JPS60261184A - Semiconductor laser device and manufacture thereof - Google Patents
Semiconductor laser device and manufacture thereofInfo
- Publication number
- JPS60261184A JPS60261184A JP11651584A JP11651584A JPS60261184A JP S60261184 A JPS60261184 A JP S60261184A JP 11651584 A JP11651584 A JP 11651584A JP 11651584 A JP11651584 A JP 11651584A JP S60261184 A JPS60261184 A JP S60261184A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- substrate
- laser device
- semiconductor laser
- stripe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は横モードを安定化した半導体レーザ装置の構造
およびその製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a structure of a semiconductor laser device with a stabilized transverse mode and a method of manufacturing the same.
横モードを安定化した従来の半導体レーザ装置の例を第
1図に示す。第1図に示す従来例は、ストライプ状に他
の部分より高くなった領域を有するn GaAs基板1
上に、n G a 6 、55 M 6 、4 sA
sクラッド層2、G a、、 @ @ M6 、14
A S活性層3′、p−Gao、sgAao、45As
クラッド層4、p−GaAsキャップ層5を結晶成長さ
せ、上記多層膜を、通常の酸化物をマスクとして用いた
ホトレジスト工程によりストライプ状に残してエツチン
グしたのち、エツチングした部分を、G a A s層
上と(GaAQ)As層上との液相成長の選択性を利用
してp −Gas、ssM。、4.As層6およびn
−Gao、5.An。’、4゜As層7で両側から埋込
み、さらにp−GaAsキャップ層8を設けたものであ
る。しかし、このような構造の場合は、埋込み成長の不
良が歩留りを低下させることと、結晶成長を2回繰返さ
なければならないという欠点があった。An example of a conventional semiconductor laser device with stabilized transverse mode is shown in FIG. In the conventional example shown in FIG.
On top, n Ga 6 , 55 M 6 , 4 sA
s cladding layer 2, Ga,, @ @ M6, 14
AS active layer 3', p-Gao, sgAao, 45As
The cladding layer 4 and the p-GaAs cap layer 5 are crystal-grown, and the multilayer film is etched by a photoresist process using an ordinary oxide as a mask, leaving a stripe shape. p-Gas, ssM using the selectivity of liquid phase growth on the (GaAQ)As layer and on the (GaAQ)As layer. ,4. As layers 6 and n
-Gao, 5. An. ', a 4° As layer 7 is buried from both sides, and a p-GaAs cap layer 8 is further provided. However, in the case of such a structure, there are disadvantages in that defects in buried growth lower the yield and that crystal growth must be repeated twice.
本発明はG a A s基板上の(110)方向に設け
たストライプ上における熱非平衡状態での結晶成長の形
状を利用して、1回の結晶成長で形成でき、かつ漏れ電
流が少なく、発振モードが高光出力まで安定な横基本モ
ード動作をする半導体レーザ装置を得ることを目的とす
る・
〔発明の概要〕
上記目的を達成するために本発明による半導体レーザ装
置は、ストライプ状に他の部分より高くなった領域を有
する一導電性の半導体基板上に形成したダブルへテロ構
造の段差を利用して横モ“−ド制御を行う半導体レーザ
装置において、上記基板上に逆メサ方向に設けたストラ
イプと、熱非平衡状態での成長方法により形成したダブ
ルへテロ構造の多層膜とを備えたことにより、1回の結
晶成長で形成でき、漏れ電流が少なく、発振モードが高
光出力まで安定な横基本モード動作をする半導体レーザ
装置を得るようにしたものである。The present invention utilizes the shape of crystal growth in a thermal non-equilibrium state on stripes provided in the (110) direction on a GaAs substrate, can be formed in one crystal growth, and has low leakage current. It is an object of the present invention to obtain a semiconductor laser device whose oscillation mode operates in a stable transverse fundamental mode up to a high optical output. In a semiconductor laser device that performs transverse mode control by utilizing a step of a double heterostructure formed on a single conductive semiconductor substrate having a region higher than a portion thereof, a semiconductor laser device is provided on the substrate in an inverted mesa direction. By using a multilayer film with a double heterostructure formed by a growth method under thermal non-equilibrium conditions, it can be formed with a single crystal growth, has low leakage current, and has a stable oscillation mode up to high optical output. In this embodiment, a semiconductor laser device that operates in a transverse fundamental mode is obtained.
つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.
第2図は本発明による半導体レーザ装置の一実施例にお
ける走査形電子顕微鏡写真を示す図で、第3図は本発明
による半導体レーザ装置の一実施例を示′す断面図であ
る。第2図は熱非平衡状態の結晶成長法の一つであるM
OCVD法によって(1」0)方向に凸状のストライプ
を設けた基板上に、同じ<MOCVD法を用いて形成し
た多層膜の断面を示している。第2図に示すように、(
110)方向に設けたマスクを通して、エツチング速度
が面方位依存性が強いりん酸系などのエツチング液を用
いてエツチングを行うと、図示のように逆台形状の断面
を有するストライプが得られる。MOCVD法による結
晶成長は(111)面の結晶速度が遅いため、上記スト
ライプ上に台形状の段差を生じる。FIG. 2 is a view showing a scanning electron micrograph of an embodiment of the semiconductor laser device according to the present invention, and FIG. 3 is a sectional view showing an embodiment of the semiconductor laser device according to the present invention. Figure 2 shows M which is one of the crystal growth methods in a thermal non-equilibrium state.
This figure shows a cross section of a multilayer film formed using the same MOCVD method on a substrate on which convex stripes are provided in the (1''0) direction using the OCVD method. As shown in Figure 2, (
When etching is performed through a mask provided in the 110) direction using an etching solution such as a phosphoric acid-based etching solution whose etching rate is strongly dependent on the plane orientation, stripes having an inverted trapezoidal cross section as shown in the figure are obtained. Since crystal growth by MOCVD has a slow crystallization speed on the (111) plane, trapezoidal steps are produced on the stripes.
第3図に示す実施例はn GaAs基板9上に(110
)方向に幅5−1厚さ0 、57nnの絶縁物マスクを
設け、りん酸系のエツチング液にJ:リエッチングして
逆台形のストライプ状に他の部分より高くなった領域を
形成したのち、1−記酸化物マスクをそのまま用いてZ
nを拡散しZn拡散層10を設けるか、または上記絶縁
物をマスクとして逆台形のストライプ以外の基板表面の
領域だけに、例えばGaAsを選択成長させて基板と逆
導電形の層を設け、その後、n qao、5sA9、。The embodiment shown in FIG.
An insulator mask with a width of 5-1 and a thickness of 0 is provided in the ) direction, and etched with a phosphoric acid-based etching solution to form an inverted trapezoidal striped region that is higher than other parts. , 1- Using the oxide mask as is, Z
Either by diffusing n and providing a Zn diffusion layer 10, or by selectively growing, for example, GaAs, only in areas of the substrate surface other than the inverted trapezoidal stripes using the above insulator as a mask, a layer having a conductivity type opposite to that of the substrate is provided, and then , n qao, 5sA9,.
、45Asクラット層11(2//Ill、n = 5
Xl017an−3) 、GaAQAs活性層12
(0,06−) 、 p Ga、、9.Al10..5
Asクラッド層13 (2tIm、 p=3X1017
an−3) 、p Gan、4AIlo。, 45As crat layer 11 (2//Ill, n = 5
Xl017an-3), GaAQAs active layer 12
(0,06-), pGa,,9. Al10. .. 5
As cladding layer 13 (2tIm, p=3X1017
an-3), pGan, 4AIlo.
6層14、p−GaAsキャップ層15 (0,5p、
p = lXl01″an−3)をMOCVD法で両
側に順2次積層して設けたものである。このような構造
ではn形の基板9とクラッド層11とに挟まれたP形の
Zn′拡散層10または基板と逆導電形の形成層のため
に、電流は上記ストライプの内部だけを流れる。また、
ストライプ内部とストライプ外部との活性層12の段差
により実効屈折率の差を生じ、レーザ光が上記ストライ
プ内を導波する。またこのような構造においては段差部
の結晶成長速度が遅いため1段差部における活性層12
の成長は0.01虜程度になり、その他の部分に較べて
薄くなり、励起されない活性層による光吸収が起らず、
ストライプ外部へのキャリアの漏れたしが少ないため、
大光出力の半導体レーザ装置を得ることができる。本実
施例による半導体レーザ装置は、しきい値電流40mA
、発振波長780nmで室温連続発振し、光出力50+
nWまで安定な横基本モード動作を行った。6 layer 14, p-GaAs cap layer 15 (0,5p,
p = l Because of the diffusion layer 10 or the forming layer of opposite conductivity type to the substrate, the current flows only inside the stripes.
The difference in effective refractive index between the inside of the stripe and the outside of the stripe causes a difference in effective refractive index, and the laser light is guided inside the stripe. In addition, in such a structure, since the crystal growth rate in the step portion is slow, the active layer 12 in one step portion
The growth of the layer is about 0.01 mm, which makes it thinner than other parts, and light absorption by the unexcited active layer does not occur.
Because there is little carrier leakage to the outside of the stripe,
A semiconductor laser device with high optical output can be obtained. The semiconductor laser device according to this embodiment has a threshold current of 40 mA.
, continuous oscillation at room temperature with an oscillation wavelength of 780 nm, and an optical output of 50+
Stable transverse fundamental mode operation was performed up to nW.
−上記実施例は逆メサ状のストライプを有する基板にダ
ブルへテロ構造の積層膜を形成する熱非平衡状態での結
晶成長方法として、有機金属気相エピタキシャル法(M
OCVD法)を用いたが、他の熱非平衡状態での結晶成
長方法、すなわち分子ビームエピタキシャル法(MBE
法)あるいは気相成長法(VPE法)を用いても、同様
の効果を得ることができる。- The above embodiment uses metal-organic vapor phase epitaxial method (M
(OCVD method), but other methods of crystal growth under thermal non-equilibrium conditions, namely molecular beam epitaxial method (MBE), were used.
Similar effects can be obtained by using a vapor phase epitaxy method (VPE method) or a vapor phase epitaxy method (VPE method).
上記のように本発明による半導体レーザ装置は、ストラ
イプ状に他の部分より高くなった領域を有する半導体基
板上に形成したダブルへテロ構造の段差を利用して横モ
ード制御を行う半導体レーザ装置において、上記基板上
に逆メサ方向に設けた、ストライプと、熱非平衡状態で
の成長方法により形成したダブルへテロ構造の多層膜と
を備えたことにより、上記ストライプ上における熱非平
衡状態での結晶成長の形状を利用して、従来2回の結晶
成長工程を経て形成していた構造を1回の結晶成長で形
成することができ、漏れ電流が少なく、発振モードが高
光出力まで安定な横モード動作を行う半導体レーザ装置
を得ることができる。As described above, the semiconductor laser device according to the present invention is a semiconductor laser device that performs transverse mode control using the steps of a double heterostructure formed on a semiconductor substrate having a striped region that is higher than other portions. , by providing stripes on the substrate in the reverse mesa direction and a double-hetero structure multilayer film formed by a growth method in a thermal nonequilibrium state, it is possible to By utilizing the shape of crystal growth, a structure that conventionally required two crystal growth processes can be formed in one crystal growth process, resulting in a horizontal oscillation mode with low leakage current and stable oscillation mode up to high optical output. A semiconductor laser device that performs mode operation can be obtained.
第1図は従来の高出力半導体レーザ装置の断面図、第2
図は本発明による半導体レーザ装置の走査形電子顕微鏡
写真を示す断面図、第3図は本発明による半導体レーザ
装置の断面図である。
9・・・半導体基板
lO・・・Zn拡散層
11− n −Gao、ssM。、 4 r、 A S
クラッド層12−GaAAAs活性層
13− p −Ga、、、55An。、45Asクラッ
ド層代理人弁理士 中村 純之助Figure 1 is a cross-sectional view of a conventional high-power semiconductor laser device, Figure 2 is a sectional view of a conventional high-power semiconductor laser device;
The figure is a cross-sectional view showing a scanning electron micrograph of a semiconductor laser device according to the present invention, and FIG. 3 is a cross-sectional view of the semiconductor laser device according to the present invention. 9...Semiconductor substrate lO...Zn diffusion layer 11-n-Gao, ssM. , 4 r, A S
Cladding layer 12-GaAAAs active layer 13-p-Ga, 55An. , Junnosuke Nakamura, patent attorney representing 45As cladding layer
Claims (3)
する半導体基板上に形成したダブルへテロ構造の段差を
利用して、横モード制御を行う半導体レーザ装置におい
て、上記基板上に逆メサ方向に設けたストライプと、熱
非平衡状態での結晶成長方法により形成したダブルへテ
ロ構造の多層膜とを備えたことを特徴とする半導体レー
ザ装置。(1) In a semiconductor laser device that performs transverse mode control by utilizing the steps of a double heterostructure formed on a semiconductor substrate having a striped region that is higher than other parts, What is claimed is: 1. A semiconductor laser device comprising: a stripe formed on the wafer; and a multilayer film with a double heterostructure formed by a crystal growth method in a thermal nonequilibrium state.
じめZn拡散を行うか、また基板と逆導電形の層を設け
たことを特徴とする特許請求の範囲第1項に記載した半
導体レーザ装置。(2) The semiconductor laser device according to claim 1, wherein the substrate has Zn diffused in advance on the surface of the substrate other than the stripes, or a layer having a conductivity type opposite to that of the substrate is provided.
有する半導体基板上に形成したダブルへテロ構造の段差
を利用して、横モード制御を行う半導体レーザ装置の製
造方法において、上記ストライプを逆メサ方向に設け、
熱非平衡状態での成長方法によりダブルへテロ構造を形
成することを特徴とする半導体レーザ装置の製造方法。(3) In a method for manufacturing a semiconductor laser device that performs transverse mode control by utilizing the steps of a double heterostructure formed on a semiconductor substrate having a striped region that is higher than other portions, the stripe is Installed in the reverse mesa direction,
A method for manufacturing a semiconductor laser device, characterized in that a double heterostructure is formed by a growth method in a thermal non-equilibrium state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59116515A JPH0682886B2 (en) | 1984-06-08 | 1984-06-08 | Method of manufacturing semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59116515A JPH0682886B2 (en) | 1984-06-08 | 1984-06-08 | Method of manufacturing semiconductor laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60261184A true JPS60261184A (en) | 1985-12-24 |
JPH0682886B2 JPH0682886B2 (en) | 1994-10-19 |
Family
ID=14689050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59116515A Expired - Lifetime JPH0682886B2 (en) | 1984-06-08 | 1984-06-08 | Method of manufacturing semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0682886B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61183987A (en) * | 1985-02-08 | 1986-08-16 | Sony Corp | Semiconductor laser |
JPH04120788A (en) * | 1990-09-11 | 1992-04-21 | Sharp Corp | Semiconductor laser |
US5345092A (en) * | 1991-01-18 | 1994-09-06 | Kabushiki Kaisha Toshiba | Light emitting diode including active layer having first and second active regions |
DE102015104206A1 (en) * | 2015-03-20 | 2016-09-22 | Osram Opto Semiconductors Gmbh | laser diode |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5911621A (en) * | 1982-07-12 | 1984-01-21 | Toshiba Corp | Manufacture of optical semiconductor element by liquid phase crystal growth |
-
1984
- 1984-06-08 JP JP59116515A patent/JPH0682886B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5911621A (en) * | 1982-07-12 | 1984-01-21 | Toshiba Corp | Manufacture of optical semiconductor element by liquid phase crystal growth |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61183987A (en) * | 1985-02-08 | 1986-08-16 | Sony Corp | Semiconductor laser |
JPH04120788A (en) * | 1990-09-11 | 1992-04-21 | Sharp Corp | Semiconductor laser |
US5345092A (en) * | 1991-01-18 | 1994-09-06 | Kabushiki Kaisha Toshiba | Light emitting diode including active layer having first and second active regions |
DE102015104206A1 (en) * | 2015-03-20 | 2016-09-22 | Osram Opto Semiconductors Gmbh | laser diode |
US10181695B2 (en) | 2015-03-20 | 2019-01-15 | Osram Opto Semiconductors Gmbh | Laser diode |
DE112016001301B4 (en) | 2015-03-20 | 2022-02-24 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | laser diode |
Also Published As
Publication number | Publication date |
---|---|
JPH0682886B2 (en) | 1994-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4792958A (en) | Semiconductor laser with mesa stripe waveguide structure | |
US4667332A (en) | Semiconductor laser element suitable for production by a MO-CVD method | |
US4121179A (en) | Semiconductor injection laser | |
US4948753A (en) | Method of producing stripe-structure semiconductor laser | |
JPS60261184A (en) | Semiconductor laser device and manufacture thereof | |
JP2525788B2 (en) | Method for manufacturing semiconductor laser device | |
US4819244A (en) | Semiconductor laser device | |
JPS6349396B2 (en) | ||
JPH07254750A (en) | Semiconductor laser | |
JPS589592B2 (en) | Method for manufacturing semiconductor light emitting device | |
JPS603178A (en) | Semiconductor laser device | |
JPS60167488A (en) | Semiconductor laser device | |
JPS59220985A (en) | Semiconductor laser device | |
JPH05226774A (en) | Semiconductor laser element and its production | |
JPH03104292A (en) | Semiconductor laser | |
JPS62166586A (en) | Semiconductor light emitting element and manufacture thereof | |
JPH02119285A (en) | Manufacture of semiconductor laser | |
JP2547459B2 (en) | Semiconductor laser device and manufacturing method thereof | |
JPS6132587A (en) | Semiconductor laser and manufacture thereof | |
JPS62176182A (en) | Semiconductor laser and manufacture thereof | |
JP2804533B2 (en) | Manufacturing method of semiconductor laser | |
JPH04163982A (en) | Semiconductor laser and manufacture thereof | |
JPH04261082A (en) | Semiconductor laser device | |
JPH02191388A (en) | Manufacture of semiconductor laser | |
JPH0433387A (en) | Semiconductor laser and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |