JPS60240854A - Piston for internal-combustion engine made of light metal - Google Patents
Piston for internal-combustion engine made of light metalInfo
- Publication number
- JPS60240854A JPS60240854A JP59097124A JP9712484A JPS60240854A JP S60240854 A JPS60240854 A JP S60240854A JP 59097124 A JP59097124 A JP 59097124A JP 9712484 A JP9712484 A JP 9712484A JP S60240854 A JPS60240854 A JP S60240854A
- Authority
- JP
- Japan
- Prior art keywords
- piston
- internal combustion
- light metal
- alumina
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B23/00—Other engines characterised by special shape or construction of combustion chambers to improve operation
- F02B23/02—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
- F02B23/06—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
- F02B23/0603—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B23/00—Other engines characterised by special shape or construction of combustion chambers to improve operation
- F02B23/02—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
- F02B23/06—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
- F02B23/0696—W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F3/00—Pistons
- F02F3/10—Pistons having surface coverings
- F02F3/12—Pistons having surface coverings on piston heads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F7/00—Casings, e.g. crankcases or frames
- F02F7/0085—Materials for constructing engines or their parts
- F02F7/0087—Ceramic materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B2275/00—Other engines, components or details, not provided for in other groups of this subclass
- F02B2275/14—Direct injection into combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/02—Light metals
- F05C2201/021—Aluminium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2203/00—Non-metallic inorganic materials
- F05C2203/08—Ceramics; Oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2253/00—Other material characteristics; Treatment of material
- F05C2253/16—Fibres
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、内燃機関に係り、更に詳細には内燃機関用の
軽金属製のピストンに係る。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to internal combustion engines, and more particularly to light metal pistons for internal combustion engines.
従来技術
内燃機関のピストンは、軽IU化の要請から一般にアル
ミニウム合金にて形成されている。しかしアルミニウム
合金は耐熱性に劣るため、内燃機関が過酷な条件にて運
転されると、ヘッド部に溶損、熱疲労による亀裂等が発
生することがある。特にヘッド部に燃焼室窪みを有する
直接噴射式ディーゼル機関のピストンに於ては、その燃
焼室窪みのシリンダヘッド側端部の縁部に熱疲労による
亀裂が生じ易いことが従来より良く知られている。従っ
てかかる不具合が生じることがないよう、■燃焼室窪み
のシリンダヘッド側端部の縁部を丸みのある滑かな形状
にする、■前記縁部の表面に電解模処理を行う、■前記
縁部に銅合金の如く高温強度に優れた金属のリングを鋳
ぐるむ、■トップリング溝の内側に冷却孔を設番プる等
の方法が従来より提案されている。The pistons of conventional internal combustion engines are generally made of aluminum alloy in order to reduce the weight of IU. However, since aluminum alloys have poor heat resistance, when an internal combustion engine is operated under severe conditions, melting damage and cracks due to thermal fatigue may occur in the head portion. In particular, it has been well known that in the piston of a direct injection diesel engine that has a combustion chamber recess in the head, cracks are likely to occur at the edge of the cylinder head side end of the combustion chamber recess due to thermal fatigue. There is. Therefore, in order to prevent such problems from occurring, it is necessary to: (1) make the edge of the cylinder head side end of the combustion chamber recess into a rounded and smooth shape; (2) perform electrolytic simulation treatment on the surface of said edge; Conventionally, methods have been proposed, such as casting a ring made of a metal with excellent high-temperature strength, such as copper alloy, and (2) providing cooling holes inside the top ring groove.
しかし■の方法に於ては内燃機関の性能が低下するとい
う問題があり、■の方法に於ては電解膜処理が高コスト
であるという問題があり、■の方法に於てはピストンの
重量及びコストが増大するという問題があり、■の方法
に於てはピストンの製造が困難であるという問題がある
。However, method (■) has the problem that the performance of the internal combustion engine decreases, method (2) has the problem that the electrolyte membrane treatment is expensive, and method (2) has the problem that the weight of the piston is high. There is also the problem that the cost increases, and the method (2) has the problem that it is difficult to manufacture the piston.
発明の目的
本発明は、従来の軽金属製内燃機関用ピストンに於ける
上述の如き問題に鑑み、耐熱性及び耐久性に優れ従って
内燃機関の性能を向上させることが可能であり、比較的
能率良く製造され得る軽量な軽金属製内燃機関用ピスト
ンを提供することを目的としている。Purpose of the Invention In view of the above-mentioned problems with conventional light metal pistons for internal combustion engines, the present invention provides a piston that has excellent heat resistance and durability, and is therefore capable of improving the performance of internal combustion engines, and is relatively efficient. It is an object of the present invention to provide a lightweight light metal piston for an internal combustion engine that can be manufactured.
発明の構成
上述の如き目的は、本発明によれば、−軽金属製内燃機
関用ピストンにして、ヘッド部がそれを構成する軽金属
よりも熱膨張率が小さい強化繊維にて複合強化されてお
り、内燃11閏の運転中に到達する温度が高温度の部位
はど前記強化繊維の体積率が増大されていることを特徴
とする軽金属製内燃機関用ピストン、及び軽金属製内燃
機関用ピストンにして、ヘッド部がそれを構成する軽金
属よりも熱膨張率が小さい複数種類の強化繊維にて複合
強化されており、内燃機関の運転中に到達する温度が高
温度の部位はど熱膨張抑制効果に優れた強化#!A維に
て複合強化されていることを特徴とする軽金属製内燃機
関用ピストンによって達成される。DESCRIPTION OF THE INVENTION According to the present invention, the above objects are: - A piston for an internal combustion engine made of a light metal, the head portion of which is composite reinforced with reinforcing fibers having a lower coefficient of thermal expansion than the light metal constituting the piston; A light metal piston for an internal combustion engine, characterized in that the volume fraction of the reinforcing fibers is increased in areas where the temperature reached during operation of the internal combustion engine is high, and a light metal piston for an internal combustion engine, The head section is compositely reinforced with multiple types of reinforcing fibers that have a lower coefficient of thermal expansion than the light metals that compose it, and has an excellent thermal expansion suppressing effect in areas that reach high temperatures during internal combustion engine operation. Enhanced #! This is achieved by a light metal piston for internal combustion engines that is compositely reinforced with A fibers.
発明の作用及び効果
上述の如き構成によれば、内燃機関の運転中に到達する
温度が高温度の部位はど強化繊維の体積率が増大される
ことにより及び/又は熱膨張抑制効果に優れた強化su
mにて複合強化されることにより、到達Illが高い部
位はど熱膨張率が小さくされ、これによりヘッド部の各
部位の熱膨張量が均一化され、これによりヘッド部の各
部位の熱膨張量の相違に起因して亀裂が発生することが
回避される。また上述の如き構成によれば、内燃機関の
運転中に高温度に加熱される部位が高体積率の強化II
aN又は熱膨張抑制効果に優れた強化繊維にて複合強化
されるので、その部位に溶損が生じることが確実に回避
される。更に上述の如き構成によれば、ヘッド部の表面
に電解膜処理が行われる場合やヘッド部全体が高体積率
又は比較的高価な熱膨張抑制効果に優れた強化繊維にて
複合強化される場合に比して、上述の如く亀裂や溶損を
生じることがない優れたピストンを低能に得ることがで
きる。Effects and Effects of the Invention According to the configuration as described above, the volume fraction of the reinforcing fibers is increased in areas where the temperature reached during operation of the internal combustion engine is high, and/or the area has an excellent thermal expansion suppressing effect. reinforcement su
By composite reinforcement in m, the coefficient of thermal expansion is reduced in the parts where the attained Ill is high, and this equalizes the amount of thermal expansion of each part of the head part. The occurrence of cracks due to volume differences is avoided. Further, according to the above-described configuration, the portion heated to a high temperature during operation of the internal combustion engine is reinforced with a high volume percentage.
Since it is compositely reinforced with aN or reinforcing fibers that have excellent thermal expansion suppressing effects, it is possible to reliably avoid melting loss at that location. Further, according to the above configuration, when the surface of the head portion is subjected to electrolytic membrane treatment, or when the entire head portion is compositely reinforced with high volume ratio or relatively expensive reinforcing fibers having an excellent thermal expansion suppressing effect. Compared to the above, it is possible to obtain an excellent piston without cracking or melting damage as described above.
尚本発明の軽金属製内燃機関用ピストンに於ける強化繊
維は、アルミナ、アルミナ−シリカ、炭素等の短繊維や
、アルミナ、炭素、ボロン、炭化ケイ素等の長繊維、炭
化ケイ素、窒化ケイ素等のボイス力であってよく、熱膨
張抑制効果の高い順位は繊維の材質及び体積率が同一で
あると仮定すれば、長繊維、短繊維、ボイス力であり、
材質の点からは繊維の形態及び体積率が同一であると仮
定すれば、短繊維については炭素、アルミナ−シリカ、
アルミナ、長I18については炭素、炭化ケイ素、アル
ミナ及びボロン、ボイス力については窒化ケイ素、炭化
ケイ素の順位である。また本発明の軽金属製内燃機開用
ピストンに於ける軽金属は上述の如き種々の強化繊維と
の密着性に優れ且軽吊であるアルミニウム、マグネシウ
ム、又はこれらを主成分とする合金であってよい。The reinforcing fibers used in the light metal piston for internal combustion engines of the present invention include short fibers such as alumina, alumina-silica, and carbon; long fibers such as alumina, carbon, boron, and silicon carbide; and long fibers such as silicon carbide and silicon nitride. It may be voice force, and assuming that the fiber material and volume ratio are the same, the order of highest thermal expansion suppressing effect is long fiber, short fiber, and voice force,
In terms of materials, assuming that the fiber morphology and volume fraction are the same, short fibers are carbon, alumina-silica,
For alumina and long I18, carbon, silicon carbide, alumina, and boron are ranked, and for voice force, silicon nitride and silicon carbide are ranked. Further, the light metal in the light metal internal combustion engine starting piston of the present invention may be aluminum, magnesium, or an alloy containing these as main components, which have excellent adhesion to the various reinforcing fibers as described above and are light in weight.
以下に添付の図を参照しつつ、本発明を実施例について
゛詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will now be described in detail by way of example embodiments with reference to the accompanying drawings.
実施例1
第1図は直接噴射式ディーゼル機関用のピストンとして
構成された本発明による内燃機関用ピストンの一つの実
施例を示す縦断面図である。図に於て、1はピストンを
示しており、ピストン1はアルミニウム合金(J IS
JM格AC8A>にて形成されている。ピストン1はそ
のヘッド部2の中央に燃焼室窪み3を有している。燃焼
室窪み3の中央には軸線4に沿って突出する実質的に円
錐形の突起5が設けられでいる。ヘッド部2の図には示
されていないシリンダヘッドの側の表面部は、図には示
されていないが、平均繊維径が3.2μであり平均繊維
長が21RII+であり95wt%A:20s、5wt
%SiO2なる組成を有するアルミナ短繊維(IC1株
式会社製「サフィル」)にて複合 −強化されている。Embodiment 1 FIG. 1 is a longitudinal sectional view showing one embodiment of a piston for an internal combustion engine according to the present invention, which is configured as a piston for a direct injection diesel engine. In the figure, 1 indicates a piston, and the piston 1 is made of aluminum alloy (JIS
JM grade AC8A> is formed. The piston 1 has a combustion chamber recess 3 in the center of its head 2. A substantially conical projection 5 is provided in the center of the combustion chamber recess 3 and projects along the axis 4 . Although not shown in the figure, the surface part of the head part 2 on the side of the cylinder head, which is not shown in the figure, has an average fiber diameter of 3.2μ, an average fiber length of 21RII+, and 95wt%A: 20s. , 5wt
It is composite-reinforced with alumina short fibers ("Safil" manufactured by IC1 Corporation) having a composition of %SiO2.
燃焼室窪み3の開口線の周りの第−の領域6、該第−の
領域の径方向の周りの第二の領域7、該第二の領域の径
方向の周りの第三の領域8に於けるアルミナ短繊維の体
積率はそれぞれ8%、3%、1%に設定されており、ア
ルミナ短繊維は実質的に三次元ランダムにて配向されて
いる。尚第1図に於て、9〜12はそれぞれトップラン
ド、トップリング溝、セカンドリング溝、オイルリング
溝を示しており、13はビンボスを承している。A second region 6 around the opening line of the combustion chamber recess 3, a second region 7 radially around the second region, and a third region 8 radially around the second region. The volume percentages of the alumina short fibers are set to 8%, 3%, and 1%, respectively, and the alumina short fibers are substantially three-dimensionally randomly oriented. In FIG. 1, numerals 9 to 12 represent a top land, a top ring groove, a second ring groove, and an oil ring groove, respectively, and 13 receives a bottle boss.
上述の如く構成されたピストンに於けるアルミナ短繊維
による複合領域及びアルミナ短繊維の体積率は以下の如
く決定された。先ずアルミナ短繊維の如き強化繊維にて
複合強化されていないピストンをディーゼル機関に組込
み、そのディーゼル機関を所定時間運転した後ピストン
を軸線に沿って切断し、ヘッド部の各部の硬さを測定し
てディーゼル機関の運転前後に於ける各部の硬さの低下
度合をめ、これによりディーゼル機関の運転中1、い、
、66□。□□□、え。お。−や第2図に示す。ピスト
ンの構成材料が各部に於て相互に同一である場合には、
到達温度が高い部位はどその熱膨張量は太き(なる。従
って第2図に示された温度分布より、ヘッド部の各部の
温疫差に起因する歪みの発生を少なくすべく、第2図の
領域A〜Dの熱膨張率がそれぞれ20 X 10−8.
21 Xl 0−” 、 22X10−6.23X10
−’ /(+(!Qとなるよう、領域A−C1即ち領域
6〜8に於けるアルミナ短繊維の体積率をそれぞれ8%
、3%、1%とした。The composite area of the alumina short fibers and the volume fraction of the alumina short fibers in the piston constructed as described above were determined as follows. First, a piston that is not compositely reinforced with reinforcing fibers such as short alumina fibers is installed in a diesel engine, and after the diesel engine has been operated for a predetermined period of time, the piston is cut along its axis and the hardness of each part of the head is measured. The degree of decrease in hardness of each part before and after operation of the diesel engine is measured, and from this, during operation of the diesel engine,
, 66□. □□□, eh. oh. - and shown in Figure 2. If the constituent materials of the piston are the same in each part,
The amount of thermal expansion is larger in the area where the reached temperature is higher.Therefore, from the temperature distribution shown in Figure 2, in order to reduce the occurrence of distortion due to temperature differences in each part of the head, The thermal expansion coefficients of regions A to D in the figure are respectively 20 x 10-8.
21Xl 0-”, 22X10-6.23X10
-'/(+(!In order to obtain
, 3%, and 1%.
また第1図に示されたピストンは以下の如く製造された
。先ず管状の断熱マットの製造に於て広〈実施されてい
る真空成形法により、実質的に三次元ランダムにて配向
された体積率8%のアルミナ短繊維14よりなる内径6
2n+m、外径74mm。The piston shown in FIG. 1 was manufactured as follows. First, in the production of a tubular heat insulating mat, an inner diameter 6 made of short alumina fibers 14 having a volume ratio of 8% and substantially three-dimensionally randomly oriented is produced by a widely used vacuum forming method.
2n+m, outer diameter 74mm.
厚さ7IIl1Mの第一のリング15を形成し、これと
同様の方法により実質的に三次元ランダムにて配向され
た体積率3%のアルミナ短繊維よりなる内径74ffi
II11外径8f3 mm、厚さ7Iの第二のリング1
6、及び実質的に三次元ランダムにて配向された体積率
1%のアルミナ短繊維よりなる内径881、外径106
111m、厚さ71の第三のリング17を形成し、それ
らのリングを互に嵌合させることにより第3図に示され
ている如き繊維成形体18を形成した。A first ring 15 with a thickness of 7II1M is formed, and an inner diameter of 74ffi made of short alumina fibers with a volume ratio of 3% oriented in a substantially three-dimensional random manner by a method similar to this.
II11 Second ring 1 with outer diameter 8f3 mm and thickness 7I
6, and an inner diameter of 881 and an outer diameter of 106 made of alumina short fibers with a volume ratio of 1% and substantially three-dimensionally randomly oriented.
A third ring 17 having a length of 111 m and a thickness of 71 mm was formed, and the rings were fitted together to form a fiber molded body 18 as shown in FIG. 3.
次いで繊維成形体18を約700℃に加熱した後、その
繊維成形体をピストン鋳造用の鋳造装置19の下型20
のモールドキャビティ21内に配置し、更にモールドキ
ャビティ21内に約740℃のアルミニウム合金(JI
S規格A C8A >の溶湯22を注渇し、該溶湯を上
型23ににり約1000 kQ/ cs’の圧力にて加
圧し、その加圧状態を溶湯22が完全に凝固するまで保
持した。溶湯22が完全に凝固した後、ノックアウトビ
ン24及び25により下’!!20より凝固体を取出し
、かくして得られたピストン素材に対しT6熱処理を施
した後、研削等の機械加工を行って外径102111m
、長さ105 mm、燃焼室窪みの直径64mmの第1
図に示されている如きピストン1とした。Next, after heating the fiber molded body 18 to about 700°C, the fiber molded body is placed in the lower die 20 of the casting device 19 for piston casting.
aluminum alloy (JI) at about 740° C.
The molten metal 22 of S standard A C8A> was poured, and the molten metal was pressurized at a pressure of about 1000 kQ/cs' in the upper mold 23, and the pressurized state was maintained until the molten metal 22 was completely solidified. After the molten metal 22 is completely solidified, it is lowered by the knockout bottles 24 and 25! ! After taking out the solidified body from No. 20 and subjecting the thus obtained piston material to T6 heat treatment, machining such as grinding was performed to obtain an outer diameter of 102,111 m.
, the first with a length of 105 mm and a diameter of the combustion chamber recess of 64 mm.
A piston 1 as shown in the figure was used.
上述の如く形成されたピストンの性能を評価すべく、上
述の如(形成さむたピストン及びアルミナ短II維の如
き強化繊維にて複合強化されていむい同−寸法及び形状
のピストンをそれぞれ2個ずつ用意し、それらのピスト
ンをシリンダボア径102mm、ストローク105 m
m、総排気m 34.31CCの4気筒4ザイクルデイ
一ゼル機関に組込み、回転数3800rpm、全負荷に
て300時間に亙る耐久試験を行った。試験後各ピスト
ンを検査したところ、アルミナ短繊維にて複合強化され
ていないピストンに於ては燃焼室窪みのシリンダヘッド
側端部の縁部に多数の亀裂が発生していることが認めら
れたが、上述の如く形成された本発明のピストンには亀
裂が全く発生していないことが確認された。In order to evaluate the performance of the pistons formed as described above, two pistons each having the same dimensions and shape were prepared as described above (formed samuta pistons and composite reinforced with reinforcing fibers such as alumina short II fibers). Prepare those pistons with a cylinder bore diameter of 102 mm and a stroke of 105 m.
It was installed in a 4-cylinder, 4-cycle diesel engine with a total exhaust capacity of 34.31 cc, and a durability test was conducted for 300 hours at a rotation speed of 3800 rpm and full load. When each piston was inspected after the test, it was found that in pistons that were not compositely reinforced with short alumina fibers, numerous cracks had occurred at the edge of the cylinder head side of the recess in the combustion chamber. However, it was confirmed that no cracks were generated in the piston of the present invention formed as described above.
実施例2
第5図は同じく直接噴射式ディーゼル機関用のピストン
として構成された本発明による内燃機関用ピストンの伯
の一つの実施例を示す第1図と同様の縦断面図である。Embodiment 2 FIG. 5 is a longitudinal sectional view similar to FIG. 1, showing an embodiment of a piston for an internal combustion engine according to the present invention, which is also constructed as a piston for a direct injection diesel engine.
尚この第5図に於て第1図に示された部分と実質的に同
一の部分には同一の符号が付されている。In FIG. 5, parts that are substantially the same as those shown in FIG. 1 are designated by the same reference numerals.
この実施例に於ては、ヘッド部2は半径方向にはピスト
ン1の円筒状外周面まで、ピストンの長手方向にはヘッ
ド部2の表面2aよりセカンドランド26の実質的に中
央までの範囲にて、図には示されていないが平均繊維径
が3μmであり52wt%At 2011148wt%
5iOpなる組成を有するアルミナ−シリカ短繊維(イ
ソライト工業株式会社製「カオウール」)にて複合強化
されている。特に燃焼室窪み3の周りの第一の領域6は
平均繊維長が1.5mmであり体積率が10%(がさ密
度0.26(1/lJ+3)であるアルミナ−シリカ短
m雑にて複合強化されており、第二のi域7は平均繊維
長が2.5mmであり体積率が8%〈かさ密度0.21
0/〔&)であるアルミナ−シリカ短繊維にて複合強化
されており、第三の領域8は平均m組長が3.5mmで
あり、体積率が6%(がさ密度0.16(1/ci)で
あるアルミナ−シリカ知識) 雑にて複合強化されてお
り、各領域のアルミナ−・1
シリカ短IIat11は軸線4と同心の仮想円筒面内に
て実質的に二次元ランダムにて配向されている。尚この
実施例によるピストンは他の点については上述の実施例
1に於けるピストンと同様に構成されている。In this embodiment, the head portion 2 extends in the radial direction to the cylindrical outer peripheral surface of the piston 1, and in the longitudinal direction of the piston from the surface 2a of the head portion 2 to substantially the center of the second land 26. Although not shown in the figure, the average fiber diameter is 3 μm and 52 wt% At 2011148 wt%
It is compositely reinforced with alumina-silica short fibers ("Kao Wool" manufactured by Isolite Industries Co., Ltd.) having a composition of 5iOp. In particular, the first region 6 around the combustion chamber recess 3 is made of alumina-silica short m miscellaneous material with an average fiber length of 1.5 mm and a volume fraction of 10% (bulk density 0.26 (1/lJ + 3)). The second i region 7 has an average fiber length of 2.5 mm and a volume fraction of 8% (bulk density 0.21).
The third region 8 has an average m-ply length of 3.5 mm and a volume fraction of 6% (gas density 0.16 (1 /ci) Alumina-silica knowledge) is coarsely and compositely reinforced, and the alumina-1 silica short IIat11 in each region is oriented in a substantially two-dimensional random manner within a virtual cylindrical plane concentric with the axis 4. has been done. The piston according to this embodiment has the same structure as the piston according to the first embodiment described above in other respects.
上述の如く構成されたピストンは以下の如く形成された
。先ず図には示されていないが、平均繊維長が1.5m
m、 2.5Il1m、 3.5mm(7)三種類のア
ルミナ−シリカ短繊維をそれぞれ少量のコロイダルシリ
カが添加された水に分散さけて第一乃至第三のスラリー
を形成した。次いで第6図に示されCいる如く、円筒状
の金網27とその両端を閉じる金属板28及び29とよ
りなる濾過器30をスラリー31内に浸漬し、濾過器3
0内の分散媒体を導管32を経て吸引除去する所謂真空
成形法を上)ホの第一乃至第三のスラリ=についてこの
順に順次行うことにより、内径64■、外径104+n
1Il、長さ120mmの円筒体を形成し、該円筒体の
内周面の一部をはつり取った後円筒体を乾燥させること
により、第7図に示されている如く半径方向内側より厚
さがそれぞれ5m1R,6mm19m1llでありそれ
ぞれ軸線33に同心の仮想円筒面内にて二次元ランダム
に配向された平均#li維長組長5111111゜体積
率10%のアルミナ−シリカ短繊維、平均繊維長2.5
mm、体積率8%のアルミナ−シリカ短繊維、平均繊維
長3.51、体積率6%のアルミナ−シリカ短繊維より
なる三つの繊H層34〜36よりなる繊維成形体37を
形成した。次いでこのMIN成形体37を用いて上述の
実施例1の場合′!″n、I(7) iti% JI
* 31 FI K J: ’) e 7 h > *
’tK ’e JF5 a I−・該素材に対しT6
熱処理を施した後、研削等の機械加工を行って第5図に
示されている如きピストン1とした。The piston constructed as described above was formed as follows. First, although not shown in the figure, the average fiber length is 1.5 m.
First to third slurries were formed by dispersing three types of alumina-silica short fibers in water to which a small amount of colloidal silica was added. Next, as shown in FIG. 6C, a filter 30 consisting of a cylindrical wire mesh 27 and metal plates 28 and 29 closing both ends of the filter 30 is immersed in the slurry 31.
By carrying out the so-called vacuum forming method in which the dispersion medium inside 0 is suctioned and removed through the conduit 32 for the first to third slurries shown in above), the inner diameter is 64 mm and the outer diameter is 104 + n.
1Il, a cylindrical body with a length of 120 mm is formed, a part of the inner circumferential surface of the cylindrical body is cut off, and the cylindrical body is dried, so that the thickness is reduced from the radially inner side as shown in FIG. are 5 m1R, 6 mm19 m1ll, respectively, and the average #li fiber length is 5111111° and the volume fraction is 10%, and the average fiber length is 2. 5
A fiber molded body 37 was formed from three fiber H layers 34 to 36, each consisting of alumina-silica short fibers having an average fiber length of 3.51 mm and a volume fraction of 6%, and alumina-silica short fibers having a volume fraction of 6%. Next, using this MIN molded body 37, the case of the above-mentioned Example 1'! ″n, I (7) iti% JI
* 31 FI K J: ') e 7 h > *
'tK 'e JF5 a I-・T6 for the material
After heat treatment, machining such as grinding was performed to obtain a piston 1 as shown in FIG.
かくして形成されたピストンを上述の実施例1に於て使
用されたディーゼル機関と同一のディーゼル機関に組込
み、上述の実施例1の場合と同一の運転条件にて耐久試
験を行ったところ、燃焼室窪み3のシリンダヘッド側端
部の縁部には全く亀裂が発生していないことが確認され
た。またトップリング溝10の摩耗量の少なく、トップ
ランド9の焼付き及びその兆候は全く認められなかった
。The piston thus formed was assembled into the same diesel engine as that used in Example 1 above, and a durability test was conducted under the same operating conditions as in Example 1. As a result, the combustion chamber It was confirmed that no cracks were generated at the edge of the cylinder head side end of the recess 3. Further, the amount of wear of the top ring groove 10 was small, and no seizure of the top land 9 or any signs thereof were observed.
実施例3
第8図は同じ(直接噴射式ディーゼルm関用のピストン
として構成され/j本発明による内燃機関用ピストンの
更に他の一つの実施例を示す縦断面図である。尚この第
8図に於て、tJ1図及び第5図に示された部分と実質
的に同一の部分には同一の符号が付されている。Embodiment 3 FIG. 8 is a longitudinal sectional view showing yet another embodiment of the piston for internal combustion engines according to the present invention, which is constructed as a piston for a direct injection diesel engine. In the figure, parts that are substantially the same as those shown in Figure tJ1 and Figure 5 are given the same reference numerals.
この実施例に於ては、燃焼室窪み3のシリンダヘッド側
端部の縁部を郭定する第一の領域38は、図には示され
ていないが、体積率35%にて軸線4の周りに周方向に
巻かれた平均繊維径20μのアルミナ長1t[t(10
0%αAl2O5、デュポン社製「ファイバ下P」)に
て複合強化されており、第一の領域38の周りの第二の
領域39は体積1210%(かさ密度0.33+] /
、X])にて三次元ランダム配向された図には示されて
いないアルミナ短繊維(IC[株式会社製「サフィル」
〉にて複合強化されており、第二の領域39の径方向の
周りの第三の領域40は体積率5%(かさ密度0、16
0 /n3)にて三次元ランダム配向された図には示さ
れていないアルミナ短11維(ICI株成金社製[サフ
ィル])にて複合強化されており、第三p領域40は半
径方向にはピストン1の円筒状外周面まで及んでおり、
軸線方向にはヘッド部2の表面2aよりセカンドランド
26の実質的に中央まで及んでいる。尚この実施例は他
の点については第1図及び第5図に示された実施例と同
様に構成されている。In this embodiment, the first region 38 defining the edge of the cylinder head side end of the combustion chamber recess 3 is located along the axis 4 at a volume fraction of 35%, although it is not shown in the figure. Alumina length 1t [t(10
The second region 39 around the first region 38 has a volume of 1210% (bulk density 0.33+] /
,
), and the third region 40 around the second region 39 in the radial direction has a volume ratio of 5% (bulk density 0, 16
The third p region 40 is compositely reinforced with alumina short 11 fibers (not shown in the figure) (manufactured by ICI Co., Ltd. Seikin Co., Ltd. [Safil]) which are three-dimensionally randomly oriented at 0/n3). extends to the cylindrical outer peripheral surface of the piston 1,
In the axial direction, it extends from the surface 2a of the head portion 2 to substantially the center of the second land 26. This embodiment is constructed in the same manner as the embodiment shown in FIGS. 1 and 5 in other respects.
上述の如き構成を有するピストン(直径10211長さ
105mm、第一の領域38の内径54mm外径74m
m、軸線方向長さ5.51、第二の領域39の内径74
mm、外径90mm、軸線方向長さ11111I111
第三(7)領[40(7)内径90n+m、軸線方向長
さ23+111!l)を上述の実施例1及び2の場合と
同様の要領にて形成し、そのピストンを実施例1及び2
に於て使用されたディーゼル機関と同一のディーゼル機
関に組込み、回転数3800rpn+、全負荷にて耐久
試験を行ったところ、上述の実施例1及び2の場合より
も長時間の500時間に亙る耐1、 久試験後に於ても
燃焼室窪み3のシリンダヘッド側端部の縁部には亀裂が
発生しておらず、またトップリング溝10の摩耗量も少
なり、トップランド9の焼付き及びその兆候は認められ
なかった。A piston having the above-mentioned configuration (diameter 10211 length 105 mm, first region 38 inner diameter 54 mm outer diameter 74 mm)
m, axial length 5.51, inner diameter of second region 39 74
mm, outer diameter 90mm, axial length 11111I111
Third (7) region [40 (7) inner diameter 90n+m, axial length 23+111! l) was formed in the same manner as in Examples 1 and 2 above, and the piston was formed in the same manner as in Examples 1 and 2.
When the engine was assembled into the same diesel engine as that used in the previous example, and an endurance test was conducted at a rotational speed of 3,800 rpm+ and a full load, it was found that the durability lasted for 500 hours, which is longer than in the cases of Examples 1 and 2 described above. 1. Even after a long test, no cracks were found on the edge of the cylinder head side end of the combustion chamber recess 3, and the amount of wear on the top ring groove 10 was small, and there was no seizure or seizure of the top land 9. No signs of this were observed.
実施例4
上述の実施例3に於ける第一の領域38が体積率25%
にて三次元ランダム配向された炭化ケイ素ボイス力(平
均繊維径0.5μ、平均繊維長150μ)にて複合強化
されている貞を除き、実施例3のピストンと同一のピス
トンを形成した。このピストンについて上述の実施例3
の場合と同一の条件にて耐久試験を行ったところ、50
0時間に亙る耐久試験後に於ても燃焼室窪み3のシリン
ダヘッド側端部の縁部には亀裂が発生しておらず、トッ
プリング溝10の摩耗量も少なく、トップランド9の焼
付き及びその兆候は全く認められなかった。Example 4 The first region 38 in Example 3 above has a volume ratio of 25%
A piston identical to the piston of Example 3 was formed, except for the steel which was compositely reinforced with three-dimensionally randomly oriented silicon carbide voice force (average fiber diameter 0.5μ, average fiber length 150μ). Example 3 described above for this piston
A durability test was conducted under the same conditions as in the case of 50
Even after the 0-hour durability test, there were no cracks on the edge of the cylinder head side end of the combustion chamber recess 3, the amount of wear on the top ring groove 10 was small, and there was no seizure or seizure of the top land 9. No signs of this were observed.
実施例5
第9図は間接噴射式ディーゼル機関用のピストンとして
構成された本発明による内燃41i関用ピストンの一つ
の実施例を一部破断して示す斜視図である。尚この第9
図に於て第1図及び第5図に示された部分と実質的に同
一の部分には同一の符号が付されている。Embodiment 5 FIG. 9 is a partially cutaway perspective view showing one embodiment of an internal combustion 41i piston according to the present invention configured as a piston for an indirect injection diesel engine. Furthermore, this ninth
In the figures, parts that are substantially the same as those shown in FIGS. 1 and 5 are designated by the same reference numerals.
この実施例に於ては、ヘッド部2のシリンダヘッド側の
表面部の中央を郭定する第一の領域41は、図には示さ
ねていないが、体積率20%にて三次元ランダム配向さ
れた炭化ケイ素ボイス力(平均#J帷径0.5μ、平均
繊維長150μ)にて複合強化されており、第一の領域
41の径方向の周りの第二の領域42は、図には示され
ていないが、体積率12%にて三次元ランダム配向され
た平均繊維径3μ、平均繊維長2IIImのアルミナ短
繊維(95wt%δA120G 、5wt%SiO2、
ICI株式会社製[サフィルRFJ)にて複合強化され
ており、第二の領域42の径方向の周りの第三の領域4
3は体積率7%にて三次元ランダム配向された図には示
されていないアルミナ知wA維(ICI株式会社製「サ
フィル」)にて複合強化されている。また第三の領域4
3は半径方向にはピストン1の円筒状外周面まで及んで
おり、軸線方向にはヘッド部2の表面2aよりレカンド
ランド26の実質的に中央まで及んでいる。In this embodiment, a first region 41 defining the center of the cylinder head side surface of the head portion 2 is formed in a three-dimensional random orientation with a volume ratio of 20%, although it is not shown in the figure. The second region 42 around the first region 41 in the radial direction is Although not shown, short alumina fibers (95 wt% δA120G, 5 wt% SiO2,
The third region 4 around the second region 42 in the radial direction is compositely reinforced with ICI Co., Ltd. [Saphir RFJ].
3 is compositely reinforced with alumina fiber ("Saphir", manufactured by ICI Corporation), which is not shown in the figure, and is three-dimensionally randomly oriented at a volume ratio of 7%. Also, the third area 4
3 extends to the cylindrical outer peripheral surface of the piston 1 in the radial direction, and extends from the surface 2a of the head portion 2 to substantially the center of the recand land 26 in the axial direction.
上述の如き構成を有するピストン(直径92IWII+
1長さ851IIIIl、第一の領域41の直径4Qm
m、厚さ5mm、第二の領域42の内径4(Mm、外径
761!1m、厚さ5mn+、第三の領域の内径7(3
mm、軸線方向長さ15m1Tl)を上述の各実施例と
同様高圧鋳造法にて形成し、かくして形成されたピスト
ンを200Qcc4気筒デイ一ビル機関に組込み、回転
数520 Orpmにて300時間に亙る耐久試験を行
ったところ、ピストンのヘッド部2の表面2aには溶損
や亀裂は全く発生しておらず、トップリング溝10の摩
耗量も少ないことが確認された。またトップランド9の
焼付き及びその兆候は認められなかった。更にヘッド部
が強化繊維にて複合強化されることによりヘッド部の肉
厚を薄クツることができ、これによりピストンを軽量化
して良好な吹き上り及び高速回転化が可能となった。A piston having the configuration as described above (diameter 92IWII+
1 length 851IIIl, diameter of first region 41 4Qm
m, thickness 5 mm, inner diameter of the second region 42 (Mm, outer diameter 761!1 m, thickness 5 mn+, inner diameter of the third region 7 (3
mm, axial length 15m1Tl) was formed by high-pressure casting as in each of the above-mentioned examples, and the piston thus formed was assembled into a 200Qcc 4-cylinder day-bill engine, and was durable for 300 hours at a rotational speed of 520 orpm. When the test was conducted, it was confirmed that no melting damage or cracks occurred on the surface 2a of the head portion 2 of the piston, and that the amount of wear of the top ring groove 10 was small. Furthermore, no burn-in of Topland 9 or any signs thereof were observed. Furthermore, by compositely reinforcing the head section with reinforcing fibers, the wall thickness of the head section can be made thinner, which makes the piston lighter and allows for better blow-up and higher speed rotation.
以上に於ては本発明を幾つかの実施例について詳細に説
明したが、本発明はこれらの実施例に限定されるもので
はなく、本発明の範囲内にて種々の実施例が可能である
ことは当業者にとって明らかであろう。Although the present invention has been described above in detail with reference to several embodiments, the present invention is not limited to these embodiments, and various embodiments are possible within the scope of the present invention. This will be clear to those skilled in the art.
第1図ゆ直接噴射式ディーゼル機関用のピストンとして
構成された本発明による内燃機関用ピストンの一つの実
M例を示す縦断面図、第2図は直接噴射式ディーゼル機
関のピストンの運転状態に於ける温度分布を示す解図、
第3図は第1図に示された実施例の製造に使用される繊
維成形体を示す斜視図、第4図は第1図に示された実施
例を製造する際の鋳造工程を示す断面図、第5図は直接
噴射式ディーゼル機関用のピストンとして構成された本
発明による内燃機関用ピストンの他の一つの実施例を示
す縦断面図、第6図は第5図に示された実施例の製造に
使用されるm組成形体の真空成形法による製造工程を示
す解図、第7図は第51 図に示されたピストンの製造
に使用されるIIA維成組成
形体を一部破断して示す斜視図、第8図は直接噴射式デ
ィーゼル機関1用のピストンとして構成された本発明に
よる内燃機関用ピストンの他の一つの実施例を示す縦断
面図、第9図は間接噴射式ディーゼル機関用のピストン
として構成された本発明によるピストンの一つの実施例
を一部破断して示す斜視図である。
1・・・ピストン、2・・・ヘッド部、3・・・燃焼室
窪み。
4・・・軸線、5・・・突起、6・・・第一の領域、7
・・・第二の領域、8・・・第三の領域、9・・・トッ
プランド、10・・・トップリング溝、11・・・セカ
ンドリング溝。
12・・・オイルリング溝、13・・・ビンボス、14
・・・アルミナ短繊維、15・・・第一のリング、16
・・・第二のリング、17・・・第三のリング、18・
・・II維成形体、19・・・鋳造装置、20・・・下
型、21・・・モールドキャビティ、22・・・アルミ
ニウム合金の溶湯。
23・・・上型、24.25・・・ノックアウトビン、
26・・・セカンドランド、27・・・金網、28.2
9・・・金属板、30・・・濾過器、31・・・スラリ
ー、32・・・導管、33・・・軸線、34・・・第一
のS*府、35・・・第二の繊維層、36・・・第三の
繊維層、37・・・繊維゛成形体、38・・・第一の領
域、39・・・第二の領域。
40・・・第三の領域、41・・・第一の領域、42・
・・第二の領域、43・・・第三の領域
特許出願人 トヨタ自動車株式会社
代 理 人 弁理士 明石 昌毅
第 1 図
第2図
第3図
1日
第4図
第5図
第6図
2
第 7 図
第8図
第9図FIG. 1 is a longitudinal sectional view showing an actual example of a piston for an internal combustion engine according to the present invention configured as a piston for a direct injection diesel engine, and FIG. 2 shows the operating state of the piston for a direct injection diesel engine. An illustration showing the temperature distribution at
FIG. 3 is a perspective view showing a fiber molded body used in manufacturing the embodiment shown in FIG. 1, and FIG. 4 is a cross-sectional view showing the casting process when manufacturing the embodiment shown in FIG. 1. 5 is a longitudinal sectional view showing another embodiment of a piston for an internal combustion engine according to the present invention configured as a piston for a direct injection type diesel engine, and FIG. 6 is a longitudinal sectional view showing an embodiment of the piston shown in FIG. 5. Figure 7 is a partially cutaway diagram of the IIA fiber composition body used in the manufacture of the piston shown in Figure 51. 8 is a longitudinal sectional view showing another embodiment of the piston for an internal combustion engine according to the present invention configured as a piston for a direct injection diesel engine 1, and FIG. 1 is a perspective view, partially cut away, of an embodiment of a piston according to the invention configured as a piston for an engine; FIG. 1...Piston, 2...Head part, 3...Combustion chamber recess. 4... Axis line, 5... Protrusion, 6... First region, 7
... second region, 8 ... third region, 9 ... top land, 10 ... top ring groove, 11 ... second ring groove. 12...Oil ring groove, 13...Bin boss, 14
...Alumina short fiber, 15...First ring, 16
...Second ring, 17...Third ring, 18.
...II fiber molded body, 19... Casting device, 20... Lower mold, 21... Mold cavity, 22... Molten metal of aluminum alloy. 23...Upper mold, 24.25...Knockout bin,
26...Second land, 27...Wire mesh, 28.2
9... Metal plate, 30... Filter, 31... Slurry, 32... Conduit, 33... Axis line, 34... First S*fu, 35... Second Fiber layer, 36... Third fiber layer, 37... Fiber molded body, 38... First region, 39... Second region. 40...Third area, 41...First area, 42.
...Second Area, 43...Third Area Patent Applicant Toyota Motor Corporation Representative Patent Attorney Masatake Akashi 1st Figure 2Figure 3Figure 1 Day 4Figure 5Figure 6Figure 2 Figure 7 Figure 8 Figure 9
Claims (2)
それを構成する軽金属よりも熱膨張率が小さい強化繊維
にて複合強化されており、内燃機関の運転中に到達する
温度が高温度の部位はど前記強化11雑の体積率が増大
されていることを特徴とする軽金属製内燃機関用ピスト
ン。(1) The piston for internal combustion engines is made of light metal, and the head part is composite reinforced with reinforcing fibers that have a lower coefficient of thermal expansion than the light metal that composes it, so that the temperature reached during operation of the internal combustion engine is high. 1. A piston for an internal combustion engine made of a light metal, characterized in that the volume fraction of the reinforcement is increased in each part.
それを構成する軽金属よりも熱膨張率が小さい複数種類
の強化繊維にて複合強化されており、内燃機関の運転中
に到達する温度が高温度の部位はど熱膨張抑制効果に優
れた強化41紺にて複合強化されていることを特徴とす
る軽金属製内燃機関用ピストン。(2) This is a light metal piston for internal combustion engines, and the head part is compositely reinforced with multiple types of reinforcing fibers that have a lower coefficient of thermal expansion than the light metal that composes it, so that the temperature reached during operation of the internal combustion engine is A light metal piston for an internal combustion engine, characterized in that high-temperature parts are compositely reinforced with Reinforced 41 navy blue, which has an excellent effect of suppressing thermal expansion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59097124A JPS60240854A (en) | 1984-05-15 | 1984-05-15 | Piston for internal-combustion engine made of light metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59097124A JPS60240854A (en) | 1984-05-15 | 1984-05-15 | Piston for internal-combustion engine made of light metal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60240854A true JPS60240854A (en) | 1985-11-29 |
Family
ID=14183811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59097124A Pending JPS60240854A (en) | 1984-05-15 | 1984-05-15 | Piston for internal-combustion engine made of light metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60240854A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2596104A1 (en) * | 1986-03-22 | 1987-09-25 | Kloeckner Humboldt Deutz Ag | THERMALLY INSULATING PISTON IN PARTICULAR FOR A SELF-IGNITION ENGINE |
JPH02176147A (en) * | 1988-12-28 | 1990-07-09 | Isuzu Motors Ltd | Piston for internal combustion engine and its manufacture |
US6240828B1 (en) * | 1998-04-21 | 2001-06-05 | Nissan Motor Co., Ltd. | Piston of internal combustion engine |
-
1984
- 1984-05-15 JP JP59097124A patent/JPS60240854A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2596104A1 (en) * | 1986-03-22 | 1987-09-25 | Kloeckner Humboldt Deutz Ag | THERMALLY INSULATING PISTON IN PARTICULAR FOR A SELF-IGNITION ENGINE |
JPH02176147A (en) * | 1988-12-28 | 1990-07-09 | Isuzu Motors Ltd | Piston for internal combustion engine and its manufacture |
US6240828B1 (en) * | 1998-04-21 | 2001-06-05 | Nissan Motor Co., Ltd. | Piston of internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4548126A (en) | Piston with local inorganic fiber reinforcement and method of making the same | |
US5354608A (en) | Internal combustion engine cylinder heads and similar articles of manufacture and methods of manufacturing same | |
JP4898659B2 (en) | High strength steel cylinder liner for diesel engine | |
US4576863A (en) | Composite material and process for its production | |
JPH09177604A (en) | Cast metallic piston for internal combustion engine | |
EP0710729B1 (en) | Fibre-reinforced metal pistons | |
JPS6198948A (en) | Piston for internal-combustion engine | |
JP2002518986A (en) | Piston and cylinder / sleeve for internal combustion engine comprising fiber reinforced ceramic matrix composite | |
JPS60240854A (en) | Piston for internal-combustion engine made of light metal | |
Suzuki | Surface modifications of pistons and cylinder liners | |
JPS60182338A (en) | Cylinder block for internal-combustion engine made of light metal | |
JPH07132362A (en) | Cylinder block and its production | |
WO2018190167A1 (en) | Piston of internal-combustion engine, and method for manufacturing piston of internal-combustion engine | |
JPS61126356A (en) | Light metallic cylinder block for internal-combustion engine | |
JPS59229033A (en) | Piston for internal-combustion engine | |
JPS6245964A (en) | Heat insulating piston and manufacture thereof | |
JP3635473B2 (en) | Piston for internal combustion engine and manufacturing method thereof | |
JPH0339828B2 (en) | ||
JPS59229034A (en) | Piston for internal-combustion engine | |
JPH06218522A (en) | Fiber reinforced metal matrix composite sliding member and production thereof | |
JPH05200525A (en) | Production of heat insulating member | |
JPS5982156A (en) | Production of piston for internal-combustion engine | |
JPS62168954A (en) | Piston for diesel engine | |
JPH01165796A (en) | Fiber reinforced metallic composite material | |
JPH10288079A (en) | Cylinder block and its casting method |