JPS60260169A - Cryogenic temperature device - Google Patents
Cryogenic temperature deviceInfo
- Publication number
- JPS60260169A JPS60260169A JP59115518A JP11551884A JPS60260169A JP S60260169 A JPS60260169 A JP S60260169A JP 59115518 A JP59115518 A JP 59115518A JP 11551884 A JP11551884 A JP 11551884A JP S60260169 A JPS60260169 A JP S60260169A
- Authority
- JP
- Japan
- Prior art keywords
- compressed
- compressor
- cryogenic
- pressure
- vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 abstract description 4
- 238000011144 upstream manufacturing Methods 0.000 abstract description 2
- 239000000659 freezing mixture Substances 0.000 abstract 5
- 239000012595 freezing medium Substances 0.000 abstract 1
- 239000001307 helium Substances 0.000 description 18
- 229910052734 helium Inorganic materials 0.000 description 18
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 18
- 239000007789 gas Substances 0.000 description 17
- 238000001816 cooling Methods 0.000 description 8
- 239000003507 refrigerant Substances 0.000 description 6
- 238000009413 insulation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000005514 two-phase flow Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/80—Constructional details
- H10N60/81—Containers; Mountings
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、気体と液体のあいだに状態変化する寒剤を用
いた極低温装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a cryogenic device using a cryogen that changes state between gas and liquid.
超電導を実現するための極低温装置は、液体ヘリウム、
窒素、水素などの寒剤を真空断熱法などによシ高度に断
熱するクライオスタットと称する断熱容器を有する。こ
れ等の装置では侵入熱によシ、液体ヘリウムなどが蒸発
するが、その補給には、別の容器から移送するか、ヘリ
ウム冷凍機などにより蒸発ガスを再凝縮する方法がとら
れる。Cryogenic equipment to achieve superconductivity uses liquid helium,
It has an insulated container called a cryostat that highly insulates cryogens such as nitrogen and hydrogen using vacuum insulation methods. In these devices, liquid helium evaporates due to the intrusion of heat, but to replenish it, it is either transferred from another container or the evaporated gas is recondensed using a helium refrigerator or the like.
大形の超電導装置では、侵入熱が大きいから大形冷凍機
を直結して長期、連続的に液体ヘリウム等の補給を行う
が、高度な断熱性能を有する小形超電導装置では、複雑
高価な大形冷凍機は経済的に使用出来ない。In large superconducting equipment, a large refrigerator is directly connected to replenish liquid helium etc. continuously for a long period of time because of the large amount of heat that enters. Freezers cannot be used economically.
大形冷凍機については、かなりの実績もあシ、信頼性も
近年高まりつつあるが、4.2にで数ワット程度の冷凍
能力の小形ヘリウム冷凍機については使用実績が少なく
、現在のところ、半年ないし1年に及ぶ連続使用に耐え
られる信頼性を有していない。Large refrigerators have a good track record and their reliability has been increasing in recent years, but small helium refrigerators with a cooling capacity of several watts at 4.2 mm have little experience in use, and at present, It does not have the reliability to withstand continuous use for six months to one year.
これは、需要が少なく歴史が浅いためもあるが、大形冷
凍機のように必要な装置を可能な限り備えるということ
が、簡便、 /JN形、安価を目的とする小形装置には
出来ないという宿命的原因にもよる。This is partly due to low demand and a short history, but it is not possible to provide as many necessary equipment as possible with small equipment such as large refrigerators, which are aimed at simplicity, JN type, and low cost. It also depends on the fateful cause.
また、技術的にも気液二相流を処理する弁類が小形機の
場合極めて小さく、二相流特有の状態の不安定性に追従
出来ず、冷凍機の安定性を害なうことも考えられる。、
近年、人体の断面方真を鮮明に写し出す核磁気共鳴断層
映像装置(以下、NMR−CTという)が医学界で注目
を集めている。この装置は人体に高磁界(0,5〜1.
5テスラ)をかける必要があり、超電導磁石が必要とな
る。この磁石を超電導状態に保持して診断を続けるには
、蒸発ヘリウムの補給を行わなければならない。医療関
係者の憤れない作業は極力少くすべきであるから、NM
几架装置クライオスタットは0.5//h以下のヘリウ
ム蒸発量という、従来装置の約十分の−という断熱性能
を要する。しかし断熱は良くなるほど、構造的に胞弱な
ものとなシ、輸送などに耐えられなくなる。In addition, from a technical point of view, the valves that process gas-liquid two-phase flow are extremely small in small machines, making it impossible to follow the instability of the state peculiar to two-phase flow, which may impair the stability of the refrigerator. It will be done. In recent years, nuclear magnetic resonance tomography (hereinafter referred to as NMR-CT), which clearly shows cross-sectional views of the human body, has been attracting attention in the medical world. This device applies a high magnetic field to the human body (0.5~1.
5 Tesla), and a superconducting magnet is required. In order to maintain this magnet in a superconducting state and continue diagnosis, it is necessary to replenish the magnet with evaporated helium. NM
The cryostat requires a helium evaporation rate of 0.5/h or less, which is about ten times lower than conventional equipment. However, the better the insulation, the weaker the structure and the less able it will be to withstand transportation.
そこで、小形冷凍機直結方式が考えられるが、上述のよ
うに信頼性の高い/」1形冷凍機が手に入らないのが現
状である。Therefore, a direct connection system with a small refrigerator is considered, but as mentioned above, highly reliable type 1 refrigerators are not available at present.
本発明は高い冷却能力を安定して保持し堅牢で取扱いや
すい極低温装置を提供することを目的とする。An object of the present invention is to provide a cryogenic device that stably maintains a high cooling capacity, is robust, and is easy to handle.
上記目的を達成するために本発明の極低温装置は極低温
の寒剤液体を収容する極低温容器と、この極低温容器に
接続され前記寒剤液体の蒸発した寒剤気体の流通する熱
交換器と、この熱交換器の出口に接続された補集槽と、
この補集槽から寒剤気体を受入れ前記熱交換器を経て圧
力容器に圧入する圧縮機と、前記圧力容器の上部に設け
られた断熱膨張弁と、前記圧力容器の下部と前記極低温
容器とを結ぶ管路とを備えた構成とし、蒸発した寒剤気
体によって冷却された圧縮寒剤気体を、極低温容器内の
寒剤の蒸発量に合わせて間けつ的に断熱膨張させて寒剤
の一部を液化して極低温容器に戻すようにする。In order to achieve the above object, the cryogenic apparatus of the present invention includes a cryogenic container containing a cryogenic liquid at a cryogenic temperature, a heat exchanger connected to the cryogenic container and through which cryogen gas from which the cryogen liquid has evaporated flows. A collection tank connected to the outlet of this heat exchanger,
A compressor that receives cryogen gas from the collection tank and pressurizes it into the pressure vessel through the heat exchanger, an adiabatic expansion valve provided at the upper part of the pressure vessel, and a lower part of the pressure vessel and the cryogenic vessel. The compressed cryogen gas cooled by the evaporated cryogen gas is adiabatically expanded intermittently according to the amount of cryogen evaporation in the cryogenic container, and a portion of the cryogen is liquefied. and return it to the cryogenic container.
第1図は本発明の一実施例の極低温装置を示す。 FIG. 1 shows a cryogenic apparatus according to an embodiment of the present invention.
この図において1は液体ヘリウムなどの寒剤を有する超
電導コイルその他の極低温容器で、真空断熱槽2の中に
断熱的に支持されている。3および4は、液体または圧
縮ヘリウム等の寒剤を収容する圧力容器で、これらは並
設され、パルプで切替を可能である。これ等の圧力容器
3,4にはそれぞれ、熱交換器5,6が密着または内蔵
されており、圧力容器3.4中の寒剤を冷却する。7も
熱変換器で、圧力容器3,4と熱交換器5′、6で供給
、排出されるヘリウム等の寒剤を互いに熱交換する。8
は蒸発したヘリウム等の寒剤を受け入れるバッファタン
クで、9はヘリウム等の寒剤を圧縮する圧縮機である。In this figure, reference numeral 1 denotes a superconducting coil or other cryogenic container containing a cryogen such as liquid helium, which is adiabatically supported in a vacuum insulation tank 2. 3 and 4 are pressure vessels containing a liquid or a cryogen such as compressed helium, which are arranged in parallel and can be switched by the pulp. These pressure vessels 3, 4 have heat exchangers 5, 6 in close contact with or built-in, respectively, to cool the cryogen in the pressure vessels 3.4. 7 is also a heat converter, which exchanges heat between the cryogens such as helium supplied and discharged from the pressure vessels 3 and 4 and the heat exchangers 5' and 6. 8
9 is a buffer tank that receives the evaporated cryogen such as helium, and 9 is a compressor that compresses the cryogen such as helium.
上記1〜9の各構成要素は図に示された管路と弁によシ
互いに連結される。なお10は液化寒剤で、11は逆止
弁、12は蒸発ガスを室温にする加温器である。Each of the above-mentioned components 1 to 9 is connected to each other through the pipe lines and valves shown in the figure. Note that 10 is a liquefied cryogen, 11 is a check valve, and 12 is a warmer that brings the evaporated gas to room temperature.
このように構成した極低温装置における冷却原理を次に
説明する。The cooling principle in the cryogenic apparatus configured as described above will be explained next.
第2図は、ヘリウム等の温度(T′)エントロピー(S
l線図で圧力P、に圧縮された気体が縦軸に沿って冷却
され、温度T2の状態で断熱膨張(等エントロピー膨張
)し、温度T2、圧力P2になるとする。このとき、T
1==4.2K 、 P2= 1 atmなら膨張気体
の1部は液化する。これは真空断熱中で、気体の圧縮、
冷却、膨張を行わせることによって実現出来、19世紀
初頭の現在の液化機が出現する以前に実際に行われてい
たもので、Simonの単一膨張による液化法と呼ばれ
公知である。この方法は間歇的に行われるパッチ方式で
、以後改良されて小形冷凍機のギフオード・マクマホン
サイクルによる連続的冷却が行われるようになった。し
かし、前述のようにこの小形冷凍機は、ヘリウム冷凍の
場合、約20Kまでの冷却は信頼性の高い装置が作られ
ているが、4.2にのヘリウム液化を行うものはまだ十
分高い信頼性が保配されていない。Figure 2 shows the temperature (T') entropy (S
Assume that a gas compressed to a pressure P in the l diagram is cooled along the vertical axis, undergoes adiabatic expansion (isentropic expansion) at a temperature T2, and reaches a temperature T2 and a pressure P2. At this time, T
If 1==4.2K and P2=1 atm, part of the expanding gas will liquefy. This is vacuum insulation, compression of gas,
This can be achieved by cooling and expanding, and was actually practiced in the early 19th century before the advent of the current liquefier, and is known as Simon's single expansion liquefaction method. This method was an intermittent patch method, which was later improved to include continuous cooling using the Gifford-McMahon cycle of small refrigerators. However, as mentioned above, in the case of helium refrigeration, highly reliable devices for cooling down to approximately 20K have been made with this small refrigerator, but those that perform helium liquefaction in 4.2 are still highly reliable. Gender is not guaranteed.
高い断熱性を有する極低温装置では、侵入熱量が0.5
W以下でヘリウムの場合、0.51/h以下の蒸発量
の装置があシ、このような装置では、小形冷凍機による
連続冷却の必要がない場合がある。In cryogenic equipment with high thermal insulation, the amount of heat intrusion is 0.5
In the case of helium at W or less, there is a device with an evaporation rate of 0.51/h or less, and such a device may not require continuous cooling using a small refrigerator.
本発明は、このような事情によシ断続的な液の補給を行
う信頼性の高い冷却装置を提供する。The present invention provides a highly reliable cooling device that performs intermittent liquid replenishment under such circumstances.
さて、上記本実施例の作用を説明する。極低温容器1か
ら蒸発した寒剤は、圧力容器3,4の中の圧縮寒剤およ
び圧力容器3,4そのものを冷却し、熱交換器7で、さ
らに圧縮機9から供給される室温の圧縮寒剤を冷却して
、自らも室温に近い温度となシ、バッファタンク8を経
て、再び圧縮機9の吸入側に戻シ、圧縮され、これを繰
り返す。Now, the operation of the above embodiment will be explained. The cryogen evaporated from the cryogenic container 1 cools the compressed refrigerant in the pressure vessels 3 and 4 as well as the pressure vessels 3 and 4 themselves, and is further transferred to the heat exchanger 7 by the compressed refrigerant at room temperature supplied from the compressor 9. It is cooled down to a temperature close to room temperature, passes through the buffer tank 8, returns to the suction side of the compressor 9, is compressed, and repeats this process.
圧力容器3の出口側の弁13は最初閉じておき、蒸発ガ
スを図示しない圧力スイッチなどにより圧縮機9で圧縮
して、圧力容器3内に冷却された寒剤を圧縮貯蔵する。The valve 13 on the outlet side of the pressure vessel 3 is initially closed, and the evaporated gas is compressed by the compressor 9 using a pressure switch (not shown), and the cooled refrigerant is compressed and stored in the pressure vessel 3.
この間、圧力容器4は出入口の弁を閉じて圧縮ガスが供
給されないようにする。During this time, the valves at the inlet and outlet of the pressure vessel 4 are closed to prevent the supply of compressed gas.
圧力容器3の中の圧力と温度が所定の値に達したらその
上流側にあるバイパス弁14を開いて圧力を開放すると
、圧力容器3内には断熱膨張によシ寒剤の一部が液化し
て残る。バイパス弁14を通った膨張寒剤は熱交換器7
、バッファタンク8を通って、圧縮機9によシ再圧縮さ
れて圧力容器4に圧縮貯蔵される。圧力容器3内の圧力
が十分下シ、極低温容器1内の圧力に近くなったら、そ
の出口弁13を開き、液化寒剤を容器IVC補給する。When the pressure and temperature inside the pressure vessel 3 reach predetermined values, the bypass valve 14 on the upstream side is opened to release the pressure, and a portion of the refrigerant inside the pressure vessel 3 liquefies due to adiabatic expansion. remains. The expanded refrigerant that has passed through the bypass valve 14 is transferred to the heat exchanger 7
, passes through a buffer tank 8, is recompressed by a compressor 9, and is compressed and stored in a pressure vessel 4. When the pressure inside the pressure vessel 3 is sufficiently low and close to the pressure inside the cryogenic vessel 1, the outlet valve 13 is opened and liquefied cryogen is replenished into the vessel IVC.
このサイクルを極低温容器1からの蒸発ガス量に応じて
、サイクリックに行うことにより蒸発ガスを液化回収す
る。By performing this cycle cyclically depending on the amount of evaporated gas from the cryogenic container 1, the evaporated gas is liquefied and recovered.
なお、圧力容器3,4内の圧力が高いときに極低温容器
1に寒剤が供給されたり、圧縮機9の停止時に、圧縮機
9側に寒剤が逆流しないように逆止弁11が設けられて
いる。Note that a check valve 11 is provided to prevent the cryogen from flowing back into the compressor 9 side when the cryogen is supplied to the cryogenic container 1 when the pressure inside the pressure vessels 3 and 4 is high or when the compressor 9 is stopped. ing.
また、圧縮機9は、蒸発ガスの量によって作動すればよ
く、極低温容器1の許容内圧の範囲で停止することが可
能で、連続作動時間は短かくなり、信頼性が向上する。Further, the compressor 9 only needs to be operated depending on the amount of evaporated gas, and can be stopped within the allowable internal pressure range of the cryogenic container 1, so that the continuous operation time is shortened and reliability is improved.
上記において寒剤がヘリウムの場合、圧力容器内の圧力
、温度が150atm 、 IOKで、l atm 、
4.2Kに断熱膨張するときは、圧力容器内のヘリウ
ムガスは液化してその容器の内容積の80%位の液化ヘ
リウムが得られる。圧力15atm、温度8にのガスを
1 atm 、 4.2Kまで膨張させるときでも、約
20%の液が得られる。In the above case, when the cryogen is helium, the pressure and temperature inside the pressure vessel are 150 atm, IOK, latm,
During adiabatic expansion to 4.2 K, the helium gas in the pressure vessel is liquefied, and liquefied helium is obtained that is approximately 80% of the internal volume of the vessel. Even when a gas at a pressure of 15 atm and a temperature of 8 is expanded to 1 atm and 4.2 K, about 20% liquid is obtained.
本発明によれば、高度に断熱された蒸発寒剤の少ない極
低温装置にこれを適用することによシ、圧縮機は極く少
流量のものを用いることが出来る。According to the present invention, by applying the present invention to a highly insulated cryogenic device with a small amount of evaporated refrigerant, a compressor with an extremely small flow rate can be used.
また小形冷凍機のように、微小ノズルのジュールトムン
ン弁を有せず、弁は開、閉のみであるので複雑な寒剤の
状態変化に対応して調整する必要はない。長期連続運転
においても、機械的可動部分は少なく、しかも間はり的
作動であるから信頼性が高く、高い保冷性能を有する極
低温装置が得られる。Furthermore, unlike small-sized refrigerators, it does not have a micronozzle Jouleton valve, and since the valve only opens and closes, there is no need to make adjustments in response to complex changes in the state of the cryogen. Even in long-term continuous operation, there are few mechanically moving parts and the operation is performed intermittently, so a cryogenic device with high reliability and high cold storage performance can be obtained.
第1図は本発明の一実施例の極低温装置の系統図、第2
図は本発明の極低温装置の動作全説明する曲線図である
。
1 極低温容器 3,4・圧力容器
5.6.7 熱交換器 8 バッファタンク9 圧縮機
14 パ・イバス弁Fig. 1 is a system diagram of a cryogenic device according to an embodiment of the present invention;
The figure is a curve diagram illustrating the entire operation of the cryogenic apparatus of the present invention. 1 Cryogenic container 3, 4, pressure vessel 5.6.7 Heat exchanger 8 Buffer tank 9 Compressor 14 Pa-Ibus valve
Claims (1)
容器に接続され前記寒剤液体の蒸発した寒剤気体の流通
する熱交換器と、この熱交換器の出口に接続された補集
槽と、この補集槽から寒剤゛ 気体を受入れ前記熱交換
器を経て圧力容器に圧入する圧縮機と、前記圧力容器の
上部に設けられた断熱膨張弁と、前記圧力容器の下部と
前記極低温容器とを結ぶ管路とを備えたことを特徴とす
る極低温装置。a cryogenic container containing a cryogenic liquid at a very low temperature; a heat exchanger connected to the cryogenic container through which cryogen gas evaporated from the cryogen liquid flows; and a collection tank connected to an outlet of the heat exchanger. , a compressor that receives cryogen gas from the collection tank and pressurizes it into the pressure vessel through the heat exchanger; an adiabatic expansion valve provided in the upper part of the pressure vessel; and a lower part of the pressure vessel and the cryogenic vessel. A cryogenic device characterized by comprising a conduit connecting the two.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59115518A JPS60260169A (en) | 1984-06-07 | 1984-06-07 | Cryogenic temperature device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59115518A JPS60260169A (en) | 1984-06-07 | 1984-06-07 | Cryogenic temperature device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60260169A true JPS60260169A (en) | 1985-12-23 |
Family
ID=14664505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59115518A Pending JPS60260169A (en) | 1984-06-07 | 1984-06-07 | Cryogenic temperature device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60260169A (en) |
-
1984
- 1984-06-07 JP JP59115518A patent/JPS60260169A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6502422B2 (en) | System and method for improving liquefaction rate in cryogenic gas liquefier of low temperature refrigerator | |
CN103062951A (en) | Low-temperature J-T (Joule-Thomson) throttling cooler precooled by Stirling/pulse tube composite type cooler | |
JP2882167B2 (en) | SQUID magnetometer | |
US20240263872A1 (en) | Cryocooler Suitable for Gas Liquefaction Applications, Gas Liquefaction System and Method Comprising the Same | |
JP2773793B2 (en) | Cryogenic refrigerator | |
JPH1163697A (en) | Separation type cryogenic cooler | |
JPS60260169A (en) | Cryogenic temperature device | |
Ter Brake | Cryogenic systems for superconducting devices | |
JPH09113052A (en) | Freezer | |
CN108630377A (en) | Multi-tank superconducting magnet cryogenic vessel system and method | |
JPS61226904A (en) | Very low temperature cooling method and very low temperature cooling device | |
JPS63131960A (en) | Loss operation method of cryogenic liquefying refrigerator | |
JP2004205156A (en) | Method of cooling object to be cooled using heat pipe and its device | |
JP3589434B2 (en) | Cryogenic refrigeration equipment | |
JPH0285653A (en) | Very low temperature refrigerator | |
JPH08145487A (en) | Helium liquefying magnetic refrigerator | |
JPS6277561A (en) | Refrigeration system with precooling flow path | |
JPS6266067A (en) | Helium cooling device | |
JPH0694957B2 (en) | Pre-cooling method for cryogenic refrigerator | |
JP2005003308A (en) | Cryogenic cooling device | |
JPH0452467A (en) | Cryogenic refrigerator | |
JPH02275260A (en) | Cryogenic cooling device | |
JPS62186175A (en) | Precooling operation method of cryogenic refrigerator | |
JPH09106906A (en) | Conductive cooling superconducting magnet | |
JPS63315868A (en) | Cryogenic refrigerator device |