[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60263066A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPS60263066A
JPS60263066A JP59121159A JP12115984A JPS60263066A JP S60263066 A JPS60263066 A JP S60263066A JP 59121159 A JP59121159 A JP 59121159A JP 12115984 A JP12115984 A JP 12115984A JP S60263066 A JPS60263066 A JP S60263066A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
expansion valve
heat pump
pump device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59121159A
Other languages
Japanese (ja)
Other versions
JPH0663670B2 (en
Inventor
雄二 吉田
和生 中谷
裕二 向井
中沢 昭
井本 匠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59121159A priority Critical patent/JPH0663670B2/en
Publication of JPS60263066A publication Critical patent/JPS60263066A/en
Publication of JPH0663670B2 publication Critical patent/JPH0663670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷暖房装置等の熱ポンプ装置の改良に係り、
特に暖房運転時の能方向上を重視して非共沸混合冷媒を
用いた冷凍サイクルの冷媒循環量制御構成に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an improvement of a heat pump device such as an air-conditioning device.
In particular, the present invention relates to a refrigerant circulation amount control configuration of a refrigeration cycle using a non-azeotropic mixed refrigerant with emphasis on performance during heating operation.

従来例の構成とその問題点 従来冷暖房装置において、暖房運転時の能ツノ向上を図
るものとして、ガスインジェクション方式と呼ばれるも
のがあかこの方式は凝縮器量lの中間圧に配置した気液
分離器にて分離されるガス冷媒を圧縮機シリンダ内に直
接注入することにより、冷媒循環量を増大させ暖房能方
向上を図ったものである。しかしながらこの方式は冷媒
注入量を増大させるには中間圧を高く設定しなければな
らないが、逆に高く設定しすぎると中間圧でのガス冷媒
発生量が少くなるという矛盾があり、暖房能方向上を図
るには限界があった。また最近暖房能方向上を図る別の
ものとしてR22の如き主成分冷媒にそれより低沸点な
R13B1の如き副成分冷媒を適宜封入した非共沸混合
冷媒を用い、圧縮機吸入比容積を減少させ、冷媒循環量
を増大させる提案も行なわれている。しかしこれらを組
合せた方法の冷媒循環量制御構成に関しては、具体的に
提案されたものは見当らず、単に温度式膨張弁を用いた
方法では、膨張弁感温筒内の冷媒と冷凍サイクlし中の
非共沸混合冷媒の圧力特性が異なるため充分な制御がで
きないものであった。
Conventional configurations and their problems In conventional air-conditioning systems, there is a method called a gas injection method to improve performance during heating operation.In this method, a gas-liquid separator placed at an intermediate pressure with a condenser volume of 1 is used. By directly injecting the gas refrigerant separated into the compressor cylinder, the amount of refrigerant circulation is increased and the heating performance is improved. However, with this method, the intermediate pressure must be set high in order to increase the amount of refrigerant injected, but conversely, if the intermediate pressure is set too high, the amount of gas refrigerant generated at the intermediate pressure will decrease. There were limits to what could be achieved. Recently, as another method for improving heating performance, a non-azeotropic refrigerant mixture is used, in which a main component refrigerant such as R22 is filled with a subcomponent refrigerant such as R13B1 having a lower boiling point, to reduce the compressor suction specific volume. Proposals have also been made to increase the amount of refrigerant circulated. However, no concrete proposal has been found regarding a refrigerant circulation amount control configuration for a method that combines these methods.In a method that simply uses a thermostatic expansion valve, the refrigerant in the expansion valve temperature-sensitive cylinder and the refrigeration cycle are Because the pressure characteristics of the non-azeotropic mixed refrigerants inside were different, sufficient control was not possible.

発明の目的 本発明は上記従来の問題に鑑みて発明したものであり、
非共沸混合冷媒を用いた冷媒循環量制御を、非共沸混合
冷媒の温度特性を利用して可能としたものであり、特に
暖房能方向上を図ったガスインジェクション方式等に好
適な構成を提案するものである。
Purpose of the Invention The present invention was invented in view of the above-mentioned conventional problems.
The refrigerant circulation amount control using a non-azeotropic mixed refrigerant is made possible by utilizing the temperature characteristics of the non-azeotropic mixed refrigerant, and the configuration is particularly suitable for gas injection systems that aim to improve heating performance. This is a proposal.

発明の構成 本発明になる熱ポンプ装置は、非共沸混合冷媒を用いた
冷凍サイクルにおいて、蒸発器の人口1を含め出[1ま
での間で検出する第1の温度検出器と、蒸発器出口から
圧縮機吸入直前の間で検出する第2の温度検出器を設け
、両温度検出器の温度差で制御する膨張弁を設けたもの
であり、特にガスインジェクション方式においては中間
圧気液分離器の上流側に該膨張弁を配置することにより
構成されるものである。
Structure of the Invention The heat pump device according to the present invention is a refrigeration cycle using a non-azeotropic mixed refrigerant. A second temperature sensor is installed between the outlet and just before the intake of the compressor, and an expansion valve is installed that is controlled by the temperature difference between the two temperature sensors.In particular, in the gas injection method, an intermediate pressure gas-liquid separator is installed. The expansion valve is arranged on the upstream side of the valve.

実施例の説明 本発明による熱ポンプ装置の一実施例を、冷暖房装置に
適用した第1図をもって説明する。第1図において、1
は圧縮機、2は四方弁、3は暖房時凝縮器として機能す
る室内熱交換器、4は暖房時蒸発器として機能する室外
熱交換器、5.6は逆止弁、7はキャピラリチューブ、
8は!A液分離器であり、気液分離器8の頂部は分離さ
れるガス冷媒を電磁弁9を介して直接圧縮機1のシリン
ダ内に注入するインジェクション回路10が接続されて
いる。また11は暖房時気液分離器8の上流側となる位
置に設けた正逆可逆形の膨張弁であり、12は暖房時蒸
発器として機能する室外熱交換器4の入口を含め出口ま
での間に設けた第1の温度検出器、13は同じく暖房時
蒸発器として機能する室外熱交換器4の出口から圧縮機
1の吸入直前の間に設けた第2の温度検出器であり、こ
れら構成要素を連結した冷凍サイクル中にはR13B1
/R22の如き非共沸混合冷媒を封入している。
DESCRIPTION OF EMBODIMENTS An embodiment of a heat pump device according to the present invention will be described with reference to FIG. 1, in which it is applied to an air-conditioning device. In Figure 1, 1
is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger that functions as a condenser during heating, 4 is an outdoor heat exchanger that functions as an evaporator during heating, 5.6 is a check valve, 7 is a capillary tube,
8 is! This is a liquid A separator, and the top of the gas-liquid separator 8 is connected to an injection circuit 10 that directly injects the gas refrigerant to be separated into the cylinder of the compressor 1 via a solenoid valve 9. Reference numeral 11 is a reversible expansion valve installed at the upstream side of the gas-liquid separator 8 during heating, and 12 is a reversible expansion valve located upstream of the gas-liquid separator 8 during heating. A first temperature sensor 13 is provided between the outlet of the outdoor heat exchanger 4, which also functions as an evaporator during heating, and a second temperature sensor provided immediately before the intake of the compressor 1. R13B1 in the refrigeration cycle where the components are connected
A non-azeotropic mixed refrigerant such as /R22 is enclosed.

さてかかる熱ポンプ装置の作用様態を、特に暖房運転時
について、第2図をもって説明する。第2図において、
Aは蒸発器中で圧力損失がなく出口で飽和ガスとして流
出する場合の理論上の蒸発器内温度分布であり、非共沸
混合冷媒の場合蒸発過程が進むにつれて温度上昇すると
いう特性をもつ。しかしながら第1図の如き実際の熱ポ
ンプ装置においては、蒸発器中では圧力損失が生じるだ
め、冷媒循環量が少ない場合には、Bの如く、温度上昇
割合がAよりも少なく、蒸発器出口では過熱度が大きく
取れた特性をもつ。また冷媒循環量が多い場合には、C
の如く、逆に圧力損失による温度低下効果が大きいため
、蒸発が進むにつれて温度低下し、過熱度が極めて少な
いかほとんど取れない特性をもつ。またこれらの蒸発過
程中の平均圧力はR13R17R22の如き混合冷媒で
けR22単一冷媒よりも高い蒸気圧をもつ。
Now, the mode of operation of such a heat pump device will be explained with reference to FIG. 2, especially during heating operation. In Figure 2,
A is the theoretical temperature distribution in the evaporator when there is no pressure loss in the evaporator and the gas flows out as a saturated gas at the outlet, and in the case of a non-azeotropic refrigerant mixture, the temperature increases as the evaporation process progresses. However, in an actual heat pump device as shown in Fig. 1, pressure loss occurs in the evaporator, so when the amount of refrigerant circulation is small, the temperature rise rate is smaller than A, as shown in B, and at the evaporator outlet. It has the characteristics of a large degree of superheating. In addition, when the amount of refrigerant circulation is large, C
On the contrary, since the temperature reduction effect due to pressure loss is large, the temperature decreases as evaporation progresses, and the degree of superheating is extremely low or almost impossible. Also, the average pressure during these evaporation processes is higher in a mixed refrigerant such as R13R17R22 than in a single R22 refrigerant.

従って本発明の構成の如く、第1の温度検出器12を暖
房時蒸発器として機能する室外熱交換器4の入口を含め
出口までの間に設け、第2の温度検出器13を暖房時蒸
発器として機能する室外熱交換器4の出口から圧縮機1
の吸入前の間に設けているため、冷媒循環量が少ない場
合には実際の過熱度よりも大きい温度差を検出し、冷媒
循環量が多い場合には実際の過熱度よりも小さい温度差
を検出することになる。従って膨張弁11の冷媒循環量
制御としては、単なる過熱度制御よりも早い応答が可能
となるものである。さらにこれらの効果は、従来の温度
・圧力式膨張弁(図示せず)を用いていると蒸発器中の
蒸気圧と、感温筒(図示せず)内の冷媒圧力が異なるた
め、本発明の如ききめ細かな冷媒循環量制御ができない
ものである。
Therefore, as in the configuration of the present invention, the first temperature sensor 12 is provided between the inlet and the outlet of the outdoor heat exchanger 4 which functions as an evaporator during heating, and the second temperature sensor 13 is provided between the inlet and the outlet of the outdoor heat exchanger 4 which functions as an evaporator during heating. The compressor 1 is connected to the outlet of the outdoor heat exchanger 4 which functions as a heat exchanger.
Since the sensor is installed before the intake of refrigerant, it detects a temperature difference that is larger than the actual degree of superheating when the amount of refrigerant circulation is small, and detects a temperature difference that is smaller than the actual degree of superheating when the amount of refrigerant circulation is large. It will be detected. Therefore, the refrigerant circulation amount control of the expansion valve 11 can provide a faster response than simple superheat degree control. Furthermore, these effects can be achieved by using the present invention because when a conventional temperature/pressure expansion valve (not shown) is used, the vapor pressure in the evaporator and the refrigerant pressure in the temperature-sensitive tube (not shown) are different. It is not possible to control the amount of refrigerant circulation as finely as possible.

さらに本発明になる主たる構成を、第1図の如きガスイ
ンジェクション方式の冷暖房装置に適用して暖房期の広
い外気温変化に対応させる場合には、R13B/R22
の液密度がR22単一冷媒の液密度よりも大きいため、
凝縮器として機能する室内熱交換器3出口の過冷却液を
絞り制御するのが効果的であり、膨張弁11は気液分離
器8の上流側に配置するのが好適となるものである。
Furthermore, when applying the main configuration of the present invention to a gas injection type air-conditioning system as shown in FIG.
Since the liquid density of is larger than that of R22 single refrigerant,
It is effective to throttle and control the supercooled liquid at the outlet of the indoor heat exchanger 3, which functions as a condenser, and it is preferable that the expansion valve 11 be placed upstream of the gas-liquid separator 8.

なお本実施例の説明では冷房運転時の作用様態について
は特に説明しなかったが、膨張弁11は正逆可゛逆形と
し、膨張弁11内部にバイパスポート(図示せず)を設
ける等すればよく、特に混合冷媒使用時の好適な絞り開
度は冷房運転時の方が暖房運転時より非常に小さいとい
う特性があり、バイパスポートの口径を冷房運転に合わ
せて構成することにより冷房運転時にも充分に対応でき
るものである。
Although the mode of operation during cooling operation was not specifically explained in the explanation of this embodiment, the expansion valve 11 is of a reversible type, and a bypass port (not shown) is provided inside the expansion valve 11. In particular, when using a mixed refrigerant, the suitable throttle opening is much smaller during cooling operation than during heating operation, so by configuring the diameter of the bypass port to suit cooling operation, can also be adequately addressed.

発明の効果 本発明による熱ポンプ装置は、従来見られなかった非共
沸混合冷媒を用いた冷凍サイクルの冷媒循環量制御構成
を具体的に提案したものであυ、■ 従来の温度・圧力
式膨張弁では実現できないきめ細かな制御ができる。
Effects of the Invention The heat pump device according to the present invention specifically proposes a refrigerant circulation rate control configuration for a refrigeration cycle using a non-azeotropic mixed refrigerant, which has not been seen before. Allows for fine-grained control that cannot be achieved with expansion valves.

■ 制御の応答性が早い。■ Fast control response.

■ ガスインジェクション方式の冷暖房装置においては
、気液分離器の上流側に膨張弁を配置すると、非共沸混
合冷媒では特に好適となる。
(2) In a gas injection heating and cooling system, it is particularly suitable for non-azeotropic mixed refrigerants to place an expansion valve upstream of the gas-liquid separator.

等の効果を有するものである。It has the following effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による熱ポンプ装置を冷暖房装置として
適用した一実施例を示す構成図、第2図は特に第1図の
暖房運転時の作用様態を説明する図である。、 1・・・・圧縮機、3・・・・・・室内熱交換器(凝縮
器)、4・・・・・室外熱交換器(蒸発器)、8 ・・
・気液分離器、1o・・・インジェクション回路、11
・・・・膨張弁、12.13・・・・・温度検出器。
FIG. 1 is a block diagram showing an embodiment in which a heat pump device according to the present invention is applied as an air-conditioning device, and FIG. 2 is a diagram particularly illustrating the mode of operation during heating operation in FIG. 1. , 1...Compressor, 3...Indoor heat exchanger (condenser), 4...Outdoor heat exchanger (evaporator), 8...
・Gas-liquid separator, 1o...injection circuit, 11
...Expansion valve, 12.13...Temperature detector.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、凝縮器、膨張弁、蒸発器等を連結した冷凍サイ
クル中に非共沸混合冷媒を封入し、蒸発器の入口を含め
出口までの開で検出する第1の温度検出器と、蒸発器出
口から圧縮機吸入直前の間で検出する第2の温度検出器
を設け、両温度検呂器の温度差により上記膨張弁にて冷
媒循環量を制御する如く構成した熱ポンプ装置。
A non-azeotropic mixed refrigerant is sealed in a refrigeration cycle in which a compressor, a condenser, an expansion valve, an evaporator, etc. are connected, and a first temperature detector detects when the evaporator is open from the inlet to the outlet; A heat pump device is provided with a second temperature detector that detects the temperature between the chamber outlet and just before suction into the compressor, and the expansion valve controls the refrigerant circulation amount based on the temperature difference between the two temperature detectors.
JP59121159A 1984-06-12 1984-06-12 Heat pump device Expired - Lifetime JPH0663670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59121159A JPH0663670B2 (en) 1984-06-12 1984-06-12 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59121159A JPH0663670B2 (en) 1984-06-12 1984-06-12 Heat pump device

Publications (2)

Publication Number Publication Date
JPS60263066A true JPS60263066A (en) 1985-12-26
JPH0663670B2 JPH0663670B2 (en) 1994-08-22

Family

ID=14804305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59121159A Expired - Lifetime JPH0663670B2 (en) 1984-06-12 1984-06-12 Heat pump device

Country Status (1)

Country Link
JP (1) JPH0663670B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946469A (en) * 1982-09-09 1984-03-15 株式会社日立製作所 Refrigerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946469A (en) * 1982-09-09 1984-03-15 株式会社日立製作所 Refrigerator

Also Published As

Publication number Publication date
JPH0663670B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
US7325411B2 (en) Compressor loading control
KR102372489B1 (en) Air conditioning device using vapor injection cycle and method for controlling thereof
JPH1073328A (en) Cooler
JPH0311388B2 (en)
JPS60263066A (en) Heat pump device
US3421337A (en) Reverse cycle refrigeration system
KR101233865B1 (en) Air conditioner and control method thereof
JPH0420749A (en) Air conditioner
JPH0639979B2 (en) Refrigeration cycle equipment
JP2572648B2 (en) Overheating prevention device for ice machine compressor
JPH0633910B2 (en) Heat pump refrigeration system
JPS616566A (en) Heat pump device
KR100421618B1 (en) Method for operating load match of refrigerator
JPH0428955A (en) Air conditioner
JPS58148358A (en) Refrigerator
JPH08145494A (en) Absorption type heat pump
JPS61276664A (en) Heat pump device
JPS5929954A (en) Air conditioner
JPS5984052A (en) Method of controlling capability of refrigerator
JPH0354375Y2 (en)
JPS58120061A (en) Heat pump type refrigerator
JPH0524416B2 (en)
JPS59147955A (en) Heat pump type air conditioner
JPS60111849A (en) Heat pump type refrigerator
JPS6166054A (en) Heat pump device