[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6027175B2 - Capacitor manufacturing method - Google Patents

Capacitor manufacturing method

Info

Publication number
JPS6027175B2
JPS6027175B2 JP1322278A JP1322278A JPS6027175B2 JP S6027175 B2 JPS6027175 B2 JP S6027175B2 JP 1322278 A JP1322278 A JP 1322278A JP 1322278 A JP1322278 A JP 1322278A JP S6027175 B2 JPS6027175 B2 JP S6027175B2
Authority
JP
Japan
Prior art keywords
manufacturing
film
capacitor
pressure
dielectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1322278A
Other languages
Japanese (ja)
Other versions
JPS54105761A (en
Inventor
義明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1322278A priority Critical patent/JPS6027175B2/en
Publication of JPS54105761A publication Critical patent/JPS54105761A/en
Publication of JPS6027175B2 publication Critical patent/JPS6027175B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 本発明は、端部に金属化マージンを有する両面金属化プ
ラスチックフィルムの少くとも一面に誘電体膜を塗工形
成した複合フィルムを多層に積み重ねる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for stacking multiple layers of a composite film comprising a double-sided metallized plastic film having a metallized margin at the edges and a dielectric film coated on at least one side.

両面金属化プラスチックフィルムの片面または両面に誘
電体膜を塗工形成し、多層に積み重ねた構造を有する積
層コンデンサは、塗工膜が薄く出来るため静電容量体比
が一般に大きいことの他に、製造方法としても合理性に
富み、大量生産に適したものである。すなわち従来、そ
れぞれマージンを設けて蒸着(金属化)および誘電体塗
工を行なった広幅の原反フィルムを、各蒸着条毎に細幅
にスリットし、個々のコンデンサに捲回していたのに替
えて、原反フィルムを広幅のまま平面または大円に捲回
積属し、各条毎およびそれに直角な方向に切断する工程
で置き換えられる。
Multilayer capacitors, which have a structure in which a dielectric film is coated on one or both sides of a double-sided metallized plastic film and stacked in multiple layers, generally have a large capacitance ratio because the coating film can be thin. It is also a highly rational manufacturing method and is suitable for mass production. In other words, in place of the conventional wide film that was vapor-deposited (metallized) and dielectric-coated with a margin, each vapor-deposited strip was slit into narrow strips and wound around each individual capacitor. This method is replaced by a process in which the original film is wound and stacked in a flat or large circle in its wide width, and then cut into each strip and in a direction perpendicular to each strip.

上記製造方法は、一例かつ大要であり、実際には、その
他にメタリコン、リード線付け、外装等が必要であるが
、これらの各工程を行なうに際して、穣層したフィルム
が接着し一体化していることは多大な利点を有する。接
着性が弱いと積層形成がずれたり、分解するばかりでな
く、切断時においては、切断面がギザギザになり、また
メタリコンを行なう場合には、端面が不揃いになり、急
激な充放電々流により接触が外れたりしていずれも特性
の良好なコンデンサが得難い。本発明は、積層コンデン
サを製造する上での上記欠点に鑑み、接着性の良い積層
コンデンサの製造方法を提供するものである。
The above manufacturing method is just an example and a general outline, and in reality, metallization, lead wire attachment, exterior packaging, etc. are also required, but when performing these steps, the layered films are bonded and integrated. There are enormous advantages to having a If the adhesion is weak, the laminated layers will not only shift or disintegrate, but also the cut surface will be jagged when cutting, and when metallizing, the end surface will be uneven, and the rapid charging and discharging will cause damage. In either case, it is difficult to obtain a capacitor with good characteristics because the contact may come off. In view of the above-mentioned drawbacks in manufacturing a multilayer capacitor, the present invention provides a method for manufacturing a multilayer capacitor with good adhesiveness.

以下両面塗工の場合について、その実施例を図面を用い
て詳述する。
Examples of double-sided coating will be described below in detail with reference to the drawings.

片面塗工の場合についても本発明の主旨は何ら変わると
ころはない。第1図は、一黍着、塗工後の原反フィルム
を示す。
Even in the case of single-sided coating, the gist of the present invention does not change in any way. FIG. 1 shows the original film after plating and coating.

図において、1は基板フィルム、2は蒸着時による金属
膜(電極)、3は塗工形成した誘電体膜であり、これは
例えばジクロルメタンやジクロルェタン等の有機溶剤に
ポリカーボネート樹脂等を溶解し、ラッカリング機等で
塗工したのち溶剤を蒸発乾燥させることにより行なう。
次にこの原反フィルムを平板状の巻き取りボビンまたは
径の大きな円筒ボビン等に巻き取ることにより、原反フ
ィルムが多層に積層した態様のものを得る。この積層フ
ィルムは、先に述べたように相互に接着していることが
必要であるが、接着方法として加熱下にプレスする方法
が知られている。例えば塗工誘電体膜がポリカーボネー
トである場合、その軟化点に近い140qo前後に加熱
し、加圧下で適当な時間保持することにより接着するこ
とが出来るが、実際には、高温で保持した後、140℃
前後に加熱し、この後に降温させるが、昇温、降温に要
する時間が長く、長時間高温となり、しかも、この状態
において、加圧を続けなければならず、誘電体膜の電気
的な弱点部が大量に生じ、絶縁抵抗の低下をまねきやす
い。これに対し、本発明では、常温もしくは上記万法に
比して低い温度の下で加圧しながら加圧拾具を超音波振
動させることにより良好な接着性を得んとするものであ
る。第2図に、その様子を示す。図において、4は前記
積層フィルムであり「5は塗工部分、6は塗工マージン
部分である。7は受台、8は加圧治具であり、超音波振
動子と連結する。
In the figure, 1 is a substrate film, 2 is a metal film (electrode) formed during vapor deposition, and 3 is a dielectric film formed by coating. This is done by coating with a ring machine or the like and then evaporating the solvent and drying it.
Next, by winding up this raw film onto a flat winding bobbin or a large diameter cylindrical bobbin, a multi-layered raw film is obtained. This laminated film needs to be bonded to each other as described above, and a method of pressing under heat is known as a bonding method. For example, if the coated dielectric film is polycarbonate, it can be bonded by heating it to around 140 qo, which is close to its softening point, and holding it under pressure for an appropriate period of time, but in reality, after holding it at a high temperature, 140℃
The temperature is heated back and forth, and then the temperature is lowered, but it takes a long time to raise and lower the temperature, and the temperature stays at a high temperature for a long time.Moreover, in this state, pressure must be continued, and the electrical weak points of the dielectric film are heated. occurs in large quantities, which tends to lead to a decrease in insulation resistance. In contrast, the present invention aims to obtain good adhesive properties by ultrasonically vibrating the pressure pick while applying pressure at room temperature or at a lower temperature than the above-mentioned method. Figure 2 shows the situation. In the figure, 4 is the laminated film, 5 is a coating portion, 6 is a coating margin portion, 7 is a pedestal, and 8 is a pressure jig, which is connected to an ultrasonic vibrator.

図では、加圧治具8は塗工部分5のみを加圧し、マージ
ン部6は加圧されない場合を示しているが、より広い面
積にわたり加圧することも可能である。ただし、マージ
ン部をも加圧すると、マージン部に沿って中央部を切断
した場合、切断面にしわが発生しやすく、メタリコンを
行なった場合、金属膜との電気的接触が弱くなるおそれ
があるので、金属膜の対向部分に制限した方がよい。こ
の超音波圧着による援着法では、接着に要する温度(熱
)を超音波のエネルギーによって与え、このため、急熱
急冷が可能であり、超音波振動を加えている数分間だけ
雛化点に近い温度になるため、従来方法による場合より
も誘電体膜を過度に損傷することなく、十分な接着力が
得られる。したがって絶縁抵抗の低下がなく、以後の工
程における操作性もきわめて満足なものにすることがで
きる。第3図は、外装前のコンデンサ素子の断面図を示
したもので、9はメタリコン層である。
Although the figure shows a case in which the pressure jig 8 applies pressure only to the coated portion 5 and does not apply pressure to the margin portion 6, it is also possible to apply pressure over a wider area. However, if the margin part is also pressurized, wrinkles will easily occur on the cut surface if the center part is cut along the margin part, and if metallicon is applied, the electrical contact with the metal film may become weak. , it is better to limit it to the opposing parts of the metal film. In this bonding method using ultrasonic pressure bonding, the temperature (heat) required for bonding is applied using ultrasonic energy. Therefore, rapid heating and cooling is possible, and the temperature reaches the hatching point only for a few minutes while ultrasonic vibration is applied. Since the temperatures are close to each other, sufficient adhesive strength can be obtained without excessively damaging the dielectric film than in the case of conventional methods. Therefore, there is no decrease in insulation resistance, and the operability in subsequent steps can be made extremely satisfactory. FIG. 3 shows a cross-sectional view of the capacitor element before packaging, and 9 is a metallicon layer.

リード線は省略してある。なお、これらの例では、塗工
マージンは端部に沿った両側に設けているが、金属化マ
ージンとは反対側の端部に沿って設けただけでもよい。
この場合、メタリコンの侵入する隙間は半分になる。
Lead wires are omitted. In addition, in these examples, the coating margin is provided on both sides along the edge, but it may be provided just along the edge on the opposite side from the metallization margin.
In this case, the gap through which metallicon can penetrate is halved.

なお、本発明における加圧力は5k9/め前後、また超
音波の振動数は20〜100KHZ、時間は数分が適当
である。
In the present invention, it is appropriate that the pressing force be around 5k9/cm, the frequency of the ultrasonic wave should be 20 to 100 KHz, and the time should be several minutes.

以上のような本発明の製造方法によれば譲露体膜に電気
的弱点部分すなわち絶縁不良部分を生ぜしめることなく
、積層フィルムを接着させ、製造時の取扱い性を良好に
し、併せて信頼性の高い積層コンデンサを製造すること
ができるものである。
According to the manufacturing method of the present invention as described above, the laminated film can be bonded without producing any electrically weak parts, that is, poor insulation parts in the exposed body film, and it can be easily handled during manufacturing, and at the same time, reliability can be improved. This makes it possible to manufacture multilayer capacitors with high performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法を適用するためのコンデンサ
素子の斜視図、第2図は本発明の製造方法を実施するた
めに使用する装置の斜視図、第3図は本発明の製造方法
によって得られたコンデンサの断面図である。 1……基板フィルム、2・・・…金属膜(電極)、3・
・・・・・誘電体膜、4・・…・積層フィルム、5・・
・・・・塗工部分、6・・・・・・塗工マージン部分、
7・・…・受台、8・・・・・・加圧拾具、9・・・・
・・メタリコン層。 第1図第2図 第3図
FIG. 1 is a perspective view of a capacitor element to which the manufacturing method of the present invention is applied, FIG. 2 is a perspective view of an apparatus used to carry out the manufacturing method of the present invention, and FIG. 3 is a perspective view of the manufacturing method of the present invention. FIG. 2 is a cross-sectional view of a capacitor obtained by 1...Substrate film, 2...Metal film (electrode), 3.
...Dielectric film, 4...Laminated film, 5...
...Coating part, 6...Coating margin part,
7... cradle, 8... pressure pick up tool, 9...
...Metallicon layer. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 端部に金属化マージンを有する両面金属化プラスチ
ツクフイルムの少くとも一面に誘電体膜を塗工形成した
複合フイルムを多層に積み重ねるコンデンサの製造方法
において、誘電体膜の軟化点より10℃以上低い温度の
下で、積層面に加圧しながら超音波振動を与え、積層す
ることを特徴とするコンデンサの製造方法。 2 加圧する面を両面金属膜の対向部分に制限し金属化
マージン部に圧力が加わらないように加圧することを特
徴とする特許請求の範囲第1項記載のコンデンサの製造
方法。
[Scope of Claims] 1. A method for manufacturing a capacitor in which composite films are stacked in multiple layers, each of which is a double-sided metallized plastic film having a metallized margin at the end and a dielectric film coated on at least one side, the softening of the dielectric film. A method for manufacturing a capacitor, which comprises laminating the layers by applying ultrasonic vibrations while applying pressure to the laminated surfaces at a temperature 10° C. or more lower than the point. 2. The method of manufacturing a capacitor according to claim 1, wherein the surfaces to be pressurized are limited to opposing portions of the double-sided metal films, and the pressure is applied so as not to apply pressure to the metallized margin portion.
JP1322278A 1978-02-07 1978-02-07 Capacitor manufacturing method Expired JPS6027175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1322278A JPS6027175B2 (en) 1978-02-07 1978-02-07 Capacitor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1322278A JPS6027175B2 (en) 1978-02-07 1978-02-07 Capacitor manufacturing method

Publications (2)

Publication Number Publication Date
JPS54105761A JPS54105761A (en) 1979-08-20
JPS6027175B2 true JPS6027175B2 (en) 1985-06-27

Family

ID=11827139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1322278A Expired JPS6027175B2 (en) 1978-02-07 1978-02-07 Capacitor manufacturing method

Country Status (1)

Country Link
JP (1) JPS6027175B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2548440B1 (en) * 1983-06-28 1986-03-21 Europ Composants Electron METALLIZED FILM FOR PRODUCING CAPACITORS AND METHOD FOR MANUFACTURING SAID CAPACITORS
JPH0793240B2 (en) * 1990-06-01 1995-10-09 松下電器産業株式会社 Method for manufacturing laminated film capacitor

Also Published As

Publication number Publication date
JPS54105761A (en) 1979-08-20

Similar Documents

Publication Publication Date Title
US2731706A (en) Manufacture of capacitors
JPH0358524B2 (en)
JP2985448B2 (en) Lamination method of ceramic green sheet
JPS6027175B2 (en) Capacitor manufacturing method
JPH09129487A (en) Manufacture of laminated ceramic electronic part
JPS62190828A (en) Manufacture of metallized film capacitor
JP3209304B2 (en) Laminated electronic component and method of manufacturing the same
JP2000315618A (en) Manufacture of laminated ceramic electronic parts
JPS596498B2 (en) Manufacturing method of multilayer capacitor
JPH0142615B2 (en)
JPH03201421A (en) Laminated film capacitor
JPH02226708A (en) Manufacture of capacitor composed of dielectric film and conductive foil layer
JPS6263413A (en) Manufacturing laminated ceramic capacitor
JPS5910740Y2 (en) film capacitor
JPH03236210A (en) Manufacture of sheet-shaped ceramic composite capacitor
JPH1041189A (en) Multilayer metallized film capacitor
JPS6351533B2 (en)
JP2842350B2 (en) Multilayer capacitors
JPS6351532B2 (en)
JPH0496286A (en) Manufacture of laminated piezoelectric element
JPH0142616B2 (en)
JP3419363B2 (en) Manufacturing method of ceramic electronic components
JPS6354205B2 (en)
JPH0334520A (en) Manufacture of film capacitor
JP2001110667A (en) Manufacture of ceramic electronic component