JPS60252434A - Production of allyl chloride - Google Patents
Production of allyl chlorideInfo
- Publication number
- JPS60252434A JPS60252434A JP10732284A JP10732284A JPS60252434A JP S60252434 A JPS60252434 A JP S60252434A JP 10732284 A JP10732284 A JP 10732284A JP 10732284 A JP10732284 A JP 10732284A JP S60252434 A JPS60252434 A JP S60252434A
- Authority
- JP
- Japan
- Prior art keywords
- reaction product
- nickel
- allyl chloride
- gaseous reaction
- propylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はアリルクロライドの製造方法に関する。更に詳
細には高温にてプロピレンと塩素とを反応させて生ずる
反応生成物からアリルクロライドを経済的に効率よく回
収する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing allyl chloride. More specifically, the present invention relates to a method for economically and efficiently recovering allyl chloride from a reaction product produced by reacting propylene and chlorine at high temperatures.
従来、アリルクロライドは高温にてプロピレンと塩素と
を反応させ、その反応生成物を熱交換器により冷却後、
急冷し、冷却留分を分留することによりアリルクロライ
ドを回収する方法によって実施されている(例えば特公
昭4〇−28177号公報)、。Conventionally, allyl chloride was produced by reacting propylene and chlorine at high temperatures, and cooling the reaction product using a heat exchanger.
This is carried out by a method in which allyl chloride is recovered by rapid cooling and fractional distillation of the cooled fraction (for example, Japanese Patent Publication No. 40-28177).
[7かし、」1記方法は急冷前における冷却が適当に行
なわれ難く、そのため、熱交換器内に多塩素化物、ター
ル、カーボン等が沈積し熱交換器を閉塞させ、連続操業
が出来ないという不都合がある1、
このような不都合を改善する方法として、プロピレンと
塩素とを高温において反応させ、その反応生成物を急冷
するに当り、反応生成物を急冷浴より取り出される低温
ガスの一部と混合して180〜250 ”Cの混合ガス
として急冷浴に導入する方法が提案されている(特公昭
48−80250号公報)、。[7] However, in method 1, it is difficult to cool properly before quenching, and as a result, polychlorides, tar, carbon, etc. accumulate in the heat exchanger, clogging the heat exchanger and making continuous operation impossible. As a method to improve this disadvantage, when propylene and chlorine are reacted at high temperature and the reaction product is quenched, the reaction product is treated as part of the low-temperature gas taken out from the quenching bath. A method has been proposed in which a mixed gas of 180 to 250"C is mixed with 180 to 250" C and introduced into a quenching bath (Japanese Patent Publication No. 80250/1983).
該方法は前記方法に比較して配管内部へのタール、カー
ボン等の沈積は著しく改善されるが、しかし、反応生成
物と低温ガスが混合する部分においてはタール、カーボ
ン等の沈積を完全には防止し得す反応生成物と低温ガス
の混合が乱れると長期間の連続運転が不可能になること
がある。This method significantly improves the deposition of tar, carbon, etc. inside the piping compared to the above method, but it cannot completely prevent the deposition of tar, carbon, etc. in the area where the reaction product and low-temperature gas are mixed. If the preventable mixing of reaction products and low-temperature gas is disrupted, long-term continuous operation may become impossible.
このような事情に鑑み、本発明者らは上述のような熱交
換器、配管等への多塩素化物、タール、カーボン等の沈
積を生じないプロセスを確立すべく鋭意検討した結果、
上記多塩素化物、タール、カーボン等の沈積は反応生成
物が約300〜150°Cの温度に冷却される部分にお
いて鉄を含有する材質と接触する場合に顕著に生ずるこ
とおよび該沈積は二・ソケル材質面には生じ難いことを
見出し本発明を完成するに至りた。In view of these circumstances, the inventors of the present invention have conducted extensive studies to establish a process that does not cause the deposition of polychlorides, tar, carbon, etc. on heat exchangers, piping, etc. as described above.
The deposition of the polychlorides, tar, carbon, etc. mentioned above occurs significantly when the reaction product comes into contact with iron-containing materials in the area where it is cooled to a temperature of approximately 300 to 150°C, and the deposition is We have completed the present invention by discovering that this is unlikely to occur on the material surface of Sokel.
すなわち、本発明は高温にてプロピレンと塩素とを反応
させて生ずるガス状反応生成物を冷却して、未反応プロ
ピレン、副生塩化水素、軽質留分、重質残渣及びアリル
クロライドに分離する工程から成るアリルクロライドの
製造方法に於いて、少なくともガス状反応生成物が約8
00〜150°Cに冷却される装置の内面をニック・ル
叉は二・ソケル含有量30重量%以上の二・・、ケル自
金製の部材にて構成したことを特徴とするアリルクロラ
イドの製造方法であり、熱交換器、配管等への多塩素化
物、タール、カーボン等の沈積が実質的に生じない。That is, the present invention is a process of cooling the gaseous reaction product produced by reacting propylene and chlorine at high temperature and separating it into unreacted propylene, by-product hydrogen chloride, light fraction, heavy residue, and allyl chloride. In the method for producing allyl chloride consisting of at least about 8
Allyl chloride characterized in that the inner surface of the device to be cooled to 00 to 150°C is made of a member made by Nickel Jizkin, which has a Nickel content of 30% by weight or more. This is a manufacturing method that substantially eliminates the deposition of polychlorinated substances, tar, carbon, etc. on heat exchangers, piping, etc.
以下に本発明方法について詳述する。The method of the present invention will be explained in detail below.
本発明方法の実施に当り、プロピレンと塩素とは約45
0〜510°Cの温度範囲において反応せしめられる。In carrying out the method of the present invention, propylene and chlorine are approximately 45%
The reaction is carried out in a temperature range of 0 to 510°C.
反応生成物は主成分であるアリルクロライド、未反応プ
ロピレン、副生塩化水素、若干の多塩素化物、タール、
カーボン等を含有している。The reaction products are the main component allyl chloride, unreacted propylene, by-product hydrogen chloride, some polychlorinated substances, tar,
Contains carbon, etc.
これら反応生成物ガスは熱交換器又は急冷浴より取り出
される低温ガスと混合帯へ送られる。These reaction product gases are sent to a mixing zone with cold gas removed from a heat exchanger or quench bath.
本発明方法の実施に当り、反応生成物が約300〜15
0°Cに冷却されるのは、通常この熱交換器又は混合帯
であり、本発明はこの部分の装置の内面をニッケル又は
ニッケル含有量30重量%以上の二・・lケル合金製の
部材にて構成するものであるっ
このような二lケル又は二・ソケル合金としてハニッケ
ル又ハインコネル、インコロイ、ハステロイ合金等のニ
ッケル含有量が30重量%以上、好ましくは45重量%
以上のニッケル合金を挙げることができる。In carrying out the method of the present invention, the reaction product is about 300 to 15
It is usually this heat exchanger or mixing zone that is cooled to 0°C, and the present invention provides that the inner surface of this part of the device is made of nickel or a 2...l Kel alloy with a nickel content of 30% by weight or more. Such Ni-Kel or Ni-Sokel alloys, such as Honeykel, Hein-Conel, Incoloy, Hastelloy alloys, etc., have a nickel content of 30% by weight or more, preferably 45% by weight.
The above nickel alloys can be mentioned.
ニッケル又はニッケル合金を用いることにより熱交換器
、配管等への多塩素化物、タール、カーボン等の沈積が
実質的に無くなるという効果が生ずる理由は審びらかで
ないが、熱交換器、配管等の冷却用装置の材質が鉄系材
質の場合には反応生成物中の特定の成分が鉄材表面でタ
ール化して生じたタール成分又は反応生成物中のタール
成分が鉄材表面と馴lみ性が高いために、ガス状反応生
成物が冷却されそれにより析出する多塩素化物、タール
等が装置内面に著しく沈積するが、一方ニヮケル系材質
の場合にはその耐腐食性のために馴じみが悪く、結果と
して多塩素化物、タール、カーボン等の沈積を実質的に
無くすることができるためと考えられる。Although it is unclear why the use of nickel or nickel alloy effectively eliminates the deposition of polychlorides, tar, carbon, etc. on heat exchangers, piping, etc., When the material of the cooling device is an iron-based material, a specific component in the reaction product turns into tar on the surface of the iron material, or a tar component in the reaction product is highly compatible with the surface of the iron material. As a result, the gaseous reaction products are cooled and polychlorinated substances, tar, etc. that precipitate are deposited on the inner surface of the equipment.On the other hand, in the case of nickel-based materials, they are not compatible due to their corrosion resistance. This is thought to be because the deposition of polychlorinated substances, tar, carbon, etc. can be substantially eliminated as a result.
反応生成物が約300〜150°Cに冷却される装置の
内面を二’yケル又は二・lケル合金製の部材にて構成
するのは、通常のアリルクロライドの合成反応条件で生
じる反応生成物は一般に約80()〜150°Cで多塩
素化物、タールが析出し出すので、少なくともこの析出
開始部分を二1−キングを生じない二・ソケル系合金と
し、こね、を防+l 1./でいるのである。The inner surface of the device, in which the reaction product is cooled to about 300 to 150°C, is made of a 2'Y Kel or 2.1 Kel alloy member because the reaction product that occurs under normal allyl chloride synthesis reaction conditions is Since polychlorides and tar generally precipitate at temperatures of about 80°C to 150°C, at least the part where this precipitation starts is made of a 2-Sokel alloy that does not cause 21-king to prevent kneading.1. / is there.
装置内面をニッケル又はニッケル合金製の部材にて構成
する手段としては全体を二・ソケル又は二+7ケル合金
で形成してもよいし、また、装置内面にニーIケル又は
二・ソケル合金をクラッド]7て形成さけてもよい。As a means of constructing the inner surface of the device with a member made of nickel or a nickel alloy, the entire device may be made of Ni-Sokel or 2+7 Kel alloy, or the inner surface of the device may be clad with Ni-I-Kel or Ni-Sokel alloy. ]7. Formation may be avoided.
もちろん、プロピレンとC12を450〜510°Cで
反応させる部分から約aoo〜150°Cまで冷却させ
る部分まで装置の内面をニッケル又はニッケル合金製の
部材で構成することは、更に多塩素化物、タールカーボ
ンを減少させる効果があろう
本発明方法の実施に当り、反応器からのガス状反応生成
物は好ましくは二、ソヶル又はニッケル合金製の熱回収
器に導入し、約4.50〜510°Cの反応生成物ガス
のエネルギーを150〜250°Cまで回収するつ
エネルギー回収方法としては反応生成ガスで水を直接加
熱しスチームとして回収するとか、又はダウサム等の熱
媒体、アリルクロライドの原料であるプロピレンを加熱
し回収する等の方法が一般に採用されろう
本発明方法の実施に当り、約3oo〜150”Cに冷却
される装置の内面をニッケル又はニッケル合金製の部材
にて構成した部分で予冷却、一般に約150〜250
’Cまで冷却された反応生成物ガスは次いでタール分を
完全及全実質的完全に析出させるために急冷設備へ送ら
れる。Of course, constructing the inner surface of the device from the part where propylene and C12 are reacted at 450 to 510°C to the part where it is cooled to about aoo to 150°C with nickel or nickel alloy members means that polychlorides, tar, etc. In carrying out the process of the present invention, which may have the effect of reducing carbon, the gaseous reaction products from the reactor are introduced into a heat recovery device, preferably made of 2, Sogal or nickel alloy, and heated at a temperature of about 4.50° to 510°. The energy recovery method for recovering the energy of the reaction product gas of C up to 150 to 250°C is to directly heat water with the reaction product gas and recover it as steam, or to use a heating medium such as Dowsum or a raw material of allyl chloride. In carrying out the method of the present invention, a method such as heating a certain propylene and recovering it is generally adopted. Precooling, generally about 150-250
The reaction product gas cooled to 'C is then sent to a quenching facility for complete and substantially complete precipitation of tar.
急冷設備はラインクエンチャ−でもよいしまた堝式であ
ってもいずれでもよい。The quenching equipment may be either a line quencher or a pit type.
急冷設備での反応生成物の冷却は一般に約70〜50゛
Cまで冷却され、タール分を有効に除去する。The reaction product is generally cooled to about 70-50°C in the quenching facility to effectively remove tar.
ラインクエンチャ−を用いる場合にはラインクエンチャ
−の后に貯槽を設け、冷却された反応生成物の=一部を
ラインクエンチャ−に供給するために利用し、貯槽のガ
ス相からの未反応プロピレン、副生塩化水素、低沸点成
分およびアリルクロライドを適宜分離する。一方冷却液
の一部は適宜抜き取り濃縮釜に送り蒸発留分は貯槽に再
循4′卜(ッ、他方タール、カーボン等から成る釜残は
系外へ取出され廃棄される。When using a line quencher, a storage tank is provided after the line quencher, and part of the cooled reaction product is used to supply the line quencher, and unused water from the gas phase of the storage tank is The reacted propylene, by-product hydrogen chloride, low boiling point components and allyl chloride are separated as appropriate. On the other hand, a portion of the cooling liquid is appropriately extracted and sent to a concentrator, and the evaporated fraction is recycled to a storage tank.On the other hand, the residue consisting of tar, carbon, etc. is taken out of the system and disposed of.
以上詳述したような本発明方法を採用することによって
従来法の場合には熱交換器を1−2ケ月前后で清掃しな
ければならなかったが、本発明方法によれば約1年連続
運転することが可能となるという顕著な工業的利益が達
成できる。By adopting the method of the present invention as detailed above, in the case of the conventional method, the heat exchanger had to be cleaned every 1 to 2 months, but with the method of the present invention, the heat exchanger can be operated continuously for about 1 year. Significant industrial benefits can be achieved by making it possible to
本発明方法をさらに詳細に説明するために実施例に基づ
き説明する。EXAMPLES In order to explain the method of the present invention in further detail, it will be explained based on examples.
実施例1 第1図に基づいて説明する。Example 1 This will be explained based on FIG.
ライン1よりプロピレン1.2 B mol/H。Propylene 1.2 B mol/H from line 1.
ライン2より塩素0.82 mo IIH(CB/Ct
2=4モル比)が約480〜500°Cに保持された熱
塩素化反応器18へ連続的に供給される。熱塩素化反応
器18からのガス状反応生成物はライン8を経てニッケ
ル製のチ −ブユ
を有する熱交換器19に送られ約200 ’Cまで冷却
される。熱交換器19へはライン4を通してボイラー給
水が送られ、水蒸気としてライン5より取出され利用さ
れる。Chlorine 0.82 mo IIH (CB/Ct
2=4 molar ratio) is continuously fed to a thermal chlorination reactor 18 maintained at about 480-500°C. The gaseous reaction product from the thermal chlorination reactor 18 is sent via line 8 to a heat exchanger 19 having nickel tubes and cooled to about 200'C. Boiler feed water is sent to the heat exchanger 19 through line 4, and is taken out as steam from line 5 and used.
熱交換器19からの予冷された反応生成物はライン8を
通りポンプにより昇圧せしめられライン9より供給され
る冷却された反応生成物400Kg/Hにより急冷され
る。The precooled reaction product from the heat exchanger 19 passes through line 8, is pressurized by a pump, and is rapidly cooled by 400 kg/h of cooled reaction product supplied from line 9.
ライン6及びラインクエンチャ−20はインコネル製の
ものを用いた。Line 6 and line quencher 20 were made of Inconel.
う・インクエンチャー20により60 ”cまで冷却さ
れjコ反応生成物はラインノを通り貯槽21に送られる
。The reaction product is cooled to 60"C by the ink quencher 20 and sent to the storage tank 21 through a line.
貯槽21のガス相は主としてアリルクロライドその他未
反応プロピレン、副生塩化水素、若干の多塩素化物より
成り、該ガス相はラインlOを経てコンデンサー22に
より適宜冷却されアリルクロライドと多塩素化物をライ
ン11を経て凝縮再循環させる。未凝縮の未反応−j
a ヒレン、副生塩化水素、アリルクロライドはライン
12を経て蒸留塔23に送られ塔頂より副生塩化水素、
未反応プロピレンをライン18より抜き出し、塔底より
アリルクロライドが21〜/Hでライン14より抜き出
される。The gas phase in the storage tank 21 mainly consists of allyl chloride, unreacted propylene, by-product hydrogen chloride, and some polychlorinated substances. The condensate is then recirculated. Uncondensed unreacted −j
a Hirene, by-product hydrogen chloride, and allyl chloride are sent to the distillation column 23 via line 12, and from the top of the column, by-product hydrogen chloride,
Unreacted propylene is taken out through line 18, and allyl chloride is taken out from the bottom of the column through line 14 at 21~/H.
未反応プロピレンは副生塩化水素と分離され塩素化反応
用原料として再循環される。まタライン14より回収さ
れたアリルクロライドは必要に応じて更に蒸留処理に付
され精製される。Unreacted propylene is separated from by-product hydrogen chloride and recycled as a raw material for the chlorination reaction. The allyl chloride recovered from the mataline 14 is further purified by distillation, if necessary.
他方、貯槽21の底部からは冷却された反応生成物がラ
イン15を経て濃縮釜24に送られ、スチーム加熱器に
より加熱され、濃縮された多塩素化物、タール、カーボ
ン等の重質分をライン16より8Kg/Hrの割合で系
外に廃棄させる。濃縮釜よりの低沸点留分はライン17
より貯槽21へ再循環される。On the other hand, the cooled reaction product from the bottom of the storage tank 21 is sent to the concentrating tank 24 via the line 15, heated by a steam heater, and concentrated heavy components such as polychlorinated substances, tar, and carbon are sent to the concentrating tank 24 through the line 15. 16 to be disposed of outside the system at a rate of 8 Kg/Hr. The low boiling point fraction from the concentrator is line 17.
It is then recirculated to the storage tank 21.
以上の条件下に8ケ月間連続運転を行なった結果熱交換
器内のタール状沈積物の量は第1表、実験番号1に示す
ようであった。As a result of continuous operation for 8 months under the above conditions, the amount of tar-like deposits in the heat exchanger was as shown in Table 1, Experiment No. 1.
また、上記方法において熱交換器の材質を第1表に示す
材質を用いた以外は全く同様にして操業した。その結果
を第1表に示す。In addition, the above method was operated in exactly the same manner except that the materials shown in Table 1 were used for the heat exchanger. The results are shown in Table 1.
第1表
り lし
第1表、1:リアメグクロライド合成反応生成物を約3
00〜150°Cに冷却する部分の装置t 内tfji
に二+7ケル又は二−ノヶル含有maoi爪%以Eの二
・ソケル合金を用いる場合には沈積物の承を著しく低減
させることができ、長期間連続的に運転できるというこ
とが明らかで−】る、Table 1 Table 1, 1: Approximately 3
Equipment for cooling part to 00 to 150°C tfji
It is clear that when using a 2-Sokel alloy containing 2+7 Kel or 2-Nogal with a maoi nail percentage of E or more, the formation of deposits can be significantly reduced and continuous operation can be achieved for a long period of time. Ru,
Fg 1図は本発明方法によるアリルクロライドの製造
工程図である。
夏、2.3.4.5.6.7.8.9.1o、11.1
2.13.14.15.16及び17・・・・・導管
18・・・・・熱塩素化反応器・
19 、、、、、熱交換器
20 、、、、、ラインクエンチャ−
21・・・・貯槽
22 、、、、、コンデンサー
28・・・・・蒸留塔
24 、、、、、濃縮釜
集1咽
ノ1Figure Fg 1 is a process diagram for producing allyl chloride according to the method of the present invention. Summer, 2.3.4.5.6.7.8.9.1o, 11.1
2.13.14.15.16 and 17... Conduit 18... Thermal chlorination reactor 19, Heat exchanger 20, Line quencher 21. ... Storage tank 22 ... Condenser 28 ... Distillation column 24 ... Concentration pot collection 1 throat 1
Claims (1)
ス状反応生成物を冷却して、未反応プロピレン、副生塩
化水素、軽質留分、重質残渣およびアリルクロライドに
各々分離することから成るアリルクロライドの製造方法
において、少なくとも該ガス状反応生成物が約300〜
150℃に冷却される装置の内面を、二・ソケル又はニ
ッケル含有量30重量%以上のニッケル合金製の部材で
構成したことを特徴とするアリルクロライドの製造方法
う2)ガス状反応生成物が約800〜150°Cに冷却
される装置の内面を、二・ソケル又はニッケル含有量4
5重量%以上の二・ソケル合金製の部材で構成したこと
を特徴とする特許請求の範囲第1項記載のアリルクロラ
イドの製造方法。1) Consists of cooling the gaseous reaction products produced by reacting propylene and chlorine at high temperatures and separating them into unreacted propylene, by-product hydrogen chloride, light fractions, heavy residues, and allyl chloride. In the method for producing allyl chloride, at least the gaseous reaction product has a molecular weight of about 300 to
2) A method for producing allyl chloride, characterized in that the inner surface of the apparatus to be cooled to 150°C is made of a member made of Ni-Sokel or a nickel alloy having a nickel content of 30% by weight or more. The inner surface of the device, which is cooled to about 800-150°C, is coated with nickel or nickel content 4.
The method for producing allyl chloride according to claim 1, characterized in that the member is made of a di-soquel alloy containing 5% by weight or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10732284A JPS60252434A (en) | 1984-05-25 | 1984-05-25 | Production of allyl chloride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10732284A JPS60252434A (en) | 1984-05-25 | 1984-05-25 | Production of allyl chloride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60252434A true JPS60252434A (en) | 1985-12-13 |
JPS6348250B2 JPS6348250B2 (en) | 1988-09-28 |
Family
ID=14456122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10732284A Granted JPS60252434A (en) | 1984-05-25 | 1984-05-25 | Production of allyl chloride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60252434A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05217902A (en) * | 1991-04-16 | 1993-08-27 | Tsurumi Soda Kk | Heat treating apparatus |
US5504266A (en) * | 1995-05-24 | 1996-04-02 | The Dow Chemical Company | Process to make allyl chloride and reactor useful in that process |
US6004517A (en) * | 1995-05-24 | 1999-12-21 | The Dow Chemical Company | Process to make allyl chloride and reactor useful in that process |
JP2007332076A (en) * | 2006-06-15 | 2007-12-27 | Sumitomo Chemical Co Ltd | Method for producing allyl chloride |
WO2011061892A1 (en) * | 2009-11-17 | 2011-05-26 | Sumitomo Chemical Company, Limited | Methods for producing allyl chloride and dichlorohydrin |
-
1984
- 1984-05-25 JP JP10732284A patent/JPS60252434A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05217902A (en) * | 1991-04-16 | 1993-08-27 | Tsurumi Soda Kk | Heat treating apparatus |
US5504266A (en) * | 1995-05-24 | 1996-04-02 | The Dow Chemical Company | Process to make allyl chloride and reactor useful in that process |
US6004517A (en) * | 1995-05-24 | 1999-12-21 | The Dow Chemical Company | Process to make allyl chloride and reactor useful in that process |
JP2007332076A (en) * | 2006-06-15 | 2007-12-27 | Sumitomo Chemical Co Ltd | Method for producing allyl chloride |
WO2011061892A1 (en) * | 2009-11-17 | 2011-05-26 | Sumitomo Chemical Company, Limited | Methods for producing allyl chloride and dichlorohydrin |
JP2011105637A (en) * | 2009-11-17 | 2011-06-02 | Sumitomo Chemical Co Ltd | Method for producing allyl chloride and dichlorohydrin |
Also Published As
Publication number | Publication date |
---|---|
JPS6348250B2 (en) | 1988-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR970000480B1 (en) | Method for steam reforming method | |
US3987119A (en) | Production of vinyl chloride from ethane | |
US4804797A (en) | Production of commodity chemicals from natural gas by methane chlorination | |
US3839550A (en) | Closed-cycle thermochemical process for the decomposition of water | |
US4263141A (en) | Process of producing gasoline from synthesis gas | |
US2159077A (en) | Production of valuable hydrocarbons and their derivatives containing oxygen | |
JPS60252434A (en) | Production of allyl chloride | |
CA1165780A (en) | Recovery of chlorine values in integrated process for oxychlorination and combustion of chlorinated hydrocarbons | |
JPS6396141A (en) | Manufacture of vinyl chloride by pyrolysis of 1,2-dichloroethane and apparatus therefor | |
JPS6221706A (en) | Recycling production of silicon or silicon compound via trichlorosilane | |
US3939257A (en) | Process for producing hydrogen from water | |
JPS61277637A (en) | Purification of 1,2-dichloroethane | |
US3059035A (en) | Continuous process for producing methyl chloroform | |
US4243650A (en) | Heat and volatized salt recovery from reaction effluent | |
JP2009519923A (en) | Method for producing dichlorotrifluoroethane | |
US3227525A (en) | Apparatus for pyrolyzing vapors | |
CN103922891B (en) | Energy integration method for producing benzyl chloride by two-stage reaction rectification series connection | |
JPH0345050B2 (en) | ||
US2780638A (en) | Synthesis of succinonitriles | |
JP5020968B2 (en) | Method for producing dichlorotrifluoroethane | |
US2762850A (en) | Vinyl chloride production | |
US3644542A (en) | Benzene oxychlorination | |
CN115340095A (en) | Cold hydrogenation heat energy recovery system and method | |
JPS6221707A (en) | Production of trichlorosilane | |
US2385518A (en) | Production of succinic and maleic acids from butyrolactone |