JPS60255106A - Composite membrane for gas separation - Google Patents
Composite membrane for gas separationInfo
- Publication number
- JPS60255106A JPS60255106A JP59111562A JP11156284A JPS60255106A JP S60255106 A JPS60255106 A JP S60255106A JP 59111562 A JP59111562 A JP 59111562A JP 11156284 A JP11156284 A JP 11156284A JP S60255106 A JPS60255106 A JP S60255106A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- composite membrane
- poly
- gas separation
- perfluorochemical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 48
- 239000002131 composite material Substances 0.000 title claims abstract description 25
- 238000000926 separation method Methods 0.000 title claims abstract description 16
- 239000010409 thin film Substances 0.000 claims abstract description 12
- -1 poly (perfluoro Chemical group 0.000 claims abstract description 11
- 239000011148 porous material Substances 0.000 claims description 7
- 230000000379 polymerizing effect Effects 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims 1
- 239000000178 monomer Substances 0.000 abstract description 9
- 230000035699 permeability Effects 0.000 abstract description 8
- 238000006116 polymerization reaction Methods 0.000 abstract description 7
- 239000000126 substance Substances 0.000 abstract description 7
- RVZRBWKZFJCCIB-UHFFFAOYSA-N perfluorotributylamine Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)N(C(F)(F)C(F)(F)C(F)(F)C(F)(F)F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F RVZRBWKZFJCCIB-UHFFFAOYSA-N 0.000 abstract description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 15
- 239000001301 oxygen Substances 0.000 description 15
- 229910052760 oxygen Inorganic materials 0.000 description 15
- 239000010408 film Substances 0.000 description 13
- 239000007789 gas Substances 0.000 description 13
- 238000000576 coating method Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 230000002747 voluntary effect Effects 0.000 description 2
- CJFUEPJVIFJOOU-UHFFFAOYSA-N 2-perfluorobutyltetrahydrofuran Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C1CCCO1 CJFUEPJVIFJOOU-UHFFFAOYSA-N 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 241001475173 Tarsocera Species 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002473 artificial blood Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009503 electrostatic coating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- VZGNSQIEHPIHBA-UHFFFAOYSA-N n,n-dibutyl-4-fluorobutan-1-amine Chemical compound CCCCN(CCCC)CCCCF VZGNSQIEHPIHBA-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 229950011087 perflunafene Drugs 0.000 description 1
- FRZFEPXEUZSBLA-UHFFFAOYSA-N perfluoroadamantane Chemical compound FC1(F)C(C2(F)F)(F)C(F)(F)C3(F)C(F)(F)C1(F)C(F)(F)C2(F)C3(F)F FRZFEPXEUZSBLA-UHFFFAOYSA-N 0.000 description 1
- UWEYRJFJVCLAGH-IJWZVTFUSA-N perfluorodecalin Chemical compound FC1(F)C(F)(F)C(F)(F)C(F)(F)[C@@]2(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)[C@@]21F UWEYRJFJVCLAGH-IJWZVTFUSA-N 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000009372 pisciculture Methods 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/125—In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
- B01D69/127—In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction using electrical discharge or plasma-polymerisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/44—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は混合気体に対し選択透過性を有し、特定の気体
を分離することができる複合膜に関する。特に本発明は
、膜分離法により、空気から酸素富化空気を製造する際
に、空気の透過量が大きく、かつ酸素の選択透過性がす
ぐれた分離膜として好適に使用し得る気体分離用複合膜
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite membrane that has selective permeability to a mixed gas and is capable of separating a specific gas. In particular, the present invention provides a gas separation composite that can be suitably used as a separation membrane that has a large amount of air permeation and excellent oxygen permselectivity when producing oxygen-enriched air from air using a membrane separation method. Regarding membranes.
近年、混合気体中から特定の気体を分離するだめの膜分
離技術の進歩は著しく、あるものは工業的規模で実用化
されている。In recent years, membrane separation technologies for separating specific gases from mixed gases have made remarkable progress, and some have even been put into practical use on an industrial scale.
一方、空気から酸素富化空気を得ることは、循環器疾患
、脳卒中、慢性肺疾患等の治療として、製鉄、ガラス、
セメント等の高熱を要する工場において、まだ養魚、発
酵、廃水の微生物処理等において極めて重要である。On the other hand, obtaining oxygen-enriched air from the air can be used to treat cardiovascular diseases, strokes, chronic lung diseases, etc.
It is still extremely important in factories that require high heat such as cement production, fish farming, fermentation, and microbial treatment of wastewater.
而して、斯かる気体分離に使用される膜は、高透過性、
高選択はがあり、かつ機械的強度、加工性、耐薬品性、
耐久性等が優れていることが要求される。Therefore, the membranes used for such gas separation have high permeability,
It has high selection and mechanical strength, processability, chemical resistance,
It is required to have excellent durability, etc.
このような実情から、従来、当該条件を具備した膜を提
供するだめの多くの研究がなされ、すでに多くの報告が
なされている。就中、2−
透過性及び選択性の高い薄膜を多孔性支持膜の表面に形
成した複合膜がその主流をなしている。しかし、これま
で知られている当該薄膜は、透過性、選択性が充分でな
かつたり、捷だ強度、耐薬品性等が劣っているなどの欠
点があり、必ずしも満足できるものではなかった。Under these circumstances, many studies have been made to provide membranes meeting the above conditions, and many reports have already been made. Among these, composite membranes in which a thin film with high permeability and selectivity is formed on the surface of a porous support membrane are the mainstream. However, the thin films known so far have drawbacks such as insufficient permeability and selectivity, and poor bending strength, chemical resistance, etc., and are not necessarily satisfactory.
そとで、本発明者は、上記欠点を克服せんと鋭意研究を
行った結果、パーフルオロケミカルを重合して得られる
ポリ(パーフルオロケミカル)の薄膜が上記条件を具備
することを見出し、本発明を完成した。As a result of intensive research to overcome the above drawbacks, the present inventor discovered that a thin film of poly(perfluorochemical) obtained by polymerizing perfluorochemicals satisfies the above conditions. Completed the invention.
すなわち、本発明は、混合気体から特定の気体を分離す
る膜であって、多孔性支持膜とその表面又は孔を充塞し
てその表面に形成したポリ(パーフルオロケミカル)か
らなる薄膜とから形成される複合膜よりなる気体分離用
複合膜を提供するものである。That is, the present invention provides a membrane for separating a specific gas from a mixed gas, which is formed from a porous support membrane and a thin film made of poly(perfluorochemical) formed on the surface or by filling the pores. The purpose of the present invention is to provide a composite membrane for gas separation consisting of a composite membrane comprising:
本発明において、多孔性支持膜は当該技術分野において
一般に使用されているものは何3−
れも使用できる。その材質としては、例えば、ポリスル
ホン、ポリエチレン、ポリプロピレン、ポリ7チレン、
セルロースアセテート、ポリカーボネート等の高分子樹
脂、和紙、不織布、合成紙、P紙、布、雲母等が挙げら
れる。支持膜の厚さは強度が充容であれば特に制限され
ないが、一般には1μ〜1mmのものが好ましい。捷だ
支持膜の空孔率は30〜90係が好ましく、その孔径は
001〜1μが好ましい。この多孔性支持膜は平膜でも
中空膜でもよいが、特に外縁1mm〜200aの中空繊
維膜がよい結果を与える。In the present invention, any porous support membrane commonly used in the art can be used. Examples of the material include polysulfone, polyethylene, polypropylene, poly7-tyrene,
Examples include polymer resins such as cellulose acetate and polycarbonate, Japanese paper, nonwoven fabric, synthetic paper, P paper, cloth, and mica. The thickness of the support film is not particularly limited as long as it has sufficient strength, but is generally preferably 1 μm to 1 mm. The porosity of the twisted support membrane is preferably 30 to 90, and the pore diameter is preferably 0.001 to 1 .mu.m. This porous support membrane may be a flat membrane or a hollow membrane, but particularly a hollow fiber membrane with an outer edge of 1 mm to 200 a gives good results.
本発明腹合膜の薄膜を構成するポリ(パーフルオロケミ
カル)を製造するために使用される単量体、すなわちパ
ーフルオロケミカルは、分子量300〜700の液体で
、人工血液の素材として研究された化学的及び生物学的
に極めて安定なものであり、その代表的なものとしては
パーフルオロデカリン、パーフルオロアダマンタン、パ
ーフルオロl−IJ フロ4−
ピルアミン、パーフルオロトリブチルアミン、パーフル
オロブチルテトラヒドロフラン等が例示されるが、就中
特にパーフルオロトリブチルアミンが好ましい。The monomer used to produce the poly(perfluorochemical) that constitutes the thin film of the peritoneal membrane of the present invention, that is, the perfluorochemical, is a liquid with a molecular weight of 300 to 700 and has been studied as a material for artificial blood. It is extremely stable chemically and biologically, and typical examples include perfluorodecalin, perfluoroadamantane, perfluoro l-IJ furo-4-pyramine, perfluorotributylamine, and perfluorobutyltetrahydrofuran. Among these, perfluorotributylamine is particularly preferred.
ポリ(パーフルオロケミカル)はこれらのパーフルオロ
ケミカル単量体を重合することによって製造することが
できるが、プラズマ重合法を用いるのが好ましい。本発
明の複合膜は、多孔性支持膜の表面、また必要に応じて
枝孔を充塞するようにその表面にポリ(パーフルオロケ
ミカル)の膜層を形成させることによって得られる。ポ
リ(パーフルオロケミカル)の膜層を形成する方法とし
ては、ポリ(パーフルオロケミカル)を多孔性支持膜の
表面に・・ケ塗、スプレー塗、静電塗装、つけ塗、転が
し塗、遠心力塗装、しごき塗、ローラ塗、真空蒸着塗装
、タンポ塗、ヘラ塗すル方法、パーフルオロケミカルの
単量体又は低分子量ポリマーを適当々温度を加えて蒸発
させた後、グロー放電させることによりプラ=5−
ズマ蒸気化し、当該支持膜表面に重合させながら塗布す
るプラズマ蒸着塗装法、まだは上記単量体又は低分子量
ポリマー液に多孔性支持膜を浸漬して孔中に単量体等を
含浸させ、プラズマ重合して塗装する方法等を用いるこ
とができる。このポリ(パーフルオロケミカル)の薄膜
の厚さは、気体の透過量からすると1μ以下、特に05
μ以下が好ましいが、あ捷り薄くするとピンホールの発
生及び強度の問題が生ずるので、01〜1μが好ましい
。Although poly(perfluorochemicals) can be produced by polymerizing these perfluorochemical monomers, it is preferred to use plasma polymerization methods. The composite membrane of the present invention is obtained by forming a poly(perfluorochemical) membrane layer on the surface of a porous support membrane and, if necessary, on the surface so as to fill the branch pores. Methods for forming a poly(perfluorochemical) film layer include coating, spray coating, electrostatic coating, dipping, rolling coating, and centrifugal force coating. Painting, ironing, roller coating, vacuum deposition coating, tampon coating, spatula coating, perfluorochemical monomers or low molecular weight polymers are evaporated by applying an appropriate temperature, and then glow discharge is applied. =5- Plasma vapor deposition coating method in which Zuma is vaporized and applied to the surface of the support film while polymerizing, but the porous support film is immersed in the above monomer or low molecular weight polymer liquid and the monomer etc. are added into the pores. A method of impregnation, plasma polymerization, and painting can be used. Considering the amount of gas permeation, the thickness of this poly(perfluorochemical) thin film is 1μ or less, especially 0.5μ or less.
The thickness is preferably 0.1 to 1.mu. or less, but if the thickness is reduced by thinning, pinholes will occur and strength problems will occur, so 01 to 1.mu. is preferable.
上記パーフルオロケミカルのプラズマ重合法は、本発明
者によって見出されたものであるが、例えばパーフルオ
ロトリブチルアミンのプラズマ重合は、10KHzの放
電下では、放電圧力0.03 mmHg、出力50W、
電極間距離6crn、放電時間25分の場合に最も酸素
透過特性のよい薄膜が得られる。The above plasma polymerization method for perfluorochemicals was discovered by the present inventor. For example, plasma polymerization of perfluorotributylamine requires a discharge pressure of 0.03 mmHg, an output of 50 W, and
A thin film with the best oxygen permeation properties can be obtained when the distance between the electrodes is 6 crn and the discharge time is 25 minutes.
このようにして得られた本発明の複合膜は、後述するよ
うに、酸素透過速度は2.IX]0−5(ec(stp
) 10h、 sec、 cmHg〕、酸素の分離係
数6−
(PO2/PN2 )は36以上と極めて大きいので、
これを用いて空気から約50%の酸素富化空気を得るこ
とができる。The composite membrane of the present invention thus obtained has an oxygen permeation rate of 2. IX]0-5(ec(stp
) 10h, sec, cmHg], the oxygen separation coefficient 6- (PO2/PN2) is extremely large at 36 or more, so
Using this, approximately 50% oxygen-enriched air can be obtained from air.
次に実施例を挙げて説明する。Next, an example will be given and explained.
実施例1
市販の多孔質ポリプロピレンツ・fルム(厚す25μ、
最大孔径0.2 p x 0.02□空孔率38係、商
品名ジコラガード240、ポリプラスチック社製)を第
1図に示しだペルジャー型プラズマ重合装置の直径35
crnの回転円板(1)上に固定する。全容積約59t
のチャンバー(2)内を真空排気し寿から、先にセット
したモノマーのパーフルオロトリブチルアミン[N(C
4F9)3−分子量6711蒸気圧1. ] 4 mm
Hg(37℃)製造7 ルカ、販売和光紬薬〕を蒸気化
しチャンバー内を蒸気で満たし、最終的に0.03 m
n+Hgの圧力とする。そして、フィルムを固定した回
転円板を1rpsの回転速度で回転させながら、出力5
0W電極間距離6m、および電極面積15cmX15画
の条件で] OKH2のグロー放電を発生させ、7−
25分間放電した。ただしフィルムが電極間の放電フレ
ーム中に滞電する実際の時間は放電時間の約六とみなさ
れる。従って、フィルムが放電フレーム中に止まってい
るとした場合の正味の最適滞留時間は2y4分、つまり
約375秒程度である。Example 1 Commercially available porous polypropylene film (thickness 25μ,
Maximum pore diameter: 0.2 p x 0.02
It is fixed on the rotating disk (1) of CRN. Total volume approximately 59t
The inside of the chamber (2) was evacuated and the previously set monomer perfluorotributylamine [N(C
4F9) 3-Molecular weight 6711 Vapor pressure 1. ] 4 mm
Hg (37℃) Production 7 Luca, sold by Wako Tsumugi Pharmaceutical] was vaporized and the chamber was filled with steam, ultimately reaching a height of 0.03 m.
The pressure is n+Hg. Then, while rotating the rotating disk to which the film was fixed at a rotational speed of 1 rps, the output was 5.
Under the conditions of 0W electrode distance of 6 m and electrode area of 15 cm x 15 squares], glow discharge of OKH2 was generated and discharged for 7 to 25 minutes. However, the actual time that the film is charged during the discharge frame between the electrodes is considered to be about 6 hours of discharge time. Therefore, if the film were to remain stationary during the discharge frame, the net optimum residence time would be about 2y4 minutes, or about 375 seconds.
その結果、多孔質ポリプロピレンフィルム上にパーフル
オロトリブチルアミンより得られた再現性の良い酸素透
過特性の良好なピンホールの々い薄膜が形成され、複合
膜が得られた。As a result, a thin film obtained from perfluorotributylamine with good oxygen permeability and pinholes was formed on a porous polypropylene film, and a composite film was obtained.
実施例2
市販のセルロースアセテート限外濾過膜(厚さ0.1
mm平均孔径0.025#、空孔率so係、商品名ミリ
ボアVS、日本ミリポア社製)を用いて、以下実施例1
と同様の操作、条件で行なって複合膜を得た。Example 2 Commercially available cellulose acetate ultrafiltration membrane (thickness 0.1
The following Example 1 was carried out using Millipore VS (product name: Millipore VS, manufactured by Nippon Millipore Co., Ltd.) with an average pore diameter of 0.025 # and a porosity of so.
A composite membrane was obtained using the same operations and conditions as above.
実施例3
実施例1で得だ複合膜を用いて、その性能試8−
験を行ない、膜特性をめた。まず走査電子顕微鴫(SE
M)写真を撮り、その膜状態を観察した。その結果、膜
厚は1μ程度でピンホールは全く認められなかった。Example 3 Using the composite membrane prepared in Example 1, a performance test was conducted to determine the membrane properties. First, scanning electron microscopy (SE)
M) Photographs were taken and the state of the film was observed. As a result, the film thickness was approximately 1 μm and no pinholes were observed.
つぎに複合膜のガス透過速度を通常の容積法および圧力
法により測定した。その結果は表1のとおりである。Next, the gas permeation rate of the composite membrane was measured using a conventional volumetric method and a pressure method. The results are shown in Table 1.
表1 複合膜の気体透過特性
9−
表1から明らかな如く、酸素の透過速度は2、I X
10−5[’cc (stp)/+cJ sec cm
l(g)で、窒素のそれは5.8 X 10″Ccc
(stp)/d sec cmHg) テあり、分離係
数(PO2/PN2)は3.6であった。従って、理論
的には49.6%の酸素富化空気が得られる。Table 1 Gas permeation characteristics of composite membrane 9- As is clear from Table 1, the oxygen permeation rate is 2, I
10-5 ['cc (stp)/+cJ sec cm
l(g), that of nitrogen is 5.8 X 10″Ccc
(stp)/d sec cmHg) and the separation coefficient (PO2/PN2) was 3.6. Therefore, theoretically, 49.6% oxygen enriched air can be obtained.
また、複合膜の表面分析はX線光電子分光法により分析
した。その結果、重合膜(薄膜)はC,F、 0. N
の元素からなり、 CF2−1CFsの構造を含むも
のであった。In addition, the surface of the composite film was analyzed by X-ray photoelectron spectroscopy. As a result, the polymer film (thin film) contained C, F, 0. N
It consisted of the following elements and contained the structure of CF2-1CFs.
更に複合膜をセットした円筒状の密閉系透過係数測定用
セルをそのまま利用して、一方より空気(21%酸素、
79%飯素)を加圧し、他方より複合膜を通過させた酸
素富化空気を分取し、カスー四重極質量分析装置(Ga
s −Mass 5pect、)により分析した結果4
1%の酸素富化空気が得られた。尚これと理論値の相違
は測定誤差によるものである。Furthermore, using the cylindrical closed system permeability measurement cell with the composite membrane set as is, air (21% oxygen,
The oxygen-enriched air that has passed through the composite membrane is separated from the other side, and the oxygen-enriched air is collected using a Cassu quadrupole mass spectrometer (Ga
Results of analysis using s-Mass 5pect, ) 4
1% oxygen enriched air was obtained. The difference between this and the theoretical value is due to measurement error.
第1図は本発明複合膜を製造するためのベル10−
ジャー型プラズマ重合装置の説明図である。
以上
出願人 日本ケミファ株式会社
11−
第1図
1、回転円板
2、 チャンバー
3、 電極
4 単量体
5、 ポンプ
6、高周波電力
手続補正書(自発)
昭和60年 8 月 29日
特許庁長官 宇賀道部 殿
昭和59年 特 許 願第111562号2 発明の名
称
気体分離用複合膜
3 補正をする者
事件との関係 出願人
住 所 東京都千代田区岩本町2丁目2番3号名 称
日本ケミファ株式会社
代表者丑山圭三
4代理人
自 発
6、 補正の対象
明細書の「発明の詳細な説明」の欄
7、補正の内容
(1)明細書中、第4頁第2行
「?リスルホン、」とある次に「−リエーテルスルホン
、」を挿入する。
(2)同第6頁第16行
「場合に」とあるを[場合に、また1 :L 56 M
l(zの放電下では、放電圧力0.04 mmHf 、
出力50W1電極間距離6cIL1放電時間150秒の
場合に」と訂正する。
(3)同第8頁第16行
「複合膜を得た。」とある次に行を換えて成文を挿入す
る。
[実施例3
市販の?リスルホン製の中空糸(直径240μ、肉厚8
0μ)を用いて、十字管型ゾラズマ重合装置内にノ(−
フルオロトリブチルアミンの蒸気を圧力0.04 mm
Hfで満たし、出力50W1電極間距離6cx、電極面
積14(XX11mの条件で13.56 MHzのグロ
ー放電を発生させ、150秒間放電した。
その結果、中空糸上に、e−フルオロトリブチルアミン
より得られた酸素透過特性の良好〔分離係数02/N2
=2.7)な複合膜が得られた。」
(4)同第8頁第17行
「実施例3」とあるを「実施例4」と訂正する。
(5) 同第10頁第17〜18行
3−
「尚これと一一一によるものである。」とあるを削除す
る。
4−FIG. 1 is an explanatory diagram of a bell 10-jar type plasma polymerization apparatus for producing the composite membrane of the present invention. Applicant: Nippon Chemifa Co., Ltd. 11- Figure 1 1, Rotating disk 2, Chamber 3, Electrode 4, Monomer 5, Pump 6, High frequency power procedure amendment (voluntary) August 29, 1985 Commissioner of the Patent Office Michibu Uga 1981 Patent Application No. 111562 2 Name of the invention Composite membrane for gas separation 3 Relationship to the case of the person making the amendment Applicant address 2-2-3 Iwamoto-cho, Chiyoda-ku, Tokyo Name Name
Nippon Chemifa Co., Ltd. Representative Keizo Ushiyama 4 Agent Voluntary 6 Column 7 “Detailed Description of the Invention” of the specification subject to amendment Contents of the amendment (1) In the specification, page 4, line 2 “?” After ``Lisulfone,'' insert ``-Riethersulfone.'' (2) Page 6, line 16, “In case” [In case, also 1: L 56 M
l (under the discharge of z, the discharge pressure is 0.04 mmHf,
When the output is 50W, the distance between the electrodes is 6cIL, and the discharge time is 150 seconds.'' (3) On page 8, line 16, which says ``A composite membrane was obtained,'' change the next line and insert the text. [Example 3 Commercially available? Risulfone hollow fiber (diameter 240μ, wall thickness 8
0μ) into the cross tube type Zolazma polymerization apparatus.
Fluorotributylamine vapor at a pressure of 0.04 mm
Filled with Hf, a glow discharge of 13.56 MHz was generated under the conditions of an output of 50 W, an inter-electrode distance of 6 cx, and an electrode area of 14 m (XX 11 m), and discharged for 150 seconds. Good oxygen permeability properties [separation coefficient 02/N2
= 2.7) composite membrane was obtained. (4) On page 8, line 17, "Example 3" is corrected to "Example 4." (5) Page 10, lines 17-18, 3--Delete the statement ``This and 111.'' 4-
Claims (1)
孔性支持膜とその表面又は孔を充塞1−でその表面に形
成したポリ(パーフルオロケミカル)からなる薄膜とか
ら形成される複合膜より々る気体分離用複合膜。 2 ポリ(パーフルオロケミカル)がポリ(パーフルオ
ロトリブチルアミン)である特許請求の範囲第1項記載
の気体分離用複合膜。 3 ポリ(パーフルオロケミカル)カ、パーフルオロケ
ミカルをプラズマ重合して得られたものである特許請求
の範囲第1項又は第2項記載の気体分離用複合膜。[Scope of Claims] 1. A membrane for separating a specific gas from a gas mixture, comprising a porous support membrane and a thin film made of poly(perfluorochemical) formed on the surface of the porous support membrane and its surface or pores filled with 1-. Composite membranes for gas separation. 2. The composite membrane for gas separation according to claim 1, wherein the poly(perfluorochemical) is poly(perfluorotributylamine). 3. The composite membrane for gas separation according to claim 1 or 2, which is obtained by plasma polymerizing poly(perfluorochemical) or perfluorochemical.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59111562A JPS60255106A (en) | 1984-05-31 | 1984-05-31 | Composite membrane for gas separation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59111562A JPS60255106A (en) | 1984-05-31 | 1984-05-31 | Composite membrane for gas separation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60255106A true JPS60255106A (en) | 1985-12-16 |
Family
ID=14564524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59111562A Pending JPS60255106A (en) | 1984-05-31 | 1984-05-31 | Composite membrane for gas separation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60255106A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1693408A1 (en) * | 2003-12-03 | 2006-08-23 | Tonen Chemical Corporation | Microporous composite film, process for producing the same, and use |
JP2009185316A (en) * | 2008-02-05 | 2009-08-20 | Utec:Kk | Plasma cvd apparatus and fluoride organic film, and organic film having silane coupling group |
WO2017004495A1 (en) * | 2015-07-01 | 2017-01-05 | 3M Innovative Properties Company | Composite membranes with improved performance and/or durability and methods of use |
WO2017004492A1 (en) * | 2015-07-01 | 2017-01-05 | 3M Innovative Properties Company | Pvp- and/or pvl-containing composite membranes and methods of use |
WO2017004496A1 (en) * | 2015-07-01 | 2017-01-05 | 3M Innovative Properties Company | Polymeric ionomer separation membranes and methods of use |
-
1984
- 1984-05-31 JP JP59111562A patent/JPS60255106A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1693408A1 (en) * | 2003-12-03 | 2006-08-23 | Tonen Chemical Corporation | Microporous composite film, process for producing the same, and use |
EP1693408A4 (en) * | 2003-12-03 | 2007-01-17 | Tonen Sekiyukagaku Kk | Microporous composite film, process for producing the same, and use |
US7785735B2 (en) | 2003-12-03 | 2010-08-31 | Tonen Chemical Corporation | Microporous composite membrane and its producing method and use |
JP2009185316A (en) * | 2008-02-05 | 2009-08-20 | Utec:Kk | Plasma cvd apparatus and fluoride organic film, and organic film having silane coupling group |
WO2017004496A1 (en) * | 2015-07-01 | 2017-01-05 | 3M Innovative Properties Company | Polymeric ionomer separation membranes and methods of use |
WO2017004492A1 (en) * | 2015-07-01 | 2017-01-05 | 3M Innovative Properties Company | Pvp- and/or pvl-containing composite membranes and methods of use |
WO2017004495A1 (en) * | 2015-07-01 | 2017-01-05 | 3M Innovative Properties Company | Composite membranes with improved performance and/or durability and methods of use |
CN107735163A (en) * | 2015-07-01 | 2018-02-23 | 3M创新有限公司 | Composite membrane and application method containing PVP and/or PVL |
JP2018520861A (en) * | 2015-07-01 | 2018-08-02 | スリーエム イノベイティブ プロパティズ カンパニー | Composite membrane having improved performance and / or durability and method of use |
US20190001273A1 (en) * | 2015-07-01 | 2019-01-03 | 3M Innovative Properties Company | Pvp- and/or pvl-containing composite membranes and methods of use |
US10478778B2 (en) | 2015-07-01 | 2019-11-19 | 3M Innovative Properties Company | Composite membranes with improved performance and/or durability and methods of use |
US10618008B2 (en) | 2015-07-01 | 2020-04-14 | 3M Innovative Properties Company | Polymeric ionomer separation membranes and methods of use |
US10737220B2 (en) | 2015-07-01 | 2020-08-11 | 3M Innovative Properties Company | PVP- and/or PVL-containing composite membranes and methods of use |
CN107735163B (en) * | 2015-07-01 | 2021-02-23 | 3M创新有限公司 | Composite membranes comprising PVP and/or PVL and methods of use |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4073733A (en) | PVA membrane and method for preparing the same | |
US4938778A (en) | Composite hollow fiber type separation membranes processes for the preparation thereof and their use | |
US4812269A (en) | Process for producing hollow fiber semi-permeable membranes | |
CA1316311C (en) | Anisotropic membranes for gas separation | |
JPH0451209B2 (en) | ||
JPH0451214B2 (en) | ||
GB2224970A (en) | Porous hollow fibers and their production from polymer solutions | |
JPS60255106A (en) | Composite membrane for gas separation | |
CA1107467A (en) | Polycarbonate membranes for use in hemodialysis | |
JPS594163B2 (en) | Gastou Kasemak | |
JPS6138208B2 (en) | ||
JPS61271003A (en) | Hydrophilic compound porous membrane and its preparation | |
JPS6333871B2 (en) | ||
JPS59225703A (en) | Porous membrane and preparation thereof | |
JPS63264101A (en) | Permselective membrane | |
EP0164468A2 (en) | Porous membrane | |
JPH0747221A (en) | Composite membrane for gas separation and its preparation | |
JP7441633B2 (en) | gas separation membrane | |
Albrecht et al. | Formation of porous bilayer hollow fibre membranes | |
JPH0745009B2 (en) | Method for producing composite hollow fiber membrane | |
JPS61103521A (en) | Selective permeable compound film for gas and its preparation | |
Sakata et al. | Plasma‐polymerized membranes and gas permeability III | |
JPS62210008A (en) | Production of liquid separation membrane exhibiting permselectivity to ethanol | |
JPS6041503A (en) | Polyether sulfone microporous membrane and its manufacture | |
JP2646562B2 (en) | Method for producing permselective composite hollow fiber membrane |