JPS60248788A - Soil ground solidification - Google Patents
Soil ground solidificationInfo
- Publication number
- JPS60248788A JPS60248788A JP59106018A JP10601884A JPS60248788A JP S60248788 A JPS60248788 A JP S60248788A JP 59106018 A JP59106018 A JP 59106018A JP 10601884 A JP10601884 A JP 10601884A JP S60248788 A JPS60248788 A JP S60248788A
- Authority
- JP
- Japan
- Prior art keywords
- soil
- ground
- organic solvent
- synthetic resin
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は土盤を固化する施工法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a construction method for solidifying soil.
(従来の技術と問題点)
従来、軟弱地盤を改良するためセメント、石灰等の薬剤
を地盤基材と混合し、または地中に上記薬剤の水混合液
をノズルを用いて噴射混合する工法が知られている。(Conventional technology and problems) Conventionally, in order to improve soft ground, there has been a construction method in which chemicals such as cement and lime are mixed with the ground base material, or a water mixture of the above chemicals is sprayed into the ground using a nozzle. Are known.
しかしながら、これらの工法は地盤と薬剤とを機械的に
混合するため原地盤を荒す欠点があり、そのため施工後
地盤を整正し、転圧するなどの手間を要する。また、噴
射混合法では地盤表面が隆起するなどの欠点があり、施
工も面倒である。However, these construction methods have the disadvantage of roughening the original ground because they mechanically mix the ground and chemicals, and therefore require time and effort such as leveling the ground and compacting it after construction. In addition, the injection mixing method has drawbacks such as the ground surface being raised, and construction is also troublesome.
さらに、表土の風水による侵食を防止するために2、酢
酸ビニル系等の合成樹脂エマルジョンを水で希釈して土
壌表面に撒布して表層を固結することも知られている。Furthermore, in order to prevent topsoil from being eroded by feng shui, it is also known to solidify the surface layer by diluting a synthetic resin emulsion such as vinyl acetate with water and spreading it on the soil surface.
合成樹脂エマルジョンは比較的粘度が大きく、表面張力
が高いために土壌中に浸透し難く、固化深さは多くても
約2.5c+n程度である。したがって、その浅く固化
した表層の一部が破損する。とその部分から侵食が起り
易い。−
C問題を解決するための手段)
上記の従来法における問題は本発明により解決された。Synthetic resin emulsions have a relatively high viscosity and high surface tension, so they are difficult to penetrate into soil, and the solidification depth is about 2.5c+n at most. Therefore, a portion of the shallow solidified surface layer is damaged. Erosion is likely to occur from that area. - Means for Solving Problem C) The above-mentioned problems in the conventional method have been solved by the present invention.
本発明は、土盤親和性かつ有機溶媒可溶性の合成樹脂を
揮発性有機溶媒に溶解した溶液を土盤に撒布、浸透させ
ることを特徴とする土盤固化法である。The present invention is a soil solidification method characterized by spreading and permeating a solution of a soil-compatible and organic solvent-soluble synthetic resin in a volatile organic solvent.
本発明において土盤とは地盤のほか人工的に盛土して造
成した運動場、テニスコートなどの床面地下工事の壁、
天井面をも包含する。In the present invention, the term "soil" refers to not only ground, but also playgrounds created by artificial embankment, floors of tennis courts, walls of underground construction, etc.
It also includes the ceiling surface.
土盤親和性かつ有機溶媒可溶性の合成樹脂としては、た
とえば、ポリウレタン系、アクリル系、ポリエステル系
、エポキシ系、ゴム系の重合物が挙げられる。このよう
な樹脂は合成接着剤や塗料の分野でよく知られている。Examples of synthetic resins that are compatible with soil and soluble in organic solvents include polyurethane-based, acrylic-based, polyester-based, epoxy-based, and rubber-based polymers. Such resins are well known in the field of synthetic adhesives and paints.
合成樹脂を溶解する揮発性有機溶媒としては、たとえば
、ベンゼン、トルエン、キシレン、メチレンクロリド、
クロロホルム、モノクロルベンゼン、シクロヘキサノン
、ジオキサン、アセトン、メチルエチルケトン、酢酸エ
チル、酢酸ブチル、ジメチルホルムアミドなどが挙げら
れる。有機溶媒は合成樹脂の種類に応じて適当な混合溶
媒の形で用いられるこ七が多い。もちろん、上側以外の
溶媒を必要に応じて用いまたは混合使用してもよい0
揮発性有機溶媒溶液中の合成樹脂の濃度および同溶液の
土盤への撒布量は合成樹脂の種類、施工する土盤の状況
、所望の施工効果の程度などによって選ばれ、一般に濃
度が高くなり、撒布量が増すと土盤の固化度も上昇する
が、実用上濃度20〜30%程度、撒布量200〜60
07/lrf程度が好ましい。Examples of volatile organic solvents that dissolve synthetic resins include benzene, toluene, xylene, methylene chloride,
Examples include chloroform, monochlorobenzene, cyclohexanone, dioxane, acetone, methyl ethyl ketone, ethyl acetate, butyl acetate, dimethylformamide, and the like. Most organic solvents are used in the form of a mixed solvent appropriate for the type of synthetic resin. Of course, solvents other than the upper one may be used or mixed as needed. It is selected depending on the condition of the soil, the degree of desired construction effect, etc. Generally, as the concentration increases and the amount of application increases, the degree of solidification of the soil also increases, but in practical terms, the concentration is about 20 to 30% and the amount of application is 200 to 60%.
07/lrf is preferable.
土盤への溶液の撒布は土盤表面全面に行ってもよく、ま
たノズルを用いて格子状に行ってもよい。The solution may be applied to the soil over the entire surface of the soil, or may be applied in a grid pattern using a nozzle.
(作用)
合成樹脂の揮発性有機溶媒溶液を土盤に撒布すると溶液
は粘度が低く、表面張力も少いので、エマルジョンを撒
布した場合よりも、深く浸透し、容易に数C以上固化さ
せることができる。浸透した溶液は揮発によって溶媒を
失い、土盤粒子は合成樹脂の硬化により結着し固化し非
透水性となる。(Function) When a volatile organic solvent solution of a synthetic resin is sprinkled on the soil, the solution has a low viscosity and a low surface tension, so it penetrates deeper than when an emulsion is sprinkled and can easily solidify over several Cs. I can do it. The infiltrated solution loses its solvent through volatilization, and the soil particles are bound and solidified by the hardening of the synthetic resin, becoming impermeable to water.
格子状撒布の場合、溶液は土盤表面から、たとえば40
〜50度のような急角度に外方へ拡散しつ\浸透するの
で、格子の目の部分(不撒布部分)の強度をもある程度
保つと共に、格子と格子の目の面積比や網目の粗さを調
節することにより土盤の透水性を調整することができる
。In the case of grid-like spreading, the solution is spread from the soil surface, for example 40
Since it diffuses outward at a steep angle of ~50 degrees and penetrates, it maintains the strength of the lattice mesh part (unspreading part) to a certain extent, and also reduces the area ratio of the lattice to lattice mesh and the coarseness of the mesh. By adjusting the depth, the permeability of the soil can be adjusted.
(発明の効果)
本発明の方法によれば、原土盤を荒すことなく土盤表面
を深く固化できるばかりでなく、土盤の保温性が増すの
で寒冷地における土盤の凍結深度が浅くなり、凍上現象
を防止ないし低減させることができる。また、格子状撒
布により土盤の固化と共に透水性の調節を行うこともで
きる。(Effects of the Invention) According to the method of the present invention, not only can the surface of the soil be deeply solidified without roughening the original soil, but also the heat retention of the soil is increased, so the freezing depth of the soil in cold regions is reduced. , frost heave phenomenon can be prevented or reduced. In addition, it is also possible to solidify the soil and adjust water permeability by spreading it in a grid pattern.
実施例1
一軸圧縮強度qu= 0.3 kVc4、゛透水係数5
X10−’C/Sの地盤に湿気硬化型ポリオール系ポリ
ウレタン樹脂〔商品名オートゾール、(株)オートセッ
ト(大阪市)製〕1部とトルエン系シンナー1部の混合
液を8’OOP/dの割合で撒布、浸透させて、3日間
養生させた。養生後の地盤強度はqu=5〜8 kg/
ctlに上昇し、透水係数はl0XIO−8C/Sに低
下した。上記ポリウレタン樹脂溶液の浸透による固化深
さは3〜5Gであった。Example 1 Unconfined compressive strength qu = 0.3 kVc4, water permeability coefficient 5
A mixture of 1 part moisture-curing polyol-based polyurethane resin [trade name Autosol, manufactured by Autoset Co., Ltd. (Osaka City)] and 1 part toluene-based thinner was applied to the ground of X10-'C/S at 8'OOP/d. It was spread and allowed to penetrate at a ratio of 1, and was allowed to cure for 3 days. The soil strength after curing is qu=5~8 kg/
ctl and the hydraulic conductivity decreased to 10XIO-8C/S. The solidification depth due to penetration of the polyurethane resin solution was 3 to 5G.
実施例2
バルブ廃泥(含水比150%)にセメント8%、生石灰
3%(重量比)を加えて固化させた。その−軸圧縮強度
qu = 1.2〜1.4 kg/cI#、透水係数2
X10’C/Sであった。これに例1のポリウレタン樹
脂、シンナー混合液を4oo、f/rd浸透させて3日
間養生後測定したところ、qu 〜5.4〜7.2 k
Q/aAに上昇し、透水係数は8X10 C76に低下
していた。Example 2 8% cement and 3% quicklime (weight ratio) were added to valve waste mud (water content 150%) and solidified. - Axial compressive strength qu = 1.2-1.4 kg/cI #, hydraulic conductivity 2
It was X10'C/S. When the polyurethane resin and thinner mixture of Example 1 was infiltrated into this at 4oo, f/rd, and measured after curing for 3 days, qu ~5.4~7.2k
Q/aA had increased, and the hydraulic conductivity had decreased to 8X10 C76.
実施例3
砂質混和粘性土にセメント系固化剤〔オートセ、y h
O# 3500 、 (株) t−) −k y )
製Ti ) ヲ5%(重量比)添加して固化させ、テニ
スコート面を作製した。その−軸圧縮強度qu = 1
.4 &9/c4であった。このま\では運動用の面と
しては耐摩耗性が不足しかつまた適度の透水性が必要な
ので、その表層に例1におけると同様のポリオール系ポ
リウレタン樹脂とシンナー混合液を3001//lri
の割合で巾2〜3cI11,10〜15CIK角の格子
状にノズルを用いて撒布した。3E!間養生後、qu=
5.4kQ/dに上昇し、透水係数は上記混合液の浸透
した部分については10 X 10−” C76で、液
が撒布されなかった網目の内部は6X10C/Sであり
、雨後短時間にて使用可能な全天候型のコ−トに仕、上
った。Example 3 Cement solidifying agent [Autoce, y h
O# 3500, Co., Ltd. t-)-ky)
A tennis court surface was prepared by adding 5% (by weight) of Ti (produced by Ti) and solidifying it. Its −axial compressive strength qu = 1
.. It was 4&9/c4. At this point, as a surface for sports, it lacks abrasion resistance and requires appropriate water permeability, so the same mixture of polyol-based polyurethane resin and thinner as in Example 1 was applied to the surface layer at 3001//lri.
The mixture was sprayed using a nozzle in the form of a lattice with a width of 2 to 3 cI11 and a square of 10 to 15 cIK at a ratio of: 3E! After curing, qu=
The hydraulic conductivity increased to 5.4 kQ/d, and the permeability coefficient was 10 x 10-" C76 for the part where the above mixed solution penetrated, and 6 x 10 C/S for the inside of the mesh where the liquid was not sprayed. I put on a usable all-weather coat and went up.
特許出顆大 株式会社 オートセット 代理人 弁理士 竹 内 卓Patent Dekodai Autoset Co., Ltd. Agent: Patent Attorney Taku Takeuchi
Claims (1)
有機溶媒!こ溶解した溶液を土盤に撒布、浸透させるこ
とを特徴とする土盤固化法。 2、撒布を格子状に行う特許請求の範囲第1項記載の土
盤固化法。[Claims] 1. Synthetic resin that has soil affinity and is soluble in organic solvents as a volatile organic solvent! A soil solidification method characterized by spreading and permeating the dissolved solution into the soil. 2. The soil solidification method according to claim 1, wherein the spreading is carried out in a grid pattern.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59106018A JPS60248788A (en) | 1984-05-24 | 1984-05-24 | Soil ground solidification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59106018A JPS60248788A (en) | 1984-05-24 | 1984-05-24 | Soil ground solidification |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60248788A true JPS60248788A (en) | 1985-12-09 |
Family
ID=14422912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59106018A Pending JPS60248788A (en) | 1984-05-24 | 1984-05-24 | Soil ground solidification |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60248788A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101803495A (en) * | 2010-03-29 | 2010-08-18 | 天津师范大学 | Method for adjusting pH value of loam and clay lawn matrix by waste colloidal particles |
JP2019138113A (en) * | 2018-02-15 | 2019-08-22 | 鹿島建設株式会社 | Earth retaining construction method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5249611A (en) * | 1975-10-20 | 1977-04-20 | Nippon Musical Instruments Mfg | Method of stabilizing and reinforcing sandstone soil |
-
1984
- 1984-05-24 JP JP59106018A patent/JPS60248788A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5249611A (en) * | 1975-10-20 | 1977-04-20 | Nippon Musical Instruments Mfg | Method of stabilizing and reinforcing sandstone soil |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101803495A (en) * | 2010-03-29 | 2010-08-18 | 天津师范大学 | Method for adjusting pH value of loam and clay lawn matrix by waste colloidal particles |
JP2019138113A (en) * | 2018-02-15 | 2019-08-22 | 鹿島建設株式会社 | Earth retaining construction method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103124585A (en) | Method and mixture for foundation of a sports area | |
CN107586459A (en) | A kind of durability porous asphalt pavement anti-disperse material and its construction method | |
JP3649657B2 (en) | Soil improvement method | |
US4826350A (en) | Method for constructing water-permeable sports surface and the like | |
JPS60248788A (en) | Soil ground solidification | |
JP2002013146A (en) | Slope stabilization working method | |
CN104478397B (en) | Hypertonicity slurries with no pressure and compound method thereof | |
US3368356A (en) | Soil stabilization method | |
JPS59206502A (en) | Production of water pervious cement concrete construction | |
JP2004059787A (en) | Method for constructing face of slope | |
JP3795767B2 (en) | Soil-based pavement and its construction method | |
JP3862706B2 (en) | Slope construction method | |
JP3963182B2 (en) | Flat ground or coat construction method and structure | |
CN206274916U (en) | Ecological Bog and Marsh Garden and ecological garden system | |
JP6455691B2 (en) | Slope conservation method using coal ash | |
JPS62179588A (en) | Clay conditioner and production thereof | |
JP2589236B2 (en) | Construction method of surface layer of soil ground | |
JPH0553882B2 (en) | ||
Shannon | Low-Logistic Erosion Control Methodologies | |
JPH09296406A (en) | Earth-paving agent and earth pavement and dust proofing method | |
JP2006118297A (en) | Soil improvement method | |
JPH0647803B2 (en) | Construction method of constructed soil with permeability | |
JPH0492018A (en) | Preventing work for stone dropping and material therefor | |
JP2001098507A (en) | Method for preventing quicksand on ground of park, school, and stadium or the like | |
JP4989332B2 (en) | Vegetation method to suppress turf growth and its composition mixture |