の高効率な光起電力素子を完成することが
できる。
The conditions at this time are, for example, B2H6 is 0.1 voA% with respect to S I H4, CH4 is about 50 vot%, and high frequency glow discharge is performed at a substrate temperature of 200 to 250°C. 4 is an intrinsic amorphous silicon layer with a thickness of about 2,000 to 4,000 mm, but since the amorphous silicon layer without impurities is an intrinsic type slightly close to n-type, the raw material gas is SIH4vC. ~60ppm 8 degrees B
In some cases, 2H6 is mixed to form the true form in the original sense. 6 is an n-type amorphous silicon layer into which carbon atoms are introduced;
To form this layer, a mixed gas of S i H4° CHPH is used, PH3 is about 1 voA% with respect to 5IH4413, and CH4 is S I H4
The number of participants will be approximately 50 vot%, and the number of participants will be approximately 100 to 300. 6 is a metal electrode with high reflectance, for example Aq
is formed to a thickness of approximately 0.1 to 1 μm using a vacuum evaporation method. In this way, the desired highly efficient photovoltaic device can be completed.

このような構成をとることにより、p型層3とn型層5
がl型層4に比べ光学禁止帯が大きな接合型光起電力素
子となり、p型層3から入った光が1型層4で一部吸収
され、吸収し切れなかった長波長光はn型層5でほとん
ど吸収されず、Aq電極6で反射し、再びi型層で吸収
される。前記のように裏面での反射を充分利用可能とな
るため従来必要としていたl型層の厚みを薄ぐすること
が可能となり、非晶質シリコンの拡散長の小さいことを
補なうことが可能となり、光電変換効率が高い光起電力
素子が得られる。
By adopting such a configuration, the p-type layer 3 and the n-type layer 5
becomes a junction photovoltaic element with a larger optical forbidden band than the L-type layer 4, and the light that enters from the P-type layer 3 is partially absorbed by the 1-type layer 4, and the long wavelength light that is not completely absorbed becomes the N-type. It is hardly absorbed by the layer 5, reflected by the Aq electrode 6, and absorbed again by the i-type layer. As mentioned above, since reflection on the back surface can be fully utilized, it is possible to reduce the thickness of the l-type layer that was previously required, and it is possible to compensate for the small diffusion length of amorphous silicon. Thus, a photovoltaic element with high photoelectric conversion efficiency can be obtained.

なお、実施例では、ガラス基板−」−に透明電極を形成
して、ガラス側から入光し、かつp型層から入光する光
起電力素子を示したが、金属板上に形成した透明電極か
ら入光させても良い。さらにp型層3、i型層4、n型
層5の順に形成する代わりに、n型層5.1型層4、p
型層3の順に形成しても良い。また実施例ではp−1−
n単層構造で示したが、p−1−nを多数積層させる場
合も当然同じ効果が期待できる。また、薄膜は非晶質シ
リコンで形成したが、他の非晶質薄膜でもよい。
In the example, a photovoltaic element was shown in which a transparent electrode was formed on a glass substrate and light entered from the glass side and from the p-type layer, but a transparent electrode formed on a metal plate was shown. Light may also be introduced through the electrodes. Furthermore, instead of forming the p-type layer 3, i-type layer 4, and n-type layer 5 in this order, the n-type layer 5.
The mold layer 3 may be formed in this order. In addition, in the example, p-1-
Although the n single layer structure is shown, the same effect can of course be expected when a large number of p-1-n layers are stacked. Further, although the thin film is formed of amorphous silicon, other amorphous thin films may be used.

発明の効果 本発明によれば、前述のように光の利用率を向上させな
がら、しかも光によって発生した電子および正孔の再結
合の割合を小さくすることが可能であり、高い変換効率
を有する光起電力素子が得られる。しかも、1型層を薄
くできるので光起電力素子の生産性が向上し、低コスト
化が可能となる。
Effects of the Invention According to the present invention, it is possible to improve the light utilization efficiency as described above, and also to reduce the rate of recombination of electrons and holes generated by light, resulting in high conversion efficiency. A photovoltaic device is obtained. Moreover, since the type 1 layer can be made thinner, the productivity of the photovoltaic device is improved and costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例の光起電力素子の構成例を示す
縦断面図である。 1 ガラス基板、2−・・透明導電膜、3 ・・・p型
層、4・・・・真性型層、5 n型層、6金属電極。
The drawing is a longitudinal sectional view showing an example of the configuration of a photovoltaic device according to an embodiment of the present invention. 1 Glass substrate, 2--Transparent conductive film, 3--P type layer, 4--Intrinsic type layer, 5 N-type layer, 6 Metal electrode.

Claims (1)

【特許請求の範囲】[Claims] 基板上に形成した非晶質薄膜よりなるp−1−n構造を
有し、そのp型層およびn型層がi型層のどの部分よシ
も大きな光学的禁止帯幅を持つことを特徴とする非晶質
薄膜光起電力素子。
It has a p-1-n structure consisting of an amorphous thin film formed on a substrate, and is characterized in that its p-type layer and n-type layer have a larger optical band gap than any part of the i-type layer. Amorphous thin film photovoltaic device.
JP58138027A 1983-07-28 1983-07-28 Amorphous thin film photovoltaic element Pending JPS6030180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58138027A JPS6030180A (en) 1983-07-28 1983-07-28 Amorphous thin film photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58138027A JPS6030180A (en) 1983-07-28 1983-07-28 Amorphous thin film photovoltaic element

Publications (1)

Publication Number Publication Date
JPS6030180A true JPS6030180A (en) 1985-02-15

Family

ID=15212331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58138027A Pending JPS6030180A (en) 1983-07-28 1983-07-28 Amorphous thin film photovoltaic element

Country Status (1)

Country Link
JP (1) JPS6030180A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511329A (en) * 1978-07-08 1980-01-26 Shunpei Yamazaki Semiconductor device
JPS5664476A (en) * 1979-08-30 1981-06-01 Plessey Overseas Armophous silicon solar battery
JPS57961B2 (en) * 1976-04-28 1982-01-08
JPS57160175A (en) * 1981-03-28 1982-10-02 Semiconductor Energy Lab Co Ltd Photoelectric converter
JPS57160176A (en) * 1981-09-26 1982-10-02 Semiconductor Energy Lab Co Ltd Photoelectric converter
JPS5823489A (en) * 1981-08-05 1983-02-12 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57961B2 (en) * 1976-04-28 1982-01-08
JPS5511329A (en) * 1978-07-08 1980-01-26 Shunpei Yamazaki Semiconductor device
JPS5664476A (en) * 1979-08-30 1981-06-01 Plessey Overseas Armophous silicon solar battery
JPS57160175A (en) * 1981-03-28 1982-10-02 Semiconductor Energy Lab Co Ltd Photoelectric converter
JPS5823489A (en) * 1981-08-05 1983-02-12 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS57160176A (en) * 1981-09-26 1982-10-02 Semiconductor Energy Lab Co Ltd Photoelectric converter

Similar Documents

Publication Publication Date Title
US4496788A (en) Photovoltaic device
JP2740284B2 (en) Photovoltaic element
JPS62198169A (en) Solar cell
JP2001189478A (en) Semiconductor element and manufacturing method therefor
JPS6155268B2 (en)
KR840004986A (en) Semiconductor photoelectric conversion device and manufacturing method thereof
JPH04127580A (en) Multi-junction type amorphous silicon solar cell
JPS6233479A (en) Solar cell
JPH0693519B2 (en) Amorphous photoelectric conversion device
US4407710A (en) Hybrid method of making an amorphous silicon P-I-N semiconductor device
JPH0752778B2 (en) Photovoltaic device
JPS6334632B2 (en)
JPS6030181A (en) Amorphous thin film photovoltaic element
JPH0125235B2 (en)
JP3342257B2 (en) Photovoltaic element
JPS6030180A (en) Amorphous thin film photovoltaic element
JP2002016271A (en) Thin-film photoelectric conversion element
JPS6143871B2 (en)
JP2669834B2 (en) Stacked photovoltaic device
JP2001284619A (en) Phtovoltaic device
JPH0312973A (en) Amorphous thin film solar cell
JP3695923B2 (en) Transparent electrode substrate, method for producing the same, and method for producing photovoltaic element
JPH06244440A (en) Solar battery
JPS60216585A (en) Solar cell element
JPS6152992B2 (en)