[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60246274A - Metal composite ceramic sintered body and manufacture - Google Patents

Metal composite ceramic sintered body and manufacture

Info

Publication number
JPS60246274A
JPS60246274A JP10397084A JP10397084A JPS60246274A JP S60246274 A JPS60246274 A JP S60246274A JP 10397084 A JP10397084 A JP 10397084A JP 10397084 A JP10397084 A JP 10397084A JP S60246274 A JPS60246274 A JP S60246274A
Authority
JP
Japan
Prior art keywords
metal
ceramic
materials
temperature
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10397084A
Other languages
Japanese (ja)
Other versions
JPH0218302B2 (en
Inventor
英雄 居上
田賀井 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10397084A priority Critical patent/JPS60246274A/en
Publication of JPS60246274A publication Critical patent/JPS60246274A/en
Publication of JPH0218302B2 publication Critical patent/JPH0218302B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔本発明の属する産業上の利用分野〕 本発明は従来のセラミックスの欠点である脆性を画期的
に改良したニューセラミックス焼結体並にその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application to Which the Present Invention Pertains] The present invention relates to a new ceramic sintered body that has dramatically improved the brittleness that is a drawback of conventional ceramics, and a method for producing the same.

〔従来技術とその問題点〕[Prior art and its problems]

従来のセラミックス焼結体は、一般に硬くて、耐侵蝕性
が優れているけれども、反面脆くて衝撃に弱く亀裂が入
り易く靭性値も低い等の多くの欠点を有している。そこ
で、これらの欠点を改良するために材料の複合化即ち2
種以上の異質の材料を複合させて、夫々の材料の持つ特
長を生かした材料の開発研究も試みられている。セラミ
ックス材料と金属との複合材料では、以前よりサーメッ
トとして知られるCr−Al系、或いはW −Cr −
Al系もしくは’l”1c−Nl 系などがあって、そ
の構成材料であるクロムやタングステ4チタンなどは高
温においても酸化抵抗の強い材料で、その耐熱性と高硬
度性により、航璧機エンジンや切削工具などに使用され
ている。
Conventional ceramic sintered bodies are generally hard and have excellent corrosion resistance, but on the other hand, they have many drawbacks such as being brittle, weak against impact, easily cracking, and having low toughness values. Therefore, in order to improve these drawbacks, material composites, i.e. 2
Attempts are also being made to develop and research materials that utilize the characteristics of each material by combining different types of materials. Composite materials of ceramic materials and metals include Cr-Al system, known as cermet, or W-Cr-
There are Al-based and 'l'1c-Nl-based materials, and their constituent materials, such as chromium and tungsten 4 titanium, have strong oxidation resistance even at high temperatures, and due to their heat resistance and high hardness, they are used in aircraft engines. It is used in cutting tools, etc.

しかしながら、これらサーメットは金属粉末と非金属無
機粉末を混合しホントプレスしたものであるから、圧縮
強度は上るとしても、特に脆性を改良する構成上の特徴
は見当らない。而もタングステン、チタン等は高級材料
でありコストも高いので汎用性が無いという欠点がある
。またクロム。
However, since these cermets are actually pressed by mixing metal powder and non-metal inorganic powder, although the compressive strength may be increased, there are no structural features that particularly improve brittleness. However, tungsten, titanium, etc. are high-grade materials and are expensive, so they have the disadvantage of not being versatile. Also chrome.

タングステン、チタン等は高温においても酸化される事
が最も少ない限られた材料であると共に焼成は水素雰囲
気など酸化防止された条件下で而もホットプレス等を用
いて行う製造方法であるから製造方法としてもコスト高
で汎用性に欠けるという欠点もある。
Tungsten, titanium, etc. are limited materials that are least susceptible to oxidation even at high temperatures, and firing is performed under oxidation-prevented conditions such as a hydrogen atmosphere, and the manufacturing method uses a hot press etc. However, it also has the drawbacks of high cost and lack of versatility.

従って鉄系、銅系などの比較的コストの安(・汎用金属
を利用して、汎用セラミックスの特に脆性を改良する一
般的方法は従来確立されていなかつたといえる。
Therefore, it can be said that no general method has been established for improving the brittleness of general-purpose ceramics by using relatively inexpensive general-purpose metals such as iron-based and copper-based metals.

〔本発明の目的、即ち本発明が解決しようとする問題点〕[Object of the present invention, that is, the problem to be solved by the present invention]

本発明は上記従来技術上の諸欠点を除去し改良して、コ
ストの安い汎用のセラミックス材料差に汎用の金属材料
を複合せしめて、従来セラミックスの欠点である脆性及
び衝撃に弱く亀裂が入り易い等々の諸欠点を格段に改良
した、従って庶民の日常の用に届き得る汎用のセラミッ
クスで、脆性が少く、亀裂が殆んど発生せず、衝撃に強
く、落してもわれないなど、格段に改良されたセラミッ
クス製品差にその製造方法を提供することを目的として
いる。
The present invention eliminates and improves the above-mentioned drawbacks of the prior art, and combines a general-purpose metal material with a low-cost general-purpose ceramic material, thereby eliminating the drawbacks of conventional ceramics, such as brittleness, weak impact, and easy cracking. It is a general-purpose ceramic that has significantly improved the various drawbacks such as, and can therefore be used for everyday use by ordinary people. The purpose is to provide improved ceramic products and their manufacturing methods.

〔本発明の構成即ち前記問題点を解決するための手段〕[Configuration of the present invention, that is, means for solving the above problems]

本発明は粘土系等の汎用セラミックス原料中に鉄系及び
又は銅系などの汎用金属の繊維及び又は切片を組合せ焼
結複合させるという汎用性のある材料差にその製造方法
に係り、上記従来技術に比し特に新しい発想によるもの
である。
The present invention relates to a manufacturing method for a versatile material in which fibers and/or pieces of general-purpose metals such as iron-based and/or copper-based are combined and sintered into a general-purpose ceramic raw material such as clay-based, and the above-mentioned conventional technology This is a particularly new idea compared to the previous one.

即ち本発明に係る金属複合セラミックス焼結体は、鉄系
、銅系なと高温で酸化され易い汎用金属を含め、金属の
繊維及び又は切片を重量で5〔%〕以上70〔%〕以以
下セララックス中分散させたことを特徴とする物である
That is, the metal composite ceramic sintered body according to the present invention contains metal fibers and/or pieces, including general-purpose metals that are easily oxidized at high temperatures, such as iron-based and copper-based metals, by weight of 5% to 70%. This product is characterized by being dispersed in Ceralax.

またその製造方法は上記高温で酸化し易い汎用金属の焼
結に際しては夫等の金属の酸化防止のほか、従来困難と
されている、セラミックス材料中に比重がそのセラミッ
クスの3,5乃至4倍もある金属材料を均一に分散させ
ることを可能にすると共に熱膨張率が大きく相異する金
属とセラミックス材料を一体化させることを容易にさせ
、而もか〜る画材質問の結合において、製造上決定的な
難点とされていた変形や亀裂の発生などを防止すること
ができる方法である。更にこの具体的手段としては、先
ず使用予定の金属繊維等の予備処理である。それは前記
金属繊維等を250 (’C)以上900〔℃〕以下で
加熱後、リン酸等の水溶液に浸漬した後シリカゾル、ア
ルミナゾル等の液に浸漬して金属繊維等の表面にシリカ
ゲル、アルミナゲル等を生ぜしめることによって金属繊
維等の見掛けの比重を軽くせしめ、また混合スラリーの
ワーカビリティを含水率の範囲を選ぶことを併用するこ
とによって、比重の非常に異る複数の材料を均−Ic混
合分散せしめ、更に含水率を調節して可塑性坏土とし、
例えば真空土練機などを用いて射出成形し、必要ならば
金属繊維等が配向整列するような成形体とし、乾燥後5
00 (’C:3以上では20〜40[℃/分〕の昇温
速度で加熱し、700〜1300 (℃)で焼結し、繊
維等の金属材料とセラミックス材料とを一体複合化する
ことによって、脆性が殆んどなく、亀裂が入りにくく、
靭性が大であって、落しても殆んど割れないという画期
的ニューセラミックスを製造しうろことを特徴とする製
造方法である。
In addition, when sintering general-purpose metals that are easily oxidized at high temperatures, the manufacturing method is used to prevent oxidation of metals such as metals, which is conventionally considered difficult. It also makes it possible to uniformly disperse certain metal materials, and facilitates the integration of metals and ceramic materials with greatly different coefficients of thermal expansion, and also improves manufacturing efficiency in the combination of art materials. This is a method that can prevent deformation and cracking, which had been considered a critical drawback. Further, as a specific means for this, first of all, the metal fibers etc. to be used are pre-treated. The method is to heat the metal fibers, etc. above 250 ('C) and below 900 [°C], immerse them in an aqueous solution such as phosphoric acid, and then immerse them in a liquid such as silica sol or alumina sol to coat the surface of the metal fibers with silica gel or alumina gel. By reducing the apparent specific gravity of metal fibers, etc., and by selecting the range of water content to improve the workability of the mixed slurry, it is possible to evenly distribute multiple materials with very different specific gravity. Mix and disperse, further adjust the moisture content to make plastic clay,
For example, injection molding is performed using a vacuum clay kneading machine, etc., and if necessary, the molded product is formed so that the metal fibers, etc. are oriented and aligned, and after drying,
00 ('C: For 3 or higher, heat at a temperature increase rate of 20 to 40 [℃/min] and sinter at 700 to 1300 (℃) to integrally composite metal materials such as fibers and ceramic materials. Due to this, there is almost no brittleness and it is difficult to crack.
This manufacturing method is characterized by the production of innovative new ceramic scales that have great toughness and are virtually unbreakable even if dropped.

と〜に上記にいう金属とは、金属ならば水銀以外はすべ
て、金、銀等の貴金属類は勿論のこと本発明を適用する
ことができるが、中でも本発明の仏 主目的の汎用金属として炭素鋼、ステンレス鋼其の他の
特殊鋼類或は銅などが適している。また金属繊維は直径
10乃至500[:μm〕、長さ1乃至10〔謂]位の
ものが好ましく、切片状のものは厚さ5乃至100〔μ
m ] +アスペクト比は5以上のものが望ましい。ま
た金属箔を用いるとすれば厚さ5乃至100 (μm)
+巾100乃至500 (μmps長さ1乃至10 (
+n〕位のものが望ましい。
The above-mentioned metals include all metals other than mercury, as well as precious metals such as gold and silver, to which the present invention can be applied. Suitable materials include carbon steel, stainless steel, other special steels, and copper. The metal fiber preferably has a diameter of 10 to 500 μm and a length of 1 to 10 μm, and the thickness of the metal fiber in the form of a section is 5 to 100 μm.
m]+Aspect ratio is preferably 5 or more. Also, if metal foil is used, the thickness is 5 to 100 (μm).
+ Width 100 to 500 (μmps Length 1 to 10 (
+n] is desirable.

金属繊維等の混合比率は混合後の全体に対する比率であ
り、重量で5〔%〕未満では本発明の特徴が失なわれ、
また70〔%〕を超えると例えば真空土練機等による射
出成形は困難となるので、この範囲外は不適である。ま
たこ〜にいう分散とは略一様に金属繊維等がセラミック
ス体内に散在することを意味し、繊維等の方向がランダ
ムの場合と一定方向に配向整列している場合等が含まれ
得る。
The mixing ratio of metal fibers, etc. is the ratio to the whole after mixing, and if it is less than 5% by weight, the characteristics of the present invention will be lost.
Moreover, if it exceeds 70 [%], injection molding using a vacuum kneading machine or the like becomes difficult, so anything outside this range is unsuitable. Further, the term "dispersion" as used herein means that the metal fibers and the like are scattered approximately uniformly within the ceramic body, and may include cases where the direction of the fibers, etc. is random and cases where the fibers and the like are aligned in a certain direction.

製造方法の構成に関してはその性質上その作用と共に説
明すると、先ず金属繊維等を250〔℃〕以上900〔
℃〕以下で加熱するが、これは金属繊維及び又は切片等
を柔軟化し、表面に酸化した薄い被膜を適度に生成させ
るためである。そのためには過高な温度による加熱は不
適であるから上記の温域となる。次にこの繊維等をリン
酸イオンを含む液中に浸漬し、表面にリン酸イオンを附
着させた後K、珪酸ソーダ、シリカゾル、及び又はアル
ミナゾルなどの水溶液に浸漬して処理する。これは先に
附着させたリン酸イオンの刺識によって、これらのゾル
をゲル状物質に変えて金属繊維等表面に附着させ、膨油
した無機高分子質のゲル状破膜で前記金属繊維等を覆う
ようにさせるためである。
The structure of the manufacturing method will be explained along with its properties and effects. First, metal fibers, etc. are heated to 250 [°C] or more and 900
The purpose of heating is to soften the metal fibers and/or pieces, and to appropriately form a thin oxidized film on the surface. For this purpose, heating at an excessively high temperature is inappropriate, so the temperature range is as described above. Next, the fibers and the like are immersed in a solution containing phosphate ions to adhere phosphate ions to the surface, and then treated by being immersed in an aqueous solution of K, sodium silicate, silica sol, and/or alumina sol. This is done by changing these sols into gel-like substances and attaching them to the surface of metal fibers, etc. using the previously applied phosphate ions. This is to cover the area.

而して一方において重量で2〔%〕以上3oC%〕以下
のガラス状物、例えばガラスカレット、フリットなどを
、含有するセラミック組成物、例えば粘土、長石質物、
滑石などの通常の陶磁器用原料に、金属の繊維又は切片
の前記処理済のものを全体として重量で5〔%〕以上7
0[%]以下均一化するように加える。この比重の35
乃至4倍も異る物の均一化混合については上記の如〈従
来技術では困難であったが、本発明においては金属繊維
等の上記前処理手段と共に次の如き新しい手法により問
題点を解決している。具体的にはミキサ中への便宜的段
階的投入と泥漿状態の調節による。即ち上記セラミック
ス原料配合物のうち例えば約70〔%〕を比重1.5乃
至1.6 (9r/cc”J の泥漿状として回転中の
ミキサに投入、攪拌しり〜、上記金)PA繊維等の処理
物を逐次少量ずつミキサ中へ投入添加すると、金属材料
処理物の界面層に生成しているゲル状膜は吸水し更に膨
潤して、セラミックス粒子を耐着し、個々の金属材料処
理物は大きい容積となって、従って全体としての比重は
軽くなって、その浮力により、浮遊分散することによっ
て、均一にセラミックス組成物中に混合される。この時
点で残りの例えば約30 [:%]のセラミックス原料
配合物を順次添加して、攪拌しなから泥漿濃度を塞 高めて、比重を例えば1.7乃至1.758のペースト
状とすると、最早分離が起らなくなる。このときのペー
ストの含水率は一例として32乃至35〔%〕程度であ
るから、減圧脱水法等で含水率を15乃至20〔%〕程
度にして、バッグミルで混練すると射出成形に適する原
料組成物となる。
On the one hand, ceramic compositions containing glassy substances such as glass cullet, frit, etc., such as clay, feldspathic substances,
5 [%] or more by weight of the above-mentioned treated metal fibers or pieces are added to ordinary ceramic raw materials such as talc.7
Add so that it is uniformly 0 [%] or less. This specific gravity is 35
As mentioned above, it was difficult to uniformly mix materials that are different by a factor of 4 to 4. However, in the present invention, the problem was solved by the following new method in addition to the above-mentioned pretreatment means for metal fibers, etc. ing. Specifically, this is done by conveniently adding it to the mixer in stages and adjusting the slurry condition. That is, for example, about 70% of the above ceramic raw material mixture is put into a rotating mixer in the form of a slurry with a specific gravity of 1.5 to 1.6 (9r/cc"J), stirred, and mixed with the above-mentioned gold) PA fibers, etc. When the treated metal materials are added to the mixer little by little, the gel-like film that forms on the interface layer of the metal material treatment absorbs water and further swells, preventing the ceramic particles from adhering to each other and forming individual metal material treatment materials. has a large volume and therefore has a light overall specific gravity, and is uniformly mixed into the ceramic composition by floating and dispersing due to its buoyancy.At this point, the remaining amount, for example, about 30 [:%] If the slurry concentration is increased by sequentially adding ceramic raw material mixtures without stirring and forming a paste with a specific gravity of, for example, 1.7 to 1.758, separation will no longer occur. The water content is, for example, about 32 to 35 [%], so if the water content is reduced to about 15 to 20 [%] by vacuum dehydration or the like and kneaded in a bag mill, a raw material composition suitable for injection molding will be obtained.

またセラミックス原料配合物にガラス質物を加える理由
を作用と共に説明する。普通の陶磁器質組成物の成形体
は、焼成過程において、SOO乃至900〔℃〕までは
0.5乃至1.0〔%〕程度の容積膨張を起すが、本発
明の組成物は、金属の酸化が急速に進む500乃至60
0 (℃〕の比較的低温度域から収縮して組織の密度が
高(なることが必要であるため、低融質のガラス質原料
を前記の割合で配合することが必要となる。
Also, the reason for adding a vitreous substance to the ceramic raw material mixture will be explained along with its effects. A molded body of an ordinary ceramic composition expands in volume by about 0.5 to 1.0% from SOO to 900 degrees Celsius during the firing process, but the composition of the present invention 500 to 60, where oxidation progresses rapidly
Since it is necessary for the structure to shrink from a relatively low temperature range of 0° C. and to have a high density, it is necessary to mix a low-melting vitreous raw material in the above ratio.

次に成形物の焼結作用条件に関しては、炉内雰囲気では
一般陶磁器焼成炉の雰囲気でよいが、金属の酸化を進ま
せないために還元雰囲気の方が好ましい。尤も本発明で
は個々の金属繊維等の周囲は、前記のように被覆物で密
に梳われるのであるから酸化雰囲気でも成程度酸化は防
止される。また加熱は500 (’C)までは粘土質原
料の結晶水の脱水を出来るだけ多くさせるため、粘土質
原料の含有率に応じて、徐々に加熱するが、500 (
’C)を超える温度域では30 (:℃/分〕以上の速
度で昇温するのが能率的である。
Next, regarding the conditions for sintering the molded product, the atmosphere in the furnace may be the atmosphere of a general ceramic firing furnace, but a reducing atmosphere is preferable in order to prevent the oxidation of the metal from proceeding. However, in the present invention, since the periphery of each metal fiber is densely covered with a coating as described above, oxidation can be prevented to a certain extent even in an oxidizing atmosphere. In addition, heating is performed gradually up to 500 ('C) depending on the content of the clay raw material in order to dehydrate the crystallized water of the clay raw material as much as possible.
In the temperature range exceeding 'C), it is efficient to raise the temperature at a rate of 30°C/min or more.

尚、更に詳細な説明を追加すると、金属類の表面処理で
生ずる酸化被膜は、鉄系4a維等を用いた場合はFeO
、FezO3,Feas4カ主であり、銅系の場合はC
uO、Cu2Oなどである。これ等の酸化物は表面処理
液であるりん酸と非常に反応し易(、反応してりん酸塩
質となり、りん酸セメント状となって硬化する。金属が
ステンレス鋼を使用する場合は900〔℃〕で前熱処理
しても1回だけでは表面層の酸化膜が少ないため、その
後再度りん酸溶液で処理する方が良い。
In addition, to add a more detailed explanation, the oxide film produced during surface treatment of metals is FeO
, FezO3, Feas4 are the main components, and in the case of copper, C
These include uO, Cu2O, etc. These oxides are very easy to react with phosphoric acid, which is a surface treatment liquid. Even if the preheat treatment is performed at [° C.] only once, the oxide film on the surface layer will be small, so it is better to perform the treatment with a phosphoric acid solution again after that.

また前記成形体の焼結温度は700 (’C)未満では
セラミックス組成物の焼結が不充分であり、また130
0〔℃〕を超えると金属繊維等が溶融し酸化2発泡して
、繊維或は切片としての形状物性を維持し得ないので、
此の間の温度域が適切である。
Furthermore, if the sintering temperature of the molded body is less than 700 ('C), the ceramic composition will not be sintered sufficiently;
If the temperature exceeds 0 [°C], metal fibers, etc. will melt, oxidize and foam, making it impossible to maintain the shape and physical properties of the fibers or sections.
A temperature range between these is appropriate.

しかしこの高温の限界については使用金属の種類によっ
ては実施上若干の差があることに留意する必要がある。
However, it is necessary to keep in mind that there are some differences in practice regarding this high temperature limit depending on the type of metal used.

例えば銅系材料では1000〔C〕を超えると著しく発
泡した組織となるので、好ましくない。従って銅系材料
ではフリット等低融ガラス質原料を多く添加して焼成温
度’e 900 (℃3程度で焼結するように原料配合
を調整する。また焼成速度も500 C’C)以上では
60[:’C:/分〕程度の早い速度が必要である。
For example, in the case of copper-based materials, if the temperature exceeds 1000 [C], the structure becomes significantly foamed, which is not preferable. Therefore, in the case of copper-based materials, a large amount of low-melting vitreous raw materials such as frits are added, and the raw material composition is adjusted so that the firing temperature is 900°C (approximately 3°C).The firing rate is also 500°C or higher. A fast speed of about [:'C:/min] is required.

鉄系材料では普通鋼の場合焼成温度は1100〔℃〕程
度で、昇温速度は500 (”C)以上では40乃至5
0(’C/C/分遣当である。
In the case of ferrous materials, the firing temperature for ordinary steel is about 1100 [℃], and the temperature increase rate is 40 to 5
0('C/C/distribution.

また本発明の組成物のように、熱伝導率の高い金属質を
含む場合は通常のセラミックス組成物に比較して著しく
短時間で焼結が完了する特質がある。
Furthermore, when the composition of the present invention contains a metal with high thermal conductivity, sintering can be completed in a significantly shorter time than ordinary ceramic compositions.

〔実施例〕〔Example〕

次に実施例を用いて本発明につき更に詳細に説明する。 Next, the present invention will be explained in more detail using Examples.

先ず以下に述べる複数の実施例に共通の事項は次の如く
である。
First, the following points are common to the plurality of embodiments described below.

本発明の繊維状又は切片状の金属材料の処理条件は、炭
素鋼、ステンレス鋼などの特殊鋼、銅系の熱処理の温度
は600〔℃〕、5〔分〕間とし、(11)1のりん酸
溶液の処理時間は5〔分〕間、シリカゾル処理は市販品
を用い、処理時間は2梃〕間であった。繊維状金属材料
は直径50(μml 長さ3〔朋〕、切片状は厚さ20
(μm〕、アスペクト比20のものを使用した。セラミ
ックスと該金属材料処理物との混合組成物は含水率19
.2(%〕の可塑性坏土とし、真空土練機で混練し、次
に射出成形して、300 Cqi) X 300 (、
AII:] x 7 (籍〕の厚板状物を成形し、乾燥
し、次いで焼成焼結を行った。
The treatment conditions for the fibrous or sectioned metal materials of the present invention are that the temperature for heat treatment of carbon steel, special steel such as stainless steel, and copper is 600 [°C] for 5 [minutes], and The phosphoric acid solution treatment time was 5 [minutes], and the silica sol treatment was performed using a commercially available product, and the treatment time was 2 hours. The diameter of the fibrous metal material is 50 (μml), the length is 3 [my], and the thickness of the section is 20
(μm) and aspect ratio of 20.The mixed composition of ceramics and the treated metal material had a water content of 19.
.. 2 (%) of plastic clay, kneaded with a vacuum clay kneader, and then injection molded to obtain 300 Cqi) x 300 (,
AII: ] x 7 slabs were formed, dried and then fired and sintered.

「実施例■」 本例は炭素鋼繊維を比較的少量用いた場合である。"Example ■" This example is a case where a relatively small amount of carbon steel fiber is used.

1)配合率(重量比) 炭素鋼繊維処理物 10〔%〕 蛙目粘土 40〔%〕 艮 石 43〔ん〕 板ガラスカレット 7〔%〕 2)焼成条件 焼成温度 1100〔℃〕 昇温速度、室温から500 [’C]まで10 〔℃/
分〕 〃500 (’C)以上1100〔℃〕50 CC/分
〕 3)焼結製品の物性 吸水率 76〔%〕 嵩比重 2.45 曲げ強度 780±10 (kg/c+J]熱伝導率 
4.7 [:kcal /111.hr。
1) Blending ratio (weight ratio) Carbon steel fiber treated material 10 [%] Frog-eye clay 40 [%] Tsuyoshi stone 43 [mm] Plate glass cullet 7 [%] 2) Firing conditions Firing temperature 1100 [℃] Temperature increase rate, From room temperature to 500 ['C] 10 [℃/
500 ('C) or more 1100 [℃] 50 CC/min] 3) Physical properties of sintered product Water absorption 76 [%] Bulk specific gravity 2.45 Bending strength 780 ± 10 (kg/c + J) Thermal conductivity
4.7 [: kcal /111. hr.

℃] 熱膨張係数 75 X 10−7 曲げ強度は通常のセラミックス製品の約倍に達した。°C] Thermal expansion coefficient 75 x 10-7 The bending strength was approximately double that of ordinary ceramic products.

「実施例■」 本例は炭素鋼繊維を比較的多量用いた場合である。"Example ■" This example is a case where a relatively large amount of carbon steel fiber is used.

1)配合率(重量比) 炭素鋼繊維処理物 30〔%〕 蛙目粘土 40〔%〕 滑石 20〔%〕 鋼板ホーロー用フリット 10〔%〕 2)焼成条件 焼成温度 1060 [℃) 昇温速度、室温から500〔℃〕まで 10 〔℃/分〕 〃 500〔℃〕から1060[:℃〕まで45 (”
C/分〕 3)焼結製品の物性 吸水率 10.5C%〕 嵩比重 3.6 曲げ強さ 1120±100’=97cd〕熱伝導率 
10.6 (kcal/m、 hr。
1) Compounding ratio (weight ratio) Carbon steel fiber treated material 30 [%] Frog's eye clay 40 [%] Talc 20 [%] Frit for steel plate enamel 10 [%] 2) Firing conditions Firing temperature 1060 [℃] Temperature increase rate , from room temperature to 500 [℃] 10 [℃/min] 〃 From 500 [℃] to 1060 [:℃] 45 ("
C/min] 3) Physical properties of sintered product Water absorption rate 10.5C%] Bulk specific gravity 3.6 Bending strength 1120±100'=97cd] Thermal conductivity
10.6 (kcal/m, hr.

℃〕 熱膨張係数 82 X 10−’ 靭性値 13 (MN−m−3/2 )曲ケ強さは通常
のセラミックスの3倍近くに達し、靭性値も通常のセラ
ミックスの従来最高値9の約40%増となった。
°C] Coefficient of thermal expansion: 82 x 10-' Toughness: 13 (MN-m-3/2) The bending strength is nearly three times that of ordinary ceramics, and the toughness is about 9, the highest value of ordinary ceramics. This was an increase of 40%.

「実施例mj 本例は金属として銅の切片を用いた場合である。“Example mj In this example, a piece of copper is used as the metal.

1)配合率(重量比) 銅切片 10〔%〕 蛙目粘土 40〔%〕 滑 石 40 〔ん〕 銅ホーロー用フリット 10〔%〕 2)焼成条件 焼成温度 920 [:℃”] 昇温速度、室温から500〔℃〕まで 10 [:℃/分〕 〃 500〔℃〕から920〔℃〕まで60〔℃/分〕 3)焼結製品の物性 吸水率 12.5C%〕 嵩比重 2.55 曲げ強度 820−f 10 (kg/i〕熱膨張係数
 80 X 10−” 靭性値 15〔謝・m ”7’ 2 )曲げ強さは通常
のセラミックスの約倍となり、靭性値は通常のセラミッ
クスの約60(%〕増となった。
1) Mixing ratio (weight ratio) Copper slices 10 [%] Frog-eye clay 40 [%] Talc stone 40 [mm] Frit for copper enamel 10 [%] 2) Firing conditions Firing temperature 920 [:℃''] Temperature increase rate , from room temperature to 500 [℃] 10 [:℃/min] From 500 [℃] to 920 [℃] 60 [℃/min] 3) Physical properties of sintered product Water absorption rate 12.5C%] Bulk specific gravity 2. 55 Bending strength 820-f 10 (kg/i) Coefficient of thermal expansion 80 This was an increase of approximately 60%.

〔本発明の効果〕[Effects of the present invention]

以上述べたところKより、本発明の効果は次の如く要約
することができる。
Based on the above description, the effects of the present invention can be summarized as follows.

(1)本発明に係る金属複合セラミックス焼結体は従来
における粉末同志の組合せと異り、この焼結体としては
曲げ強度と靭性値が通常のセラミックスより格段に改善
され、通常のセラはツクスの長所である耐蝕性などを保
持したま〜、その脆性等の欠点が略完全に除去されてお
り、金属繊維等による補強効果の優れたニューセラミッ
クス材料が得られた。
(1) The metal composite ceramic sintered body according to the present invention is different from the conventional combination of powders, and the bending strength and toughness of this sintered body are significantly improved compared to ordinary ceramics. A new ceramic material was obtained in which the disadvantages such as brittleness were almost completely eliminated while retaining the advantages of corrosion resistance etc., and the reinforcement effect with metal fibers etc. was excellent.

(2)本発明の製造方法では金属繊維等をセラミックス
体内に均等に分散して焼成するので、熱伝導性が非常に
良好で、比較的低温度かつ短時間内に焼成、焼結ができ
製造上熱効率も極めて良好である。
(2) In the manufacturing method of the present invention, metal fibers, etc. are evenly distributed within the ceramic body and fired, so it has very good thermal conductivity and can be fired and sintered at relatively low temperatures and in a short time. The top heat efficiency is also extremely good.

(3)本発明においては、金属繊維及び又は切片の含有
率を変えて製造することにより、電気抵抗等の電気的性
質も成程度自由に変化を与えることが可能であるから、
シリコンその他の半導体物質、誘電性素材、炭化珪素、
窒化珪素その他のファインセラミックス等との種々な組
合せによって、各種段階の性能を有する高強度、高靭性
のニューセ乙 ラミック素材を多種開発し得る有力な基礎手段を得るこ
とができた。
(3) In the present invention, electrical properties such as electrical resistance can be freely changed to a certain extent by manufacturing with varying content of metal fibers and/or pieces.
Silicon and other semiconductor materials, dielectric materials, silicon carbide,
Through various combinations with silicon nitride and other fine ceramics, we have obtained a powerful basic means for developing a wide variety of high-strength, high-toughness new ceramic materials with various levels of performance.

(4)本発明に係る金属複合セラミツダル粘体は靭性が
、従来品より格段に優れているので、加工に際し亀裂を
発生しない。即ちマシーゾプルであって自由な形状に加
工することができるという効果も得ることができた。
(4) The metal composite ceramic viscosity according to the present invention has much better toughness than conventional products, so it does not generate cracks during processing. In other words, it was possible to obtain the effect of being able to process the material into a free shape since it is a massisoplue.

(5)本発明品並に製造方法はサーメットのような高級
かつ高価な材料のみによるのではなく、主として汎用金
属並に汎用セラミックスを用いる点大きな利点がある。
(5) The product and manufacturing method of the present invention have a great advantage in that they mainly use general-purpose metals and general-purpose ceramics, rather than using only high-class and expensive materials such as cermet.

外1名1 other person

Claims (2)

【特許請求の範囲】[Claims] (1)重量で5〔%〕以上70(%〕以下の繊維状及び
又は切片状の金属をセラミックス中に分散させたことを
特徴とする金属複合セラミックス焼結体。
(1) A metal composite ceramic sintered body, characterized in that 5% to 70% by weight of fibrous and/or sliced metal is dispersed in ceramic.
(2)繊細状及び又は切片状の金属を予じめ250〔℃
〕以上900 [:’C〕以下で加熱処理後、(pH)
1以上2以下のリン酸及び又はリン酸塩水溶液に1〔分
〕以上5 e’3以下浸漬し、表面に11ン酸塩質の被
膜を生成させ、次に前記金属を前記リン酸及び又はリン
酸塩水溶液より引き揚げ、シリカ及び又はアルミナを含
有するゾルの水溶液に浸漬した後乾燥し、次いでガラス
状物を重量で2〔%〕以上30(2)以下含有するセラ
ミックス組成物に該金属を全体として重量で5〔%〕以
上70〔%〕以下で均一化するように加え、加水して含
水率が30C%〕以ヒ45〔%〕以下の泥漿とし、ミキ
サーで攪拌l−1次に減圧脱水して含水率を10〔%〕
以を二30c%〕以下とし成形し乾燥後加熱し、500
 [:”C〕以1−の温度域では20〔℃/分〕以上4
0[:’C/分〕以下の速度で昇温し700〔℃〕以以
上 300 [:’C]以下のへA度で焼結することを
特徴とする金属複合セラミックス焼結体の製造方法。
(2) Delicate and/or sectioned metals are heated to 250°C in advance.
] After heat treatment at 900 [:'C] or less, (pH)
The metal is immersed in an aqueous solution of 1 to 2 phosphoric acid and/or phosphate for 1 minute to 5 e'3 to form a 11-phosphate film on the surface, and then The metal is recovered from an aqueous phosphate solution, immersed in an aqueous solution of a sol containing silica and/or alumina, and then dried, and then added to a ceramic composition containing 2 [%] to 30 (2) by weight of a glass-like material. Add to the slurry so that the overall weight is 5% to 70%, add water to make a slurry with a water content of 30C% to 45%, and stir with a mixer. Dehydrate under reduced pressure to reduce water content to 10%
230c% or less], molded, dried and heated to 500%
In the temperature range of 1- below [:”C] 20 [℃/min] or above 4
A method for producing a metal composite ceramic sintered body, characterized in that the temperature is raised at a rate of 0 [:'C/min] or less and sintered at a temperature of 700 [°C] or more and 300 [:'C] or less. .
JP10397084A 1984-05-23 1984-05-23 Metal composite ceramic sintered body and manufacture Granted JPS60246274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10397084A JPS60246274A (en) 1984-05-23 1984-05-23 Metal composite ceramic sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10397084A JPS60246274A (en) 1984-05-23 1984-05-23 Metal composite ceramic sintered body and manufacture

Publications (2)

Publication Number Publication Date
JPS60246274A true JPS60246274A (en) 1985-12-05
JPH0218302B2 JPH0218302B2 (en) 1990-04-25

Family

ID=14368200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10397084A Granted JPS60246274A (en) 1984-05-23 1984-05-23 Metal composite ceramic sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS60246274A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718249A1 (en) * 1994-11-29 1996-06-26 Ube Industries, Ltd. High strength and high toughness glass matrix composite, glass composite powder therefor, and processes for preparing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511502A (en) * 1974-06-27 1976-01-08 Nippon Yakin Kogyo Co Ltd KANETSUROTOYOTA IKABUTSU
JPS527864U (en) * 1975-07-04 1977-01-20

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527864B2 (en) * 1973-03-02 1977-03-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511502A (en) * 1974-06-27 1976-01-08 Nippon Yakin Kogyo Co Ltd KANETSUROTOYOTA IKABUTSU
JPS527864U (en) * 1975-07-04 1977-01-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718249A1 (en) * 1994-11-29 1996-06-26 Ube Industries, Ltd. High strength and high toughness glass matrix composite, glass composite powder therefor, and processes for preparing the same

Also Published As

Publication number Publication date
JPH0218302B2 (en) 1990-04-25

Similar Documents

Publication Publication Date Title
CN108083779B (en) Rare earth alumina ceramic composite material and preparation method thereof
JP3228701B2 (en) Active kaolin powder material for cement mixing and method for producing the same
GB1574007A (en) Cermets
CN107266069A (en) A kind of utilization glass dust permeates the preparation method of regenerating oxidation zirconium porous ceramics
JPH02141466A (en) Ceramic composite material and production thereof
JPS60246274A (en) Metal composite ceramic sintered body and manufacture
US2244777A (en) Refractory product and method of making the same
JPS6236991B2 (en)
CH128404A (en) Ceramic product and method of making the same.
JPS61104036A (en) Manufacture of composite sintered body consisting of ceramic and metal
JP3498841B2 (en) Low-temperature firing solidification method of kaolin powder
JPS61101465A (en) Manufacture of silicon nitride bonded silicon carbide sintered body
JPH05194022A (en) Ceramic composite material and its production
JPH0139990B2 (en)
JPS6058190B2 (en) Method for manufacturing silicon nitride-silicon carbide molded body
JPS6141745A (en) Fiber reinforced composite material having low thermal expansibility
KR920006112B1 (en) Making method for high p carbide si sintering parts
JPS60166278A (en) Manufacture of refractory heat insulative ceramics having independent foamed structure
CN116715510A (en) ZTA composite ceramic with high zero stress temperature point and preparation method thereof
JPS6121959A (en) Manufacture of composite sintered body
JP3151663B2 (en) Method for producing Mo (Al, Si) 2-based material at low temperature
JPS6125675B2 (en)
US756798A (en) Process of making paving-brick.
JPH0477354A (en) Ceramic composite material and its production
JPH04114968A (en) Silicon nitride-based sic refractory material and production thereof