[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6024421A - Flow-rate measuring device with temperature correction - Google Patents

Flow-rate measuring device with temperature correction

Info

Publication number
JPS6024421A
JPS6024421A JP13091983A JP13091983A JPS6024421A JP S6024421 A JPS6024421 A JP S6024421A JP 13091983 A JP13091983 A JP 13091983A JP 13091983 A JP13091983 A JP 13091983A JP S6024421 A JPS6024421 A JP S6024421A
Authority
JP
Japan
Prior art keywords
temperature
flow rate
specific gravity
flow
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13091983A
Other languages
Japanese (ja)
Other versions
JPH0464011B2 (en
Inventor
Takashi Suzuki
喬 鈴木
Yasushi Saizu
斎数 靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tatsuno Co Ltd
Original Assignee
Tokyo Tatsuno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tatsuno Co Ltd filed Critical Tokyo Tatsuno Co Ltd
Priority to JP13091983A priority Critical patent/JPS6024421A/en
Priority to EP84304884A priority patent/EP0132374B1/en
Priority to DE8484304884T priority patent/DE3468943D1/en
Priority to KR1019840004300A priority patent/KR890001595B1/en
Publication of JPS6024421A publication Critical patent/JPS6024421A/en
Priority to US07/065,685 priority patent/US4720800A/en
Publication of JPH0464011B2 publication Critical patent/JPH0464011B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • G01F15/024Compensating or correcting for variations in pressure, density or temperature using electrical means involving digital counting

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Flowmeters (AREA)

Abstract

PURPOSE:To obtain accurate flow rates without errors in the flow rates due to the kinds of oils and temperatures, by the constitution, wherein signals from a flow-rate pulse generator and a temperature sensor are inputted in a control device, temperature correction is performed by the specific gravity, which is inputted previously, and the value of the flow rate is obtained. CONSTITUTION:Signals from a flowmeter 2 and a flow-rate pulse generator 4 and a signal from a temperature sensor 3 are inputted to a control device 5. A volume-conversion-factor table is stored in the control device 5 in advance. The specific gravity of oil, which is measured by a setting dial 6, is inputted to the control device. The converted volume is selected based on the signal from the sensor 3 and the specific gravity, which is inputted before. The signal from the flow-rate generator 4 and the flow rate, which undergoes temperature correction, are computed by the control device 5 and the integrated flow rate is displayed on a display device 9. Since the temperature correction is performed based on the specific gravity and the corrected value of the flow rate is obtained, errors are not yielded due the kind of oils and temperatures, and the accurate flow rates can be always obtained.

Description

【発明の詳細な説明】 本発明は、例えば油槽所、精油所等で使用される温度補
正付流量測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature-compensated flow rate measuring device used, for example, in oil depots, oil refineries, and the like.

流量測定装置が容積型のものである場合、瀉疫によって
測定しようとする流体の容積が変化するので誤差を生ず
る。従来の温度補正付流量測定装置は、流量計の出力軸
を微量変速器を介して積算流量表示計に連結し、流体の
温度変化を機械的変位に変換するベローズで微量変速器
の変速調整を行うことにより、温度補正された流量を表
示組に積算するようにしている。ところで、原油および
石油製品の濃度変化による容積変化は、JISK 22
49に規定されているように、温1a変化だけでなく、
流体の比重によっても変化するので、従来のように機械
式のものでは正確なfa度補正はできず、その結果正確
に流量を測定するには充分ではなかった。
If the flow rate measuring device is of a volumetric type, errors occur because the volume of the fluid to be measured changes due to the epidemic. Conventional temperature-compensated flow rate measuring devices connect the output shaft of the flowmeter to an integrated flow rate display meter via a micro-variator, and adjust the speed of the micro-variator using a bellows that converts temperature changes in the fluid into mechanical displacement. By doing so, the temperature-corrected flow rate is integrated into the display set. By the way, changes in volume due to changes in concentration of crude oil and petroleum products are determined by JISK 22.
As specified in 49, not only temperature 1a changes, but also
Since it changes depending on the specific gravity of the fluid, it is not possible to accurately correct the fa degree with a conventional mechanical type, and as a result, it is not sufficient to accurately measure the flow rate.

したがって本発明の目的は、測定しようとする流体の比
重および温度に応じて正確に流けを測定できる温度補正
付流量測定装置を提供するにある。
Therefore, an object of the present invention is to provide a temperature-compensated flow rate measuring device that can accurately measure the flow according to the specific gravity and temperature of the fluid to be measured.

本発明によれば、流量計に設けられた流量信号発信器と
、流体の温度を測定する温度測定器と、流体の比重を設
定する比重設定器と、流体の容積換算係数データを記憶
し、そして温度測定器で測定された1113と比重設定
器で設定された比重と容積換算係数データにより温度補
正係数を演算し、かつ流量信号発信器からの流量信号と
温度補正係数とにより渇廓補正された流量値を演算する
制御装置とを有している。
According to the present invention, a flow rate signal transmitter provided in a flow meter, a temperature measuring device for measuring the temperature of the fluid, a specific gravity setting device for setting the specific gravity of the fluid, and a volume conversion coefficient data of the fluid are stored, Then, a temperature correction coefficient is calculated using the 1113 measured by the temperature measuring device, the specific gravity set by the specific gravity setting device, and the volume conversion coefficient data, and the drought is corrected by the flow signal from the flow signal transmitter and the temperature correction coefficient. and a control device that calculates the flow rate value.

したがって本発明によれば、予め記憶された容積yA棹
係数データと、設定された比重と、測定された渇庶とよ
り制御装置で温度補正係数を演算し、以て温度補正した
正確な流量をめることができる。
Therefore, according to the present invention, the temperature correction coefficient is calculated by the control device from the volume yA rod coefficient data stored in advance, the set specific gravity, and the measured drying point, and an accurate temperature-corrected flow rate is calculated using the control device. You can

JISの容積換篩係数表は極めて膨大な間であり、比重
および渇痕に関してかなり細く規定されている。したが
ってこれらの数値をすべて記憶させることはかなりの容
量の記憶部(ROM)を必要とし、その結果、制御装置
が必然的に大型化してしまう。でれ故に本発明の実施に
際して、容積yA算算数数表全部記憶させずに或数値間
隔毎に記憶させておき、その中間の値は比例配分してめ
るようにするのが好ましい。すなわちある2つの数値間
は直線的に変化するものとする。このようにすることに
J:つて制御装置の記憶容量を少くでき、しかも実質的
に正確な値を得ることができる。
The volumetric sieving coefficient table of JIS is extremely extensive, and the specific gravity and thirst mark are specified quite narrowly. Therefore, storing all of these numerical values requires a storage unit (ROM) of considerable capacity, and as a result, the control device inevitably becomes larger. Therefore, when implementing the present invention, it is preferable that the volume yA arithmetic table is not stored in its entirety, but is stored at certain numerical intervals, and intermediate values are calculated by proportional distribution. In other words, it is assumed that the value between two certain numerical values changes linearly. By doing so, the storage capacity of the control device can be reduced and substantially accurate values can be obtained.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は本発明を実施した流量測定装置の一例を示し、
図示されていない貯油タンクと、同様に図示されていな
いIl!1出ノズ小ノズルに設りられた給油管IA、I
Bの間に後述の流量測定装置を備えた接続管1Cがフラ
ンジ接続されており、ぞの接続管1Cには管内を流れる
油の流量を測定する流量轟12おJ:び油の温度を測定
する温度測定器である温度センサー3が設けられている
。そして流量計2により駆動される流量信号発信器であ
る流量パルス発信器4が設けられ、流量パルス発信器4
からの流量信号がパルス信号として制御装置5に入力さ
れる。また温度センサー3からの温度信号が同様に制御
装置5に入力される。
FIG. 1 shows an example of a flow rate measuring device implementing the present invention,
An oil storage tank, not shown, and Il!, also not shown. Oil supply pipes IA and I installed in the small 1-nozzle nozzle
A connecting pipe 1C equipped with a flow rate measuring device (to be described later) is flange-connected between B and 1C, and the connecting pipe 1C has a flow rate measuring device 12 for measuring the flow rate of oil flowing inside the pipe and measuring the temperature of the oil. A temperature sensor 3, which is a temperature measuring device, is provided. A flow rate pulse transmitter 4 which is a flow rate signal transmitter driven by the flow meter 2 is provided.
A flow rate signal from the controller 5 is input to the control device 5 as a pulse signal. Further, a temperature signal from the temperature sensor 3 is similarly input to the control device 5.

制御装置5に前述のようにJIS K 2249で定め
られている容v4換輝係数表が予め記憶されている。ま
た後述の如く設定ダイヤル6により計al11jる油の
比重を制帥装M5に入力する。油を流すと温度センサー
3からの温度信号と先に入力した比重とより、容積換算
係数表より換算容積が選出され、温度補正係数が制御装
置5により緯出される。また流量パルス発信器4からの
流量信号と温度補正係数より温度補正された流量が制御
装置5により演算されv4算流量が表示計9に表示され
、また図示されていないバッチカウンタ7等へ伝わるJ
:うになっている。そして流量パルス発信器4、制御v
i置5、表示計9は防爆ボックス11内に収納されてい
る。
As described above, the control device 5 stores in advance the brightness v4 conversion coefficient table defined in JIS K 2249. Further, as will be described later, the specific gravity of the oil measured by the setting dial 6 is input into the control device M5. When the oil flows, a converted volume is selected from a volume conversion coefficient table based on the temperature signal from the temperature sensor 3 and the specific gravity input earlier, and a temperature correction coefficient is determined by the control device 5. Further, the flow rate temperature-corrected from the flow rate signal from the flow rate pulse transmitter 4 and the temperature correction coefficient is calculated by the control device 5, and the v4 calculated flow rate is displayed on the display meter 9, and is also transmitted to the batch counter 7, etc. (not shown).
: Sea urchins are turning. and flow rate pulse transmitter 4, control v
The i-station 5 and the display meter 9 are housed in an explosion-proof box 11.

第2図は本発明に実施されるシリ御装置5の好ましい一
例を示し、図において、比1JiQ定ダイヤル6、温反
ヒンナー3および流量パルス発信器4からの信号は入出
力装@51に送られ、この入出力B置51は中央制al
l tA 52に信号の授受を行う。
FIG. 2 shows a preferred example of the series control device 5 implemented in the present invention, and in the figure, signals from the ratio 1 JiQ constant dial 6, the warm temperature heater 3, and the flow rate pulse transmitter 4 are sent to the input/output device @51. This input/output B position 51 is centrally controlled
Sends and receives signals to l tA 52.

この中央制御部52にはタイマ53がらの信号が入力さ
れると共に、記憶装置(ROM>54および一時記憶装
置(RAM)55と信号の授、受を行う。この記憶装置
54には容積換算係数データの記憶部54aと、後述の
態様で演算を行うための計算式の記憶部54bと、所定
のプログラム54Cとを備えている。また一時記憶装@
55は例えば温度補正係数を記憶する一時記憶部55a
と後述の態様で単位聞に対する端数を記憶する残量記憶
部55bとを備えている。
This central control unit 52 receives signals from a timer 53, and also sends and receives signals to and from a storage device (ROM>54 and a temporary storage device (RAM) 55.This storage device 54 has a volume conversion coefficient It includes a data storage section 54a, a calculation formula storage section 54b for performing calculations in a manner described later, and a predetermined program 54C.
55 is a temporary storage section 55a that stores temperature correction coefficients, for example.
and a remaining amount storage section 55b that stores a fraction of the unit in a manner to be described later.

JISの容積換算係数表は比重に関しては0゜005o
/cc毎に、また渇痕に関しては0.5℃毎に定められ
ている。しかしながら前述の如く、これでは記憶量が膨
大となるので、本発明の実施に際しては例えば下表の如
く、データ記憶部54aには比重に関しては、0.03
g /cc毎に、また温度に関しては5℃毎に記憶さけ
ればよい。
The JIS volume conversion coefficient table is 0°005o for specific gravity.
/cc, and thirst marks are determined in 0.5°C increments. However, as mentioned above, this requires a huge amount of storage, so when implementing the present invention, for example, as shown in the table below, the data storage section 54a has a specific gravity of 0.03.
It is sufficient to memorize the data every g/cc, and about the temperature every 5°C.

容積換算係数表 比 重 0/cc 測定 温度℃・・・ 0,78 0.81 0.84 ・・・
−251,03871,03531,03295484
441 10494441 15484441 20 49 44 41 25 48 44 41 75 、 − − − この表において容積換算係数は温度−25℃を基準とし
、以下5℃の差ごとの係数の差を記憶しておく、例えば
比重0.78の油の温度5℃を温度10℃との容積換算
係数の差が0.0049であることを示している。
Volume conversion coefficient table Specification Weight 0/cc Measurement temperature °C... 0,78 0.81 0.84...
-251,03871,03531,03295484
441 10494441 15484441 20 49 44 41 25 48 44 41 75 , - - - In this table, the volume conversion coefficient is based on the temperature of -25°C, and the difference in the coefficient for every 5°C difference is stored, for example, specific gravity 0 This shows that the difference in volume conversion coefficient between the oil temperature of 5°C and the temperature of 10°C of .78 is 0.0049.

次に主として第3図を参照して本発明の実施の態様につ
き説明する。
Next, embodiments of the present invention will be described mainly with reference to FIG.

第33図(イ)は、温度補正係数を算出するフローチャ
ートを示す図であり、まず中央制御部分52は比重設定
ダイヤル6の設定比重を読み取る(ステップS1)。今
その設定値が0.825であるものとする。次に温度セ
ンサー3の温度を読み取る(ステップ82 )。今その
温度が22℃とする。次に中央制御部52は記憶部54
bに記憶されている計算式に基づいて湿度補正係数すな
わち容積換算係数の演算を行う(ステップ83 )。
FIG. 33(a) is a diagram showing a flowchart for calculating the temperature correction coefficient. First, the central control section 52 reads the specific gravity set on the specific gravity setting dial 6 (step S1). Assume that the set value is now 0.825. Next, the temperature of the temperature sensor 3 is read (step 82). Assume that the temperature is now 22°C. Next, the central control unit 52
A humidity correction coefficient, that is, a volume conversion coefficient is calculated based on the calculation formula stored in b (step 83).

その演算は下記の通りである。The calculation is as follows.

(1) 比重0.81.1度20’C17)容積換算係
数をめる(−25℃を基準としてit iffする)。
(1) Specific gravity: 0.81.1 degrees 20'C17) Calculate the volume conversion coefficient (it iff with -25°C as the reference).

1.0353−Σ20/10000= 0’、995に こでΣ20は表中20’Cの所までの差の合計値である
1.0353-Σ20/10000=0', 995 where Σ20 is the total value of the differences up to 20'C in the table.

(2) 比重0.81、温度25℃の容積換算系数をめ
る。
(2) Calculate the volume conversion system with a specific gravity of 0.81 and a temperature of 25°C.

1.0353−Σ25/10000= 0.9912 ここでΣ25は表中25℃の所までの差の合h1直であ
る。
1.0353-Σ25/10000=0.9912 Here, Σ25 is the sum h1 of the differences up to 25°C in the table.

(3) 比重0.84、if1度20℃(7)容積換算
係数をめる。
(3) Specific gravity 0.84, if 1 degree 20℃ (7) Calculate the volume conversion factor.

1.0329−Σ20/10000= 0.9959 (4) 比重0.84、温度25℃の容積換算係数をめ
る。
1.0329-Σ20/10000=0.9959 (4) Calculate the volume conversion coefficient for specific gravity 0.84 and temperature 25°C.

1.0329−Σ25/10000= 0.9918 (5) 比例配分によって比重0.81.1度22℃の
容積換算係数をめる。
1.0329-Σ25/10000=0.9918 (5) Calculate the volume conversion coefficient of specific gravity 0.81.1 degrees and 22 degrees Celsius by proportional allocation.

0.9956− (0,9956−0,9912)X 
(215)−0,9938 (6) 比例配分によって比重0.84.1度22℃の
容積Fl係数をめる。
0.9956- (0,9956-0,9912)X
(215)-0,9938 (6) Calculate the volume Fl coefficient for a specific gravity of 0.84.1 degrees and 22 degrees Celsius by proportional distribution.

0.9959− (0,9951−0,9918)X 
(215)=0.9943 〈7) 上記の(5)、(6)の値から比例配分によっ
て比重0.825、温度22℃の容積換算係数をめる。
0.9959- (0,9951-0,9918)X
(215)=0.9943 <7) From the values in (5) and (6) above, calculate the volume conversion coefficient for a specific gravity of 0.825 and a temperature of 22°C by proportional allocation.

0.9938+ ((0,9943−0,9938)x
 (0,825−0,81))/ (0,84−0,8
1)=0.9941 この値0.9941が温度補正係数(容積換算係数)で
あるから、これを一時記憶装置55の一時記憶部55a
に記憶する(ステップ84 )。
0.9938+ ((0,9943-0,9938)x
(0,825-0,81))/ (0,84-0,8
1)=0.9941 Since this value 0.9941 is the temperature correction coefficient (volume conversion coefficient), it is stored in the temporary storage section 55a of the temporary storage device 55.
(step 84).

このようにして、温度補正係数を算出するが、流体の温
度変化はあまり激しくなく、かつ温度センサーの時定数
等からみてもこのフローは、2〜3秒毎に繰り返されれ
ば充分である。
Although the temperature correction coefficient is calculated in this way, the temperature change of the fluid is not very drastic, and considering the time constant of the temperature sensor, it is sufficient if this flow is repeated every 2 to 3 seconds.

なお」二記の(5)、(6)、(7)の4粋はまず比例
配分でII(22℃)をめてから比■を目算したが、比
重をめてから温度を4粋してもよい。
In addition, for the 4 points (5), (6), and (7) in Section 2, we first calculated II (22℃) using proportional distribution and then calculated the ratio ■, but after calculating the specific gravity, we calculated the temperature by 4 points. It's okay.

次に第3図(ロ)を参照して流量パルス発信器4からパ
ルス信号が入力した時に、前述の温度補正係数により温
度補正された流量を演算し、表示計9へ積算流量を表示
する関係についてりYましい実施例を説明する。すなわ
ち表示it 9は整数パルスによって表示されるが、前
記の演算により端数が生じてしまう。第3図(ロ)はそ
の端数処理の好ましい例である。
Next, referring to FIG. 3 (b), when a pulse signal is input from the flow rate pulse transmitter 4, the temperature-corrected flow rate is calculated using the above-mentioned temperature correction coefficient, and the integrated flow rate is displayed on the display meter 9. A specific example will be described below. That is, although the display it 9 is displayed by integer pulses, a fractional number occurs due to the above calculation. FIG. 3(b) is a preferable example of the rounding process.

流量計2の流量パルス発信器4からパルス(例えば0.
16)が入力されるとくステップS!l)。
A pulse (for example 0.
16) is input, step S! l).

この流量の入力はいわゆる割込み信号で処理され、中央
処理部52は一時記憶部55aに記憶されている渇庶補
jl係数(0,9941)とパルスから温度補正された
流量値(0,9941X0.1=0.09941Q)を
篩用する(ステップBe )、そして一時記憶装置55
の残」記憶部55bの残fit値に加飾(例えば残量が
0.05432ffである場合は、0.05432+0
.09941=0゜15373fflる(ステップ87
.)。この加飾値を単位量(例えばO,、IR)と比較
しくステップS8)、加V#伯が単位量より多い場合は
、1パルス(流ハで0.1g>を出力しくステップSs
 )、表丞fil’ 9やバッチカウンタ7は1パルス
分く0゜1Q)、積惇される。次いでその加算値から単
位量を減算して(0,15373−0,1=0.053
73N)、残量を残量記憶部55bに記憶する〈ステッ
プS c ) aステップS8において、加飾値が単位
量より少い場合は表示計へパルスを出力せずに戻る。以
下この作業を繰り返す。
This flow rate input is processed by a so-called interrupt signal, and the central processing unit 52 generates a temperature-corrected flow rate value (0,9941X0. 1=0.09941Q) (step Be), and the temporary storage device 55
Decorate the remaining fit value in the storage unit 55b (for example, if the remaining amount is 0.05432ff, 0.05432+0
.. 09941=0°15373ffl (step 87
.. ). Compare this decoration value with a unit amount (for example, O, IR) (step S8), and if the addition value is larger than the unit amount, output 1 pulse (0.1 g in flow rate) in step Ss.
), table filter 9 and batch counter 7 are accumulated for one pulse (0°1Q). Next, subtract the unit amount from the added value to get (0,15373-0,1=0.053
73N), store the remaining amount in the remaining amount storage section 55b (step S c ) a If the decoration value is less than the unit amount in step S8, the process returns without outputting a pulse to the display meter. Repeat this process below.

したがって、制御装置において単位量以下の針幹が行わ
れ、単位量を越えたときに初めて1パルスを出力し、も
って表示計9等を動かすのである。
Therefore, in the control device, the needle is adjusted by a unit amount or less, and when the unit amount is exceeded, one pulse is output for the first time, thereby moving the display meter 9, etc.

次に第4図を参照して別の実施の態様を説明7”る。Next, another embodiment will be explained with reference to FIG.

第3図の実施例では、毎回設定比重の読み取りを行って
いるが、この実施例では、流量測定をO1I始する時に
だけ、設定比重の読み取りを行うようにしたものであり
、第4図(イ)において流量測定を開始に先立って流量
測定装置の電源が入れられるとくステップSo)、設定
比重が読み取られる(ステップSw>。次に中央処理部
52は前)本と同様の計算により、該設定比重の各端f
αに対する温度補正係数を演算しくステップS 13 
> 、口のデーターを一時記憶装置55.の一時記憶部
1)5aに記憶する(ステップ514)。このようにし
て設定比重の各温度に対する温度補正係数を前もつで演
算し記憶しておく。次に第4図(ロ)に示1J、うに温
度センサー3の温度を読み取り(ステップS+s>、一
時記憶部55aに記憶されている当該温度に対応する温
度補正係数を演算しくステップS16〉、該温度補正係
数を一時記憶部55aに記憶する(ステップ517)よ
うにしている。そして流量12の流量パルス発信器4か
ら流量パルスが入力した場合は、第3図(ロ)のフロー
で流量演算処理が行われる。
In the embodiment shown in Fig. 3, the set specific gravity is read every time, but in this embodiment, the set specific gravity is read only when the flow rate measurement starts O1I. When the power of the flow measuring device is turned on prior to starting the flow rate measurement in step B), the set specific gravity is read (step Sw>. Next, the central processing unit 52 calculates the specific gravity according to the same calculation as in the previous book). Each end f of the set specific gravity
Calculate the temperature correction coefficient for α Step S13
> , the mouth data is temporarily stored in the storage device 55. (step 514). In this way, the temperature correction coefficient for each temperature of the set specific gravity is previously calculated and stored. Next, as shown in FIG. 4(b), the temperature of the sea urchin temperature sensor 3 is read (step S+s>, and the temperature correction coefficient corresponding to the temperature stored in the temporary storage section 55a is calculated (step S16)). The temperature correction coefficient is stored in the temporary storage section 55a (step 517).When a flow rate pulse is input from the flow rate pulse transmitter 4 with a flow rate of 12, the flow rate calculation process is performed according to the flow shown in Fig. 3 (b). will be held.

以上の如く本発明によれば、比重に基づいて渇麿補正を
行い、補正された流量値をめるようになっているので、
油種および温度によって流量の誤差が生ずることなく、
常に正しい流量をめることができる。
As described above, according to the present invention, the dryness correction is performed based on the specific gravity and the corrected flow rate value is calculated.
No errors in flow rate due to oil type and temperature.
You can always set the correct flow rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に実施される流u1測定装置の説明図、
第2図は本発明に実施される制御回路を示す図、第3図
(イ)、(ロ)は本発明の実施の態様の一例のフローチ
ャートを示す図、第4図(イ)、(ロ)は伯の例のフロ
ーチャートを示す図である。 2・・・流fttit、 4・・・流量パルス発信器5
・・・制御装置 6・・・比重設定ダイヤル 9・・・
流量表示耐 52・・・中央制御部 54・・・記憶装
置 55・・・一時記憶装置 第2TI!J 第3図 第3図 第4゜ (A) 図
FIG. 1 is an explanatory diagram of the flow u1 measuring device implemented in the present invention,
FIG. 2 is a diagram showing a control circuit implemented in the present invention, FIGS. ) is a diagram showing a flowchart of an example of Haku. 2...Flow fttit, 4...Flow rate pulse transmitter 5
...Control device 6...Specific gravity setting dial 9...
Flow rate display resistance 52...Central control unit 54...Storage device 55...Temporary storage device 2nd TI! J Figure 3 Figure 3 Figure 4゜(A) Figure

Claims (1)

【特許請求の範囲】[Claims] 流Mlilに設けられた流量信号発信器と、流体の温度
を測定する温度測定器と、流体の比重を設定する比重設
定器と、流体の容積換算係数データを記憶し、そして温
度測定器で測定された温度と比重設定器で設定された比
重と容積換算係数データにより温度補正係数を演算し、
かつ流量信号発信器からの流量信号と温度補正係数とに
より温度補正された流量値を演算する制御装置とを有す
ることを特徴とする温度補正付流量測定装置。
A flow rate signal transmitter installed in the flow Mlil, a temperature measuring device that measures the temperature of the fluid, a specific gravity setting device that sets the specific gravity of the fluid, and a temperature measuring device that stores the fluid volume conversion coefficient data and measures it with the temperature measuring device. Calculate the temperature correction coefficient using the temperature set, the specific gravity set with the specific gravity setting device, and the volume conversion coefficient data,
A flow rate measuring device with temperature correction, further comprising: a control device that calculates a temperature-corrected flow rate value using a flow rate signal from a flow rate signal transmitter and a temperature correction coefficient.
JP13091983A 1983-07-20 1983-07-20 Flow-rate measuring device with temperature correction Granted JPS6024421A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13091983A JPS6024421A (en) 1983-07-20 1983-07-20 Flow-rate measuring device with temperature correction
EP84304884A EP0132374B1 (en) 1983-07-20 1984-07-18 Device for measuring liquid flow volume with temperature compensating
DE8484304884T DE3468943D1 (en) 1983-07-20 1984-07-18 Device for measuring liquid flow volume with temperature compensating
KR1019840004300A KR890001595B1 (en) 1983-07-20 1984-07-20 Measuring volume flow instrument having function if temperature compensation
US07/065,685 US4720800A (en) 1983-07-20 1987-06-17 Device for measuring liquid flow volume with temperature compensating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13091983A JPS6024421A (en) 1983-07-20 1983-07-20 Flow-rate measuring device with temperature correction

Publications (2)

Publication Number Publication Date
JPS6024421A true JPS6024421A (en) 1985-02-07
JPH0464011B2 JPH0464011B2 (en) 1992-10-13

Family

ID=15045800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13091983A Granted JPS6024421A (en) 1983-07-20 1983-07-20 Flow-rate measuring device with temperature correction

Country Status (1)

Country Link
JP (1) JPS6024421A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446024A (en) * 1987-08-07 1989-02-20 Honda Motor Co Ltd Injecting method for oil of fluid coupling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446024A (en) * 1987-08-07 1989-02-20 Honda Motor Co Ltd Injecting method for oil of fluid coupling

Also Published As

Publication number Publication date
JPH0464011B2 (en) 1992-10-13

Similar Documents

Publication Publication Date Title
US4262523A (en) Measurement of fluid density
EP0543273A2 (en) Method and apparatus for measuring mass flow and energy content using a linear flow meter
CN108051068B (en) Weight measurement correction method based on four channels
WO2018129925A1 (en) Instrument calibration device and calibration method using same
WO2001002816A3 (en) Temperature compensation for straight tube coriolis flowmeter
JPH02221817A (en) Correction of fluid composition for flowmeter
CN106796128B (en) Natural gas flow calculation correction for water vapor effects
US20220034697A1 (en) Wet gas flow rate metering method based on a coriolis mass flowmeter and device thereof
RU2010152551A (en) MULTI-PARAMETER DEVICE FOR REGULATING A TECHNOLOGICAL FLUID FLOW WITH CALCULATION OF ENERGY FLOW
CN206038118U (en) Medical subtend flow pattern mass flow meter&#39;s mass flow calibration device
CA2144251C (en) Improved acoustic displacement flowmeter
JPS6024421A (en) Flow-rate measuring device with temperature correction
JP3976302B2 (en) Weighing device
van der Beek et al. Gas oil piston prover, primary reference values for gas-volume
JP3057949B2 (en) Flowmeter
JPH03264821A (en) Method for processing output signal of composite sensor
CN109297569A (en) A kind of scaling method and device of fuel consumption meter
JP3103700B2 (en) Flowmeter
Barbe et al. Development of a gas micro-flow transfer standard
JPH0119062Y2 (en)
CN105548244B (en) Obtain the method and system of liquid thermal expansion coefficient
JPS5890124A (en) Measuring method for gas flow rate
SU717556A1 (en) Device for measuring and metering mass quantity of liquids
SU475535A1 (en) Method for determining volumetric mass transfer coefficient
SU832340A1 (en) Device for measuring liquid and gaseous media rate-of-flow