[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60238140A - Preparation of microcapsule - Google Patents

Preparation of microcapsule

Info

Publication number
JPS60238140A
JPS60238140A JP59094629A JP9462984A JPS60238140A JP S60238140 A JPS60238140 A JP S60238140A JP 59094629 A JP59094629 A JP 59094629A JP 9462984 A JP9462984 A JP 9462984A JP S60238140 A JPS60238140 A JP S60238140A
Authority
JP
Japan
Prior art keywords
parts
aqueous solution
core substance
capsule
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59094629A
Other languages
Japanese (ja)
Inventor
Michio Kawamura
道雄 河村
Hiroshi Okamoto
博 岡本
Taisuke Shimada
島田 泰典
Tatsuo Sato
達夫 佐藤
Yukio Doi
幸夫 土井
Mamoru Awano
粟野 護
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daio Paper Corp
Resonac Holdings Corp
Original Assignee
Daio Paper Corp
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daio Paper Corp, Showa Highpolymer Co Ltd filed Critical Daio Paper Corp
Priority to JP59094629A priority Critical patent/JPS60238140A/en
Publication of JPS60238140A publication Critical patent/JPS60238140A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Color Printing (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

PURPOSE:To enhance the strength and compactness of a wall film, by emulsifying and dispersing a hydrophobic core substance into an acidic aqueous solution of specific anionic high-molecular electrolyte to form a capsule wherein a wall film of an amino resin is formed around the core substance. CONSTITUTION:A hydrophobic core substance is emulsified and dispersed into an acidic aqueous solution of a water-soluble polymer comprising an anionic ternary copolymer consisting of 9-92mol% of acrylic acids, 3-87mol% of acrylamide and 4-26mol% of acrylonitrile. Next, a film comprising an amino resin is formed around the hydrophobic core substance to obtain a microcapsule. The use amount of the aformentioned ternary copolymer is usually 1-80pts.wt. to 100pts. wt. of the hydrophobic substance. As the aforementioned hydrophobic core substance, animal oils such as fish oil or lard, vegetable oils such as soybean oil or linseed oil and mineral oils such as petroleum or kerosine are designated.

Description

【発明の詳細な説明】 本発明はマイクロカプセルの製造方法、特にアミノ樹脂
1等膜を有するマイクロカプセルの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing microcapsules, particularly to a method for producing microcapsules having a monolayer of amino resin.

マイクロカプセルは本来そのままでは不安定な状態にあ
る芯物質を一時的に保護することによって安定な状態と
せしめ、必要時に瞬時忙又は徐りに放出させる機能を有
しており、1950年代前半に米国ト8CR社によりノ
ーカーボン紙用として開発され、この分野ではすでにB
O有余年の実績がある。
Microcapsules have the function of temporarily protecting the core substance, which is originally unstable, to make it stable, and releasing it instantly or gradually when necessary. It was developed by To8CR for carbonless paper, and has already been used in this field by B.
We have a track record of more than 0 years.

近年になってマイクロカプセルの製造技術は著しく進歩
し、医薬品、農薬、香料、化粧品、食品、染料等への応
用が試みられ、現在ではノーカーボン紙は勿論のこと神
々の分野で広く利用されている。
In recent years, the manufacturing technology of microcapsules has progressed significantly, and attempts have been made to apply them to pharmaceuticals, agricultural chemicals, fragrances, cosmetics, foods, dyes, etc., and now they are widely used in the fields of gods as well as carbonless paper. There is.

一般にマイクロカプセルの製造方法には、物理的方法、
優械的方法、物理化学的方法、化学的方法が知られてお
り、用途に応じて適宜選択して使われている。物理的方
法及び機械的方法では、得られるカプセルの粒径が大き
く、壁膜の緻密性が不十分であることから、マイクロカ
プセルの用途は限られている。これに対して物理化学的
方法及び化学的方法では、カプセル粒径な任意にコント
ロールし易く、数μ程度の小さいものも容易に製造でき
、壁膜の緻密性の高いカプセルが得られることから、広
い範囲に亘って使用されている。
Generally, methods for producing microcapsules include physical methods,
Mechanical methods, physicochemical methods, and chemical methods are known, and are appropriately selected and used depending on the purpose. With physical and mechanical methods, the particle size of the capsules obtained is large and the density of the wall membrane is insufficient, so the uses of microcapsules are limited. On the other hand, with physicochemical and chemical methods, it is easy to control the capsule particle size arbitrarily, particles as small as several microns can be easily produced, and capsules with a dense wall membrane can be obtained. It is used over a wide range.

物理化学的方法としてはゼラチンを膜材として用いるコ
アセルベーション法が知られており、現在では最も広い
分野で応用されているが、膜材として天然物のゼラチン
を使用する為、価格が高い上圧、微生物に攻撃され易く
、生成するカプセルの耐水性が劣り、高濃度のカプセル
スラリーが得難<、シかもカプセル化工程が複雑である
等の欠点がある。
As a physicochemical method, the coacervation method using gelatin as a membrane material is known and is currently applied in the widest range of fields, but because it uses gelatin, a natural product, as a membrane material, it is expensive and expensive. It has drawbacks such as being easily attacked by pressure and microorganisms, the produced capsules having poor water resistance, difficulty in obtaining a highly concentrated capsule slurry, and the encapsulation process being complicated.

化学的方法には疎水性モノマーと親水性モノマーとを、
疎水性芯物質と水相との界面で重合反応させて、ポリア
ミド、エポキシ樹脂、ポリウレタン、ポリ尿素等の壁膜
を形成させる界面重合法と、疎水性忘物η又は水相の一
方のみにて重合反応させ、芯物質の周囲にアミン樹脂等
の壁膜な形成させるin −5itu ′71を合法と
がある。
The chemical method uses hydrophobic monomers and hydrophilic monomers,
An interfacial polymerization method in which a polymerization reaction occurs at the interface between a hydrophobic core substance and an aqueous phase to form a wall film of polyamide, epoxy resin, polyurethane, polyurea, etc., and an interfacial polymerization method in which a wall film of polyamide, epoxy resin, polyurethane, polyurea, etc. It is legal to carry out a polymerization reaction to form a wall film of amine resin or the like around the core material in -5 itu '71.

界面重合法は膜材として、イソシアナート、酸クロライ
ド、エポキシ化合物等反応性が高いものや毒性が強いも
のを用いる為、1合反応のコントロールが難しく、活性
水素をもつ物質を芯物質として使えず、また、膜材自体
の価格が高い等の欠点を有している。これ忙対しin 
−5itu重合法は、膜材としてアクリル酸エステル樹
脂、アミノ樹脂、ポリエステル樹脂等合成樹脂を形成す
る殆んどのものが利用されており、中でもアミン樹脂は
価格が安く、入手が容易であること、重合反応時に特別
な触媒を特に必要としな(・こと、重合反応が比較的短
時間で行なえること等の利点を有している。
Since the interfacial polymerization method uses highly reactive or highly toxic materials such as isocyanates, acid chlorides, and epoxy compounds as membrane materials, it is difficult to control the one-coat reaction, and substances with active hydrogen cannot be used as core materials. In addition, it has drawbacks such as the high cost of the membrane material itself. I'm busy with this
-5 In the itu polymerization method, most of the materials that form synthetic resins, such as acrylic ester resins, amino resins, and polyester resins, are used as membrane materials, and among them, amine resins are cheap and easy to obtain; It has the advantage that a special catalyst is not particularly required during the polymerization reaction, and the polymerization reaction can be carried out in a relatively short time.

このように1n −5itu重合法は界面重合法に比べ
取扱上容易である為、より実用的であり、例えば特公昭
44−8495号、特公昭47−28166号、特公昭
54−16949号、特開昭58−84881号、特開
昭54−49984号等多数の発明が出願されている。
As described above, the 1n-5 itu polymerization method is easier to handle than the interfacial polymerization method, and is therefore more practical. Many inventions have been filed, such as JP-A-58-84881 and JP-A-54-49984.

然し、この方法によって得られるカプセル壁膜は、耐水
性に優れているが、緻密性が悪く、芯物質の乳化分散が
十分でき誰く、さらに芯物質の周囲に重縮合物を効率良
く安定に堆積させることが離しい等の欠点がある。
However, although the capsule wall membrane obtained by this method has excellent water resistance, it is poor in density, cannot sufficiently emulsify and disperse the core material, and is difficult to efficiently and stably form the polycondensate around the core material. It has drawbacks such as being difficult to deposit.

本発明はin −5itu 9合法によるカプセル化方
法に関するものである。膜材としてメラミンホルムアル
デヒド樹脂又は尿素ホルムアルデヒド樹脂を用いる方法
は、例えば特公昭87−12880号、特公昭44−8
495号、特公昭47−48166号等に記述されてい
る如く、既に公知である。然し、これらの方法は前述し
た如く、疎水性芯物質の周囲にアミノ樹脂の重縮合物を
効率良く安定に堆積させるのが帷しく、また、芯物質の
乳化分散が十分にでき勢い等の欠点があった。
The present invention relates to an encapsulation method using the in-5 itu 9 method. Methods of using melamine formaldehyde resin or urea formaldehyde resin as the membrane material are described, for example, in Japanese Patent Publications No. 87-12880 and Japanese Patent Publication No. 44-8.
It is already known as described in Japanese Patent Publication No. 495, Japanese Patent Publication No. 47-48166, etc. However, as mentioned above, these methods require efficient and stable deposition of the polycondensate of amino resin around the hydrophobic core material, and also have drawbacks such as insufficient emulsification and dispersion of the core material. was there.

これらの欠点を改良する為、特公昭64−16949号
、4?開昭68−訃6881号、特開昭5B−8488
2号、特開昭58−84888号には、系変性剤である
アニオン性高分子電解質として、エチレン/無水マレイ
ン酸共重合体、メチルビニルエ−チル/無水マレイン酸
共重合体、ポリアクリル酸等を使用する方法が発表され
ている。この方法により疎水性芯物質の乳化分散性が改
善され、カプセル壁膜の強度と緻密性は向上し、短時間
で高濃度のカプセルスラリーが得られるようになったが
、カプセルスラリーの粘度が高く、特に有効なエチレン
/無水マレイン酸共重合体、メチルビニルエーテル/無
水マレイン酸共重合体の溶解に長時間を要する等の欠点
がある。
In order to improve these shortcomings, Special Publication No. 16949/1983, 4? 1986-1968-6881, JP-A-5B-8488
No. 2, JP-A No. 58-84888 discloses ethylene/maleic anhydride copolymer, methyl vinyl ethyl/maleic anhydride copolymer, polyacrylic acid, etc. as an anionic polymer electrolyte which is a system modifier. The method used has been published. This method improved the emulsifying and dispersing properties of the hydrophobic core substance, improved the strength and density of the capsule wall membrane, and made it possible to obtain a highly concentrated capsule slurry in a short time, but the viscosity of the capsule slurry was high. However, the particularly effective ethylene/maleic anhydride copolymer and methyl vinyl ether/maleic anhydride copolymer require a long time to dissolve.

また、特開昭64−49984号、特開昭55−471
89号、特開昭55−15660号には、スチレン/無
水マレイン酸共重合体又はこれと酢酸ビニル/無水プレ
イ/酸共重合体もしくはエチレン/無水マレイン酸共重
合体との併用が発表されて(・る。この方法では芯物質
の乳化分散性はさらに向上し、安定で、低粘度且つ高濃
度のカプセルスラリーが得られるが、スチレン/無水マ
レイン酸共重合体はT)Hが低い場合析出が起こる為、
低pHで重縮合反応させる場合が多い尿素ホルムアルデ
ヒド系には使用できない欠点があり、また、低pHで未
反応の残存するホルムアルデヒドを除去する残留ホルム
アルデヒドの除去方法には使用できない欠点がある。
Also, JP-A-64-49984, JP-A-55-471
No. 89 and JP-A-55-15660 disclose the use of styrene/maleic anhydride copolymer or its combination with vinyl acetate/anhydride play/acid copolymer or ethylene/maleic anhydride copolymer. (・ru. In this method, the emulsifying and dispersing properties of the core substance are further improved, and a stable, low-viscosity, and highly concentrated capsule slurry can be obtained. However, the styrene/maleic anhydride copolymer precipitates when T)H is low. Because this happens,
There is a drawback that it cannot be used in the urea-formaldehyde system, which is often subjected to a polycondensation reaction at a low pH, and it also has a drawback that it cannot be used in a method for removing residual formaldehyde that removes unreacted residual formaldehyde at a low pH.

さらに、特開昭56−51288号には、メラミンホル
ムアルデヒド系に1アニオン性高分子電解質としてポリ
スチレンスルホン酸、アクリル酸/スチレンスルホン酸
共重合体等のスチレンスルホン酸系ポリマーを使用する
ことが発表されている。
Furthermore, JP-A-56-51288 announces the use of styrene sulfonic acid polymers such as polystyrene sulfonic acid and acrylic acid/styrene sulfonic acid copolymers as mono-anionic polymer electrolytes in melamine formaldehyde systems. ing.

スチレンスルホン酸系ポリマーは低いpHテモ安定であ
る為、尿素ホルムアルデヒド系での重縮合反応又は低p
Hでの未反応ホルムアルデヒドの処理が可能となったが
、スチレンスルホン酸系ポリマーは溶解時に発泡が多く
作業性に問題があり、尿素ホルムアルデヒド系に使用す
ると反応条件の僅な変化でも系全体が凝集してしまう欠
点がある。
Since styrene sulfonic acid-based polymers are stable at low pH, polycondensation reactions in urea-formaldehyde systems or low pH
Although it has become possible to treat unreacted formaldehyde with H, styrene sulfonic acid-based polymers foam a lot during dissolution, causing problems in workability, and when used in urea-formaldehyde-based polymers, even slight changes in reaction conditions cause the entire system to coagulate. There are drawbacks to doing so.

そこで本発明者等は前記の欠点を有さないマイクロカプ
セルの製造方法として、(1)疎水性芯物質の乳化分散
性が良(、r21且つ乳化液の安定性を保ち、(8)カ
プセル化工程が簡単でしかも短時間の反応によって、(
4)壁膜の強度、緻密性、耐水性、耐熱性に優れた、(
5)高濃瓜且つ低粘度のカプセルスラリーが得られるマ
イクロカプセルの製造方法を華立することを目的に研究
を重ねた結果、アクリル酸類とアクリルアミドとアクリ
ロニトリルを共重合させた三元共重合体水溶性高分子が
上記目的を極めて有効に達成し得ることを見出し、本発
明を完成するに至った。
Therefore, the present inventors developed a method for producing microcapsules that does not have the above-mentioned drawbacks by (1) maintaining good emulsification dispersibility of the hydrophobic core substance (, r21 and stability of the emulsion), and (8) encapsulating Due to the simple process and short reaction time, (
4) Excellent wall membrane strength, density, water resistance, and heat resistance (
5) As a result of repeated research aimed at improving the manufacturing method of microcapsules that yield capsule slurry with high concentration and low viscosity, a water-soluble terpolymer copolymer of acrylic acids, acrylamide, and acrylonitrile was developed. The present inventors have discovered that the above-mentioned objective can be achieved extremely effectively using a polymeric polymer, and have completed the present invention.

即ち、本発明によるマイクロカプセルの製造方法は、ア
ニオン性高分子電解質としてアクリル酸類/アクリルア
ミド/アクリロニトリル三元共重合体を用いることを特
徴とし、この三元共重合体の酸性水溶液中に疎水性芯物
質を乳化分散させた後、この芯物質の周囲にアミノ樹脂
の重縮合物を形成し堆積させカプセル鵡膜とするもので
ある。
That is, the method for producing microcapsules according to the present invention is characterized in that an acrylic acid/acrylamide/acrylonitrile terpolymer is used as an anionic polymer electrolyte, and a hydrophobic core is added to an acidic aqueous solution of the terpolymer. After the substance is emulsified and dispersed, a polycondensate of amino resin is formed and deposited around the core substance to form a capsule mucus.

本発明に係るアクリル酸類/アクリルアミド/アクリロ
ニトリル三元共重合体は、通常水溶液として容易に製造
できる為、従来のエチレン/無水マレイン酸共重合体、
メチルビニルエーテル/無水マレイン酸共重合体と異な
り、溶解に長時間を要する問題がなく、また、スチレン
スルホン酸系ポリマーに見られる発泡もなく、作業性に
優れている。さらに1スチレン/無水マレイン酸共重合
体と異なり、低いpH領域でも析出が起こることはなく
安定に存在し得る為、スチレンスルホン酸系ポリマーで
は製造し得なかった尿素ホルムアルデヒド樹脂を壁膜と
するマイクロカプセルの製造方法に使用することができ
、且つ、低pHで行なう残留ホルムアルデヒドの除去方
法にも有効である0 従って本発明によれば、メラミンホルムアルデヒド系又
は尿素ホルムアルデヒド系のいずれの場合についても、
安定で且つ粒径が小さく揃った疎水性芯物質の乳化液が
得られ、さらに短時間に効率良く、シかも緻密性の優れ
たカプセル壁膜の形成を促し、耐水性等品質の優れたカ
プセルを高濃度且つ低粘度で得ることができる。とのよ
5な優れた効果は、本発明に係るアクリル酸類/アクリ
ルアミド/アクリロニトリル三元共重合体自身が高い乳
化分散力を有し、保護コロイド能に優れ、しかもアミノ
樹脂のj4@合物を効率良く芯物質の周囲に形成し堆積
させる能力を有している為であると考えられるが、詳細
な機能は明らかではない。
The acrylic acid/acrylamide/acrylonitrile terpolymer according to the present invention can be easily produced as an aqueous solution, so it can be easily produced in the form of a conventional ethylene/maleic anhydride copolymer,
Unlike methyl vinyl ether/maleic anhydride copolymer, it does not have the problem of requiring a long time for dissolution, and also has excellent workability without foaming seen in styrene sulfonic acid polymers. Furthermore, unlike 1-styrene/maleic anhydride copolymer, it does not precipitate even in low pH ranges and can exist stably. It can be used in a method for manufacturing capsules, and is also effective in a method for removing residual formaldehyde carried out at low pH. Therefore, according to the present invention, in both cases of melamine formaldehyde type or urea formaldehyde type,
An emulsion of a hydrophobic core material that is stable and uniform in particle size can be obtained, and it also promotes the formation of capsule wall membranes with excellent density and density in a short time and efficiently, resulting in capsules with excellent quality such as water resistance. can be obtained at high concentration and low viscosity. The five excellent effects are that the acrylic acid/acrylamide/acrylonitrile terpolymer of the present invention itself has high emulsifying and dispersing power and has excellent protective colloid ability, and that the j4@ compound of amino resin It is thought that this is because it has the ability to efficiently form and deposit around the core substance, but its detailed function is not clear.

本発明方法の実施は主として次の工程に従って行なわれ
る。即ち、アクリル酸類/アクリルアミド/アクリロニ
トリル三元共重合体の酸性水溶液を調製する。必要なら
ばpHを酸性の範囲内で調整する。この水溶液中にカプ
セル化すべき疎水性芯物質を乳化分散させる。カプセル
壁膜形成材料であるアミノ化合物は、乳化分散の前後ど
ちらで添加しても差し支えない。このアミン化合物は次
に加えようとするアルデヒドと初期縮合物を形成させて
から用いても良い。あらかじめ初期縮合物を形成してい
るものには、例えばメラミン樹脂初期縮合物水溶液(商
品名ミルベンレジン5M−800゜昭和高分子(株)製
)、尿素樹脂初期縮合物水溶液(商品名サーモタイ) 
8I(SP、昭和高分子(株)製)等がある。必要なら
ばpT(を調整する。次に1撹拌を続けながらアルデヒ
ドを添加しくアミノ樹脂初期縮合物を用いる場合はアル
デヒドの添加は不要)、昇塙後一定時間保持し、カプセ
ル壁膜を形成させる。その後必要に応じて冷却および/
又はpH調整を行ないカプセル化を完了する。
The method of the present invention is carried out mainly according to the following steps. That is, an acidic aqueous solution of an acrylic acid/acrylamide/acrylonitrile terpolymer is prepared. If necessary, adjust the pH within the acidic range. The hydrophobic core substance to be encapsulated is emulsified and dispersed in this aqueous solution. The amino compound, which is a capsule wall forming material, may be added either before or after emulsification and dispersion. This amine compound may be used after forming an initial condensate with the aldehyde to be added next. Examples of those that have already formed an initial condensate include a melamine resin initial condensate aqueous solution (trade name: Milbenresin 5M-800, manufactured by Showa Kobunshi Co., Ltd.), and a urea resin initial condensate aqueous solution (trade name: Thermotie).
8I (SP, manufactured by Showa Kobunshi Co., Ltd.), etc. If necessary, adjust the pT.Next, add aldehyde while continuing stirring.Addition of aldehyde is not necessary when using an amino resin initial condensate.After rising, hold for a certain period of time to form a capsule wall film. . Then cool and/or cool as necessary.
Alternatively, pH adjustment is performed to complete encapsulation.

本発明に使用するアクリル酸類/アクリルアミド/アク
リロニトリル三元共重合体は、その大きさを水溶液の粘
度で表すと50〜200000cpsのものが良く、好
ましくは100〜10000cpsのものが良い。但し
ここで言う粘度は、通常不揮発分15〜25重景%、p
Hが通常1−4の酸性で得られる本発明に係るアニオン
性三元共重合体水溶液を、80℃でB型粘度計を用いて
測定した値である。粘度が50 cps未満では乳化分
散力及びカプセル形成中の保護作用が不足し、2000
00cpsより大では取扱いが困難となり、得られるカ
プセルスラリーも高粘度となる為、一般に好ましくない
。また、当該三元共重合体の共重合比は、アクリル酸類
が9〜92モル%、アクリルアミドが8〜87モル%、
アクリロニトリルが4〜26モル%が良く、好ましくは
アクリル酸類が12〜84モル%、アクリルアミドが6
〜80モル%、アクリロニトリルが9〜22モル%が良
い。アクリル酸類が9モル%未満では乳化分散力及び乳
化粒子の安定性に欠け、92モル%より大では得られる
カプセルスラリーが高粘度となってしまう。
The acrylic acid/acrylamide/acrylonitrile terpolymer used in the present invention preferably has a size of 50 to 200,000 cps, preferably 100 to 10,000 cps, when expressed in terms of the viscosity of an aqueous solution. However, the viscosity referred to here is usually 15 to 25% non-volatile content, p
This is a value measured using a B-type viscometer at 80° C. for an aqueous solution of the anionic terpolymer according to the present invention obtained in an acidic state in which H is usually 1 to 4. If the viscosity is less than 50 cps, the emulsifying dispersion power and protective effect during capsule formation will be insufficient, and the
If it is higher than 0.00 cps, it becomes difficult to handle and the resulting capsule slurry also has a high viscosity, which is generally not preferable. In addition, the copolymerization ratio of the terpolymer is 9 to 92 mol% of acrylic acids, 8 to 87 mol% of acrylamide,
Acrylonitrile is preferably 4 to 26 mol%, preferably acrylic acids are 12 to 84 mol%, and acrylamide is 6 mol%.
~80 mol%, preferably 9 to 22 mol% of acrylonitrile. If the acrylic acid content is less than 9 mol %, emulsifying dispersion power and emulsified particle stability will be lacking, and if it is more than 92 mol %, the obtained capsule slurry will have a high viscosity.

アクリルアミドが8モル%未満では乳化分散力に欠け、
乳化速度が遅くなり、また、カプセル化反応に時間がか
かつてしまい、87モル%より大ではカプセル化工程中
の系が不安定となり易く、凝集等が起こり易い。アクリ
ロニトリルが4モル%未満ではアクリル酸ゆと同仔に乳
化分散力及び乳化粒子の安定性に欠け、26モル%より
大では三元共重合体が水に不溶となってしまう。
If the acrylamide content is less than 8 mol%, emulsifying and dispersing power is lacking,
The emulsification rate becomes slow and the encapsulation reaction takes time, and if the amount exceeds 87 mol%, the system during the encapsulation process tends to become unstable and aggregation is likely to occur. If the acrylonitrile content is less than 4 mol %, it will lack emulsifying dispersion power and emulsified particle stability similar to acrylic acid, and if it is more than 26 mol %, the terpolymer will become insoluble in water.

アクリル酸類は遊離1浚のままであっても良く、分子中
のカルボキシル基の一部が塩を形成して(・ても良い。
Acrylic acids may be in a free form, or some of the carboxyl groups in the molecule may form a salt.

塩の代表的なものとしては、例えばナトリウム塩、カリ
ウム塩−、アンモニウム塩等がある。アクリル酸類の中
では特にアクリル酸が好ましく使用される。
Typical salts include, for example, sodium salts, potassium salts, and ammonium salts. Among acrylic acids, acrylic acid is particularly preferably used.

本発明に使用するアクリル酸類/アクリルアミド/アク
リロニトリル三元共重合体は、例えばこれら8種類の単
量体を水中で、過酸化水素、過硫酸カリウム、過硫酸ア
ンモン、過酸化ベンゾイル、クメンバーオキザイド、シ
クロヘキサンパーオキサイド、ジt−ブチルパーオキサ
イド、t−プチルハイドロパーオキザイド、メチルエチ
ルケトンパーオキサイド、アゾビスイソブチロニトリル
等の如き触媒によりラジカル重合させる当業者に公知の
方法で製造される。なお、アクリロニトリルの共重合比
が商いものについては、時には水溶液が白濁して(・る
ものが得られるが、小量のアルカリ金属の水酸化物等の
如き塩基性物質により水溶性となって液が透明となる為
、当該マイクロカプセルの製造には支障なく使用され、
所期の効果が得られる。また、当該三元共重合体は水と
稍々の割合で混合溶解可能である。親水性のカプセル化
媒体中における当該三元共重合体の使用量は、疎水性芯
物質100重量部に対して1〜80重量部が一般的であ
るが、でき力)がるカプセルスラリーの濃度、粘度、カ
プセルの粒径等によって適宜選択する。然し、使用量が
少ないとカプセル化工程中系内で凝集が起ったり、逆に
使用量が多(・と得られるカプセルスラリーの粘度が高
くなるなど、良好なカプセルが得難くなる為、使用惜は
8〜25重量部が好ましい。
The acrylic acid/acrylamide/acrylonitrile terpolymer used in the present invention can be prepared, for example, by mixing these eight types of monomers in water with hydrogen peroxide, potassium persulfate, ammonium persulfate, benzoyl peroxide, and cumene oxide. , cyclohexane peroxide, di-t-butyl peroxide, t-butyl hydroperoxide, methyl ethyl ketone peroxide, azobisisobutyronitrile, etc., by methods known to those skilled in the art. Note that when the copolymerization ratio of acrylonitrile is low, the aqueous solution sometimes becomes cloudy (.); Because it is transparent, it can be used without any problem in the production of microcapsules.
The desired effect can be obtained. Further, the terpolymer can be mixed and dissolved in water at a moderate ratio. The amount of the terpolymer used in the hydrophilic encapsulation medium is generally 1 to 80 parts by weight per 100 parts by weight of the hydrophobic core material. , viscosity, capsule particle size, etc. However, if the amount used is small, agglomeration may occur in the system during the encapsulation process, and if the amount used is too large, the viscosity of the resulting capsule slurry will increase, making it difficult to obtain good capsules. The amount is preferably 8 to 25 parts by weight.

カプセル壁膜を形成するアミン樹脂は、例えば尿素、メ
チロール尿素、チオ尿素、アルキル尿素、エチレン尿素
、メラミン、メチロールメラミン、ベンゾグアナミン、
アセトグアナミン等から選択した一種以上のアミン化合
物と、ホルムアルデヒド、アセトアルデヒド、グルタル
アルデヒド、ノ(ラホルムアルデヒド、クロトンアルデ
ヒド、べ/ズアルデヒド等から選択した一種以上のアル
デヒド類とを重縮合することにより得られる樹脂を意味
し、各々のモノマー又は初期縮合物の形で使用する。
Examples of the amine resin forming the capsule wall include urea, methylol urea, thiourea, alkyl urea, ethylene urea, melamine, methylol melamine, benzoguanamine,
Obtained by polycondensing one or more amine compounds selected from acetoguanamine, etc., and one or more aldehydes selected from formaldehyde, acetaldehyde, glutaraldehyde, no(laformaldehyde, crotonaldehyde, be/zaldehyde, etc.) Refers to resins, used in the form of their respective monomers or precondensates.

カプセル化されるべき疎水性芯物質としては、例えば魚
油、ラード油の如き動物油類、大豆油、亜麻仁油、落花
生油、ひまし油、とうもろこし油等の如き植物油類、石
油、ケロシン、ガソリン、ナフサ、パラフィン油、トル
エン、キシレン等の如を鉱物油類、アルキル置換ジフェ
ニルアルカン、アルキル置換ナフタレン、ジフェニルエ
タン、フタル酸ジプチル、サリチル酸メチル等の如き合
成油類等の疎水性液体を使用する。これらの疎水性液体
はマイクロカプセルの用途、目的に応じて、医薬、農薬
、香料、食品、染料、触媒等を適宜混合溶解して使用す
ることができる。
Hydrophobic core substances to be encapsulated include, for example, fish oil, animal oils such as lard oil, vegetable oils such as soybean oil, linseed oil, peanut oil, castor oil, corn oil, etc., petroleum, kerosene, gasoline, naphtha, paraffin. Hydrophobic liquids such as mineral oils such as oils, toluene, xylene, etc., synthetic oils such as alkyl-substituted diphenylalkanes, alkyl-substituted naphthalenes, diphenylethanes, diptyl phthalates, methyl salicylate, etc. are used. These hydrophobic liquids can be used by appropriately mixing and dissolving medicines, agricultural chemicals, fragrances, foods, dyes, catalysts, etc., depending on the use and purpose of the microcapsules.

乳化時のpHは2〜7の酸性範囲にあれば良(・。The pH during emulsification should be in the acidic range of 2 to 7 (・.

この為に必要ならば適当な酸又はアルカリを用(・てp
Hを調整する。また特に規定する必要はな〜・が、温度
は一般に高い方が乳化粒子の粒径が均一になり易いこと
から、80〜50℃に調整するのが好ましい。
For this purpose, use a suitable acid or alkali if necessary.
Adjust H. Although it is not necessary to specify a specific temperature, it is generally preferable to adjust the temperature to 80 to 50°C, since the higher the temperature, the more uniform the particle size of the emulsified particles becomes.

カプセル化反応はアミノ樹脂の重縮合条件を考慮して反
応温度を80〜95°CK調整することが望ましく、好
ましくは40〜85℃であり、特に50〜80℃が好ま
しく・。反応に要する時間は反応容量、反応容器等種々
の因子により異なるが、通常0.1)〜6時間程度であ
る。また、系のpHは酸性であれば良く、好ましくは1
〜6.5、特に2〜5.5に調整することが好ましい。
In the encapsulation reaction, it is desirable to adjust the reaction temperature to 80 to 95°C, preferably 40 to 85°C, particularly preferably 50 to 80°C, taking into account the polycondensation conditions of the amino resin. The time required for the reaction varies depending on various factors such as reaction volume and reaction container, but is usually about 0.1 to 6 hours. In addition, the pH of the system only needs to be acidic, preferably 1
It is preferable to adjust it to 6.5 to 6.5, particularly 2 to 5.5.

この原糸のpHを酸性に4tf、持する為、例えばギ酸
、酢酸、クエン酸、シュウ酸、塩酸、リン酸、硫酸、硝
酸、塩化アンモニウム等アミン樹脂製造時に一般に使用
される酸触媒が使用できるが、本発明で用いるアクリル
酸類/アクリルアミド/アクリロニトリル三元共重合体
の酸基を利用することもできる。
In order to keep the pH of this yarn at 4tf acidic, acid catalysts commonly used in the production of amine resins such as formic acid, acetic acid, citric acid, oxalic acid, hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid, and ammonium chloride can be used. However, it is also possible to utilize the acid groups of the acrylic acid/acrylamide/acrylonitrile terpolymer used in the present invention.

また、別に所望のpHK調整する為、上記の酸の他、ア
ルカリ金属の水酸化物、アンモニア水、トリエタノール
アミン等の如き塩基性物質を用いることができる。得ら
れるカプセル壁膜の性質には前記のカプセル化反応条件
、即ち温度、pH又は昇温速度等が極めて大きな影響を
与える為、カプセル壁膜形成物質の種類、カプセルの用
途に応じて適宜反応条件を設定する。攪拌についても、
得られるカプセルの品質を損なわないように1発泡を生
じない程度の均一な攪拌を行なうのが好ましく〇 一定時間保持し、カプセル化が完了した後、必要に応じ
後処理として、例えばアルカリ金属の水酩II/轟 丁
ソエーテ士 L IIイ々/ n−〒ぐ一ツバ如き塩基
性物質により系のpHを調整したり、或いは例えば亜硫
酸ナトリウム、ホルムアミド、塩酸ヒドロキシルアミン
、尿素、エチレン尿素等の薬品の添加又は水蒸気蒸留等
の方法により系中に残存する未反応アルデヒドの除去を
行なう。
In addition to the above-mentioned acids, basic substances such as alkali metal hydroxides, aqueous ammonia, triethanolamine, etc. can be used to separately adjust the pH to a desired value. Since the properties of the resulting capsule wall film are greatly influenced by the encapsulation reaction conditions described above, such as temperature, pH, and heating rate, the reaction conditions may be adjusted as appropriate depending on the type of capsule wall forming substance and the intended use of the capsule. Set. Regarding stirring,
In order to avoid impairing the quality of the resulting capsules, it is preferable to perform uniform stirring to the extent that no foaming occurs. After holding for a certain period of time and completing encapsulation, if necessary, as a post-treatment, for example, alkali metal Adjust the pH of the system with a basic substance such as Suizun II/Todoroki Soeteshi L II I/n-〒Gichitsuba, or use chemicals such as sodium sulfite, formamide, hydroxylamine hydrochloride, urea, and ethylene urea. The unreacted aldehyde remaining in the system is removed by a method such as addition of water or steam distillation.

以下本発明方法を実施例につきさらに詳細に説明する。The method of the present invention will be explained in more detail below with reference to Examples.

実施例中では本発明方法をマイクロカプセルの利用の最
も多いノーカーボン紙の場合について記すが、本発明は
実施例のみに限定されるものではなく、他の用途のカプ
セルについても同様に調製することができる。また特に
記さぬ限り例中の部及び%はそれぞれ重量基準である。
In the examples, the method of the present invention will be described for the case of carbonless paper, which is the most commonly used microcapsule, but the present invention is not limited to the examples only, and capsules for other uses may be similarly prepared. I can do it. Further, unless otherwise specified, parts and percentages in the examples are based on weight.

また、pHの調整忙は10%水酸化ナトリウム水溶液又
は10%塩酸を用いたが、本発明はこれらにのみ限定さ
れるものではない。
Further, although a 10% aqueous sodium hydroxide solution or 10% hydrochloric acid was used to adjust the pH, the present invention is not limited to these.

実施例 l アニオン性三元共重合体水溶液を以下の手順忙従って製
造した。
Example 1 An aqueous anionic terpolymer solution was prepared according to the following procedure.

壇拌後、温度計、還流冷却器を備えた5つ目フラスコに
水608部を入れ、80℃に昇温した。
After stirring, 608 parts of water was placed in a fifth flask equipped with a thermometer and a reflux condenser, and the temperature was raised to 80°C.

アクリル酸水溶液(80%)240部、アクリルアミド
24部及びアクリロニトリル24部に水256部を加え
、均一となした単量体水溶液の気量をフラスコに入れた
。続(・て過硫酸カリウムの1%水溶液82部を加えた
。フラスコの内温の上昇が起り88°CK至った時点で
、前記単量体水溶液の残部(全体の8/4量)を1.5
時間に亘ってフラスコへ連続的に滴下した。滴下が終了
した時点およびその80分後、1時間後に、過硫酸カリ
ウムの1%水溶液をそれぞれ8部ずつ計24部、フラス
コへ投入した。フラスコ内温は85〜88℃に保ち、上
記一連の操作は窒素気流中で行なった。
256 parts of water was added to 240 parts of acrylic acid aqueous solution (80%), 24 parts of acrylamide, and 24 parts of acrylonitrile, and the volume of the homogeneous monomer aqueous solution was put into a flask. Subsequently, 82 parts of a 1% aqueous solution of potassium persulfate was added. When the internal temperature of the flask began to rise and reached 88°C, the remainder of the monomer aqueous solution (8/4 of the total amount) was added to 1% aqueous solution of potassium persulfate. .5
Continuously dripped into the flask over time. At the time when the dropping was completed, 80 minutes later, and 1 hour later, 8 parts each of a 1% aqueous solution of potassium persulfate (24 parts in total) were charged into the flask. The flask internal temperature was maintained at 85 to 88°C, and the above series of operations were performed in a nitrogen stream.

その後冷却した。得られたアクリル酸/アクリルアミド
/アクリロニトリル三元共重合体水溶液の分析値は、不
揮発分20.5%、T)H8,25、粘度480cps
 (80℃、B型粘度針)であった。
It was then cooled. The analytical values of the obtained acrylic acid/acrylamide/acrylonitrile terpolymer aqueous solution were: non-volatile content 20.5%, T) H8.25, and viscosity 480 cps.
(80°C, type B viscosity needle).

上記の方法で得たアクリル酸80部、アクリル7511
0部及びアクリロニトリル10部から成る不揮発分zO
15%の三元共重合体水溶性高分子(共重合比はモル比
で77.179.8 / lB、1 )水溶液80部を
、水70部に攪拌しながら加え、pHを4.6に調整し
、カプセル化親水性媒体を得た。
80 parts of acrylic acid obtained by the above method, acrylic 7511
Non-volatile component zO consisting of 0 parts and 10 parts of acrylonitrile
80 parts of a 15% terpolymer water-soluble polymer (copolymerization ratio in molar ratio: 77.179.8/1B, 1) aqueous solution was added to 70 parts of water with stirring, and the pH was adjusted to 4.6. The encapsulated hydrophilic medium was prepared.

一方、728710部、87%ホルマリン25部を水6
5部に加え、攪拌下でpHを9に調整し、60℃に加温
すると約20分で透明となり、メラミンホルムアルデヒ
ド初期縮合物を得た。別にクリスタルバイオレットラク
トン(CVL)4部とベンゾイルロイコメチレンブルー
(BLMB)2部をアルキルジフェニルエタン(商品名
ハイゾール5AS−296、日本石油化学展)100部
に加え、攪拌下で90℃で20分間加熱溶解し、常温ま
で冷却し、疎水性芯物質とした。この芯物質100部を
前記カプセル化親水性媒体100部に40℃の温度で混
合し、ホモミキサー(特殊機化製)を用いて9000 
rpmの条件で4分間乳化したところ、平均粒径4.0
μの粒子を含むO/W型乳化液を得た。
Meanwhile, add 728,710 parts and 25 parts of 87% formalin to 6 parts of water.
5 parts, the pH was adjusted to 9 under stirring, and the mixture became transparent in about 20 minutes when heated to 60° C. to obtain a melamine formaldehyde initial condensate. Separately, 4 parts of crystal violet lactone (CVL) and 2 parts of benzoyl leucomethylene blue (BLMB) were added to 100 parts of alkyldiphenylethane (trade name Hysol 5AS-296, Japan Petrochemical Exhibition) and dissolved by heating at 90°C for 20 minutes with stirring. The mixture was cooled to room temperature to obtain a hydrophobic core material. 100 parts of this core material was mixed with 100 parts of the encapsulated hydrophilic medium at a temperature of 40°C, and the mixture was mixed with 9000 parts of the core material using a homomixer (manufactured by Tokushu Kika).
When emulsified for 4 minutes at rpm, the average particle size was 4.0.
An O/W emulsion containing μ particles was obtained.

先に調製したメラミンホルムアルデヒド初期縮合物10
0部をpH4,5に調整した後、40℃に加温し、この
乳化液に加え、攪拌を続けながら60℃に昇温した。2
時間保持した後、系の温度を26℃まで冷却し、pH8
,5に調整して、平均粒径4、θμ、粘度210cps
 (80℃、B型粘度計)の良好なカプセルスラリーを
得た。なお、カプセル化親水性媒体の調整時及びカプセ
ル化工程中に、発泡は特になく、作業性は良好であった
Melamine formaldehyde initial condensate prepared previously 10
After adjusting the pH of 0 part to 4.5, it was heated to 40°C, added to this emulsion, and heated to 60°C while stirring. 2
After holding for a period of time, the temperature of the system was cooled to 26°C, and the pH was adjusted to 8°C.
, 5, average particle size 4, θμ, viscosity 210cps
A capsule slurry having a good value (80° C., B-type viscometer) was obtained. Note that there was no particular foaming during the preparation of the encapsulated hydrophilic medium and during the encapsulation process, and the workability was good.

実施例 B メラミンホルムアルデヒド初期縮合物として市販の初期
縮合物水溶液(商品名、ミルベンレジン8M−800、
昭和高分子製)を用いたこと以外&よ、実施例1と同様
の方法でカプセル化反応を行な−・、カプセルスラリー
を製造した。得られたカプセルスラリーは平均粒径8.
7μ、粘度190cps (80℃、B型粘度計)で、
良好な品質のものであった。
Example B A commercially available aqueous solution of initial condensate as a melamine formaldehyde initial condensate (trade name: Milbenresin 8M-800,
An encapsulation reaction was carried out in the same manner as in Example 1, except that a capsule slurry (manufactured by Showa Kobunshi) was used to produce a capsule slurry. The obtained capsule slurry had an average particle size of 8.
7μ, viscosity 190cps (80℃, B type viscometer),
It was of good quality.

実施例 8 実施例1と同様の方法で製造したアクリル酸61S部、
アクリルアミド85部及びアクリロニトリル10部から
成り、不揮発分21.2%、粘度860CT)8 (8
0℃、B型粘度計)、pH8,85の三元共重合体水溶
性高分子(共重合比はモル%で62.6 / 24.4
 / IB、1 )水溶液を用いたことと、メラミ/ホ
ルムアルデヒド初期縮合物として市販の初期縮合物水溶
液(商品名ミルベンレジン5M−800、昭和高分子1
!りを用いたこと以外は、実施例1と同様の方法でカプ
セル化反応を行ない、カプセルスラリーを製造した。得
られたカプセルスラリーは、平均粒径4.1μ、粘度1
0cps (80℃、B型粘度計)で、良好な品質のも
のであった。
Example 8 61S parts of acrylic acid produced in the same manner as in Example 1,
Consisting of 85 parts of acrylamide and 10 parts of acrylonitrile, nonvolatile content 21.2%, viscosity 860 CT) 8 (8
0°C, Type B viscometer), terpolymer water-soluble polymer with pH 8.85 (copolymerization ratio is 62.6/24.4 in mol%)
/ IB, 1) The use of an aqueous solution and the commercially available aqueous initial condensate solution as a melami/formaldehyde initial condensate (trade name: Milbenresin 5M-800, Showa Kobunshi 1)
! An encapsulation reaction was carried out in the same manner as in Example 1, except that a capsule slurry was produced. The obtained capsule slurry had an average particle size of 4.1μ and a viscosity of 1
It was 0 cps (80°C, Type B viscometer) and was of good quality.

ヌffi 実施例1と同様の方法で製造したアクリル酸50部、ア
クリルアミド40部及びアクリロニトリル10部から成
り、不揮発分zO09%、粘度83!0cps (80
℃、B型粘度計) 、pH8,65の三元共重合体水溶
性高分子(共重合比はモル%で48.0 / 88.9
 / 1B、1 )水溶液を用いたことと、メラミンホ
ルムアルデヒド初期縮合物として市販の初期縮合物水溶
液(商品名ミルベンレジン5M−5OO、昭和高分子製
)を用いたこと以外は、実施例1と同様の方法でカプセ
ル化反応を行ない、カプセルスラリーを製造した。得ら
れたカプセルスラリーは平均粒径4Jμ、粘度880c
ps (80℃、B型粘度計)で、良好な品質のもので
あった。
Composed of 50 parts of acrylic acid, 40 parts of acrylamide and 10 parts of acrylonitrile produced in the same manner as in Example 1, non-volatile content zO 09%, viscosity 83!0 cps (80
℃, Type B viscometer), terpolymer water-soluble polymer with pH 8.65 (copolymerization ratio is 48.0/88.9 in mole%)
/ 1B, 1) Same as Example 1 except that an aqueous solution was used and a commercially available aqueous initial condensate solution (trade name Milbenresin 5M-5OO, manufactured by Showa Kobunshi) was used as the melamine formaldehyde initial condensate. The encapsulation reaction was carried out by the method to produce capsule slurry. The obtained capsule slurry had an average particle size of 4 Jμ and a viscosity of 880c.
ps (80°C, Type B viscometer), and was of good quality.

実施例 5 実施例1で得た不揮発分20.6%のアクリル酸/アク
リルアミド/アクリロニトリル三元共重合体水溶性高分
子水溶液80部を、水70部に攪拌しながら加えた。さ
らに尿素10部とレゾルシン1.4部を加え、溶解した
。この尿素、レゾルシンを含む水溶性高分子水浴液のT
)Hを13.6に調整し、カプセル化親水性媒体を得た
。別にクリスタルバイオレットラクトン4部とベンゾイ
ルロイコメチレンブルー2部をアルキルジフェニルエタ
ン(商品名ハイゾールSAS 296.8石化学製)1
00部に加え、攪拌下で90℃で20分間加熱溶解し、
常温まで冷却し、疎水性芯物質とした。この芯物質10
0部を前記カプセル化親水性媒体100部に45℃の山
鹿で混合し、ホモミキサー(特殊機化製)を用(・て9
000rpmの条件で8分間乳化したところ、平均粒径
4.1μの粒子を含む0/v型乳化液を得た。次(・で
87%ホルマリン27部を加え、攪拌を紗、けながら、
60℃に昇温した。60℃にて2時間カプセル化反応さ
せた後、系の温度を20℃まで冷却し、pHを8.5に
調整し、カプセルスラリーを製造した。得られたカプセ
ルスラリーは平均粒径4.1μ、粘度480 cps(
80℃、B型粘度計)で、良好な品質のものであった。
Example 5 80 parts of the acrylic acid/acrylamide/acrylonitrile terpolymer water-soluble polymer aqueous solution having a nonvolatile content of 20.6% obtained in Example 1 was added to 70 parts of water with stirring. Furthermore, 10 parts of urea and 1.4 parts of resorcin were added and dissolved. T of this water-soluble polymer water bath solution containing urea and resorcinol.
) H was adjusted to 13.6 to obtain an encapsulated hydrophilic medium. Separately, add 4 parts of crystal violet lactone and 2 parts of benzoyl leucomethylene blue to 1 part of alkyldiphenylethane (trade name: Hysol SAS 296.8 manufactured by Seki Kagaku).
00 parts, heated and dissolved at 90°C for 20 minutes with stirring,
The mixture was cooled to room temperature to obtain a hydrophobic core material. This core substance 10
0 part was mixed with 100 parts of the encapsulated hydrophilic medium in a Yamaga oven at 45°C, and the mixture was mixed using a homo mixer (manufactured by Tokushu Kika).
When emulsified for 8 minutes at 000 rpm, a 0/v type emulsion containing particles with an average particle size of 4.1 μm was obtained. Next, add 27 parts of 87% formalin and stir while stirring.
The temperature was raised to 60°C. After carrying out the encapsulation reaction at 60° C. for 2 hours, the temperature of the system was cooled to 20° C., the pH was adjusted to 8.5, and a capsule slurry was produced. The obtained capsule slurry had an average particle size of 4.1μ and a viscosity of 480 cps (
It was found to be of good quality as measured at 80°C (B-type viscometer).

実施例 6 尿素ホルムアルデヒド初期縮合物として市販の初期縮合
物水溶液(商品名サーモタイト8H8P。
Example 6 A commercially available aqueous solution of an initial condensate as a urea-formaldehyde initial condensate (trade name: Thermotite 8H8P).

昭和病分子製)を用いたこと以外は、実施例5と同様の
方法でカプセル化反応を行ない、カプセルスラリーを製
造した。得られたカプセルスラリーは平均粒径8.9μ
、粘度420cps (80℃、B型粘度計)で、良好
な品質のものであった。
A capsule slurry was produced by carrying out an encapsulation reaction in the same manner as in Example 5, except that the same method as in Example 5 was used, except for using the same method as in Example 5. The obtained capsule slurry had an average particle size of 8.9μ.
The product had a viscosity of 420 cps (80° C., B-type viscometer) and was of good quality.

比、較例 l アニオン性高分子電解質水溶液としてエチレン/無水マ
レイン酸共重合体(商品名EMA81.モンサント社製
)20部を水80部に溶解して不揮発分20%の水溶液
にしたものを用いたことと、メラミンホルムアルデヒド
初期縮合物として市販の初期縮合物水溶液(商品名ミル
ベンレジ78M−800、昭和高分子fA)を用いたこ
と以外は、実施例1と同様の方法でカプセル化反応を行
ない、カプセルスラリーを製造した。得られたカプセル
スラリーは、平均粒径5.8μ、粘度2000 cps
(80℃、B型粘度計)と高粘度のものとなった0また
、エチレン/無水マレイン酸共重合体の溶解には80℃
で8時間を要した。
Comparative Example l As an anionic polymer electrolyte aqueous solution, 20 parts of ethylene/maleic anhydride copolymer (trade name EMA81, manufactured by Monsanto) was dissolved in 80 parts of water to make an aqueous solution with a non-volatile content of 20%. The encapsulation reaction was carried out in the same manner as in Example 1, except that a commercially available aqueous solution of the initial condensate (trade name Milbenregi 78M-800, Showa Kobunshi fA) was used as the melamine formaldehyde initial condensate. A capsule slurry was produced. The obtained capsule slurry had an average particle size of 5.8μ and a viscosity of 2000 cps.
(80℃, B-type viscometer), which resulted in a high viscosity.
It took 8 hours.

比較例 2 アニオン性高分子電解質水溶液としてポリスチレンスル
ホン酸の一部ナトリウム塩(商品名VER8A Tl2
O3、−)−シヨf ルスl’−チ社製)20部を水8
0部に溶解して不揮発分20%の水溶液にしたものを用
いたことと、メラミンホルムアルデヒド初期縮合物とし
て市販の初期縮合物水溶液(商品名ミルベンレジンSM
−800、昭和高分子製)を用いたこと以外は、実施例
1と同様の方法でカプセル化反応を行ない、カプセルス
ラリーを製造した。得られたカプセルスラリーは平均粒
径5.4μ、粘度2500cps (80℃、B型粘度
計)シ*鮎麻の叡の)−trつたA寸だ、ポリスチレン
スルホン酸の一部ナトリウム塩の溶解の際、多量の発泡
がみられたので、泡がなくなるまで約1時間放置した後
、カプセル化を行なった。
Comparative Example 2 A partial sodium salt of polystyrene sulfonic acid (trade name VER8A Tl2) was used as an anionic polymer electrolyte aqueous solution.
20 parts of O3, -)-Shof (manufactured by Rusl'-chi Co., Ltd.) and 8 parts of water.
0 parts to make an aqueous solution with a non-volatile content of 20%.
-800, manufactured by Showa Kobunshi Co., Ltd.) was used, but the encapsulation reaction was carried out in the same manner as in Example 1 to produce a capsule slurry. The obtained capsule slurry has an average particle size of 5.4 μ, a viscosity of 2500 cps (80°C, B-type viscometer), and a size of 1.5 μm (80°C, B-type viscometer). At this time, a large amount of foaming was observed, so the mixture was left for about 1 hour until the foam disappeared, and then encapsulation was performed.

比較例 8 アニオン性高分子電解質水溶液として、ポリスチレンス
ルホン酸の一部ナトリウム塩(商品名VER8A“rL
500、ナショナルスターチ社製)20部を水80部に
溶解して不揮発物20%の水溶液にしたものを用いたこ
と以外は、実施例6と同様の方法でカプセル化反応を行
なったが、反応中に系内が凝集し、カプセルは得られな
かった。
Comparative Example 8 A partial sodium salt of polystyrene sulfonic acid (trade name VER8A"rL") was used as an anionic polymer electrolyte aqueous solution.
The encapsulation reaction was carried out in the same manner as in Example 6, except that 20 parts of 500 (manufactured by National Starch) were dissolved in 80 parts of water to make an aqueous solution containing 20% non-volatile matter. The inside of the system agglomerated and no capsules were obtained.

上記実施例及び比較例で得たカプセルスラリーについて
、下記の項目につきその諸物件を評価した0 fil 粒子径:コールターカウンターTA−,II型
粒度測定機(コールタ−エレクトロニクス社製)Kより
測定したカプセルの平均粒径を、r10%体積点の粒径
で示した。平均粒径が小さければ乳化力は強いと考えら
れる。
The capsule slurries obtained in the above Examples and Comparative Examples were evaluated for the following items: 0 fil Particle size: Capsules measured by Coulter Counter TA-, II type particle size analyzer (manufactured by Coulter Electronics) K The average particle size of is shown as the particle size at r10% volume point. It is considered that the smaller the average particle size, the stronger the emulsifying power.

(1!+ 粘度二80℃に於けるカプセルスラリー〇粘
度をB型粘度計にて測定した。
(1!+ Viscosity 2) The viscosity of the capsule slurry at 80°C was measured using a B-type viscometer.

(8) カプセル化率:ここでいうカプセル化率とは、
ノーカーボン下用紙処カプセルスラリーを塗布し、乾燥
させた後の塗布面の発色の度合いを評価したものをへ味
する。即ち、得られたカプセルスラリー50部に水50
部を加え、市販のノーカーボン下用紙(商品名マイクロ
ケミカルペーパーNW40c、大王製紙製)K乾燥塗布
量が49/rn2 Kなるように塗布し、乾燥させた後
の塗布面の色を比較した。塗布面が真っ白であれば芯物
質はすべてカプセル化され℃いる(カプセル化率は良好
)が、塗布面が青色になればカプセルスラリー中に乳化
分散が不十分な染料を含む芯物質が存在しカプセル化さ
れないまま残っていた(カプセル化率は悪い)ことにな
る。
(8) Encapsulation rate: What is the encapsulation rate here?
After coating the carbonless paper treatment capsule slurry and drying it, the degree of color development on the coated surface was evaluated. That is, 50 parts of water was added to 50 parts of the obtained capsule slurry.
A commercially available carbonless paper (trade name: Micro Chemical Paper NW40c, manufactured by Daio Paper Co., Ltd.) was applied so that the dry coating amount of K was 49/rn2 K, and the color of the coated surface after drying was compared. If the coated surface is pure white, all the core material is encapsulated (good encapsulation rate), but if the coated surface turns blue, there is core material containing dye in the capsule slurry that is not sufficiently emulsified and dispersed. This means that it remains unencapsulated (the encapsulation rate is poor).

即ちカプセル化率は乳化分散力の尺度どなる。That is, the encapsulation rate is a measure of emulsification dispersion power.

(4)発色性:カプセルスラリ−50部忙水50部を加
え、さらにセルロースバッグ−6部と10%酸化でんぷ
ん水溶液10部を混合分散し、カプセルカラーを調整し
た。このカプセルカラーを40’/Qの原紙に、乾燥塗
布量が4艦2になるようにワイヤーバーにて塗布し、乾
燥してノーカーボン上用紙を作製した。この上用紙な 
(4) Color development: Capsule color was adjusted by adding 50 parts of capsule slurry and 50 parts of water, and further mixing and dispersing 6 parts of cellulose bag and 10 parts of 10% oxidized starch aqueous solution. This capsule color was applied to 40'/Q base paper using a wire bar so that the dry coating amount was 4 to 2, and dried to produce a carbonless top paper. This is paper
.

市販の下用紙(亜品名マイクロケミカルペーノく−NW
40c、大王製紙製)と重ね合せて、タイプライタ−に
て印字し、発色性を評価した。
Commercially available bottom paper (product name: microchemical pen-NW)
40c (manufactured by Daio Paper Co., Ltd.) and printed using a typewriter to evaluate color development.

(5)圧力スマッシ汚れ二発色性試験用と同様の方法で
上用紙を作製し、市販の下用紙(商品名マイクロケミカ
ルペーパーNW−40部%大王製紙製)と重ね合せ、約
1 、6 kfl/am”の静圧を加え、下用紙顕色剤
面の発色汚れを比較した。当然のことなからカプセルの
膜強度が弱かったり、カプセル粒径の分布が悪く粗大な
粒子があれば、発色汚れは多くなる。
(5) An upper paper was prepared in the same manner as for the pressure smash stain two-color test, and it was overlaid with a commercially available lower paper (trade name: Micro Chemical Paper NW-40 parts %, manufactured by Daio Paper Co., Ltd.) to yield approximately 1.6 kfl. /am'' static pressure was applied, and the color development stains on the developer surface of the lower paper were compared.Of course, if the capsule film strength is weak or the capsule particle size distribution is poor and there are coarse particles, the color development will be worse. There will be more dirt.

(6)耐湿性:発色性試験用と同様の方法で上用紙を作
成し、40°Cで相対湿度90%の恒湛恒湿状卯中E1
週間放置後、市販のノーカーボン下用紙(商品名マイク
ロケミカルペーノ:−NW400大王製紙製)と重ね合
せて1タイプライタ−にて印字し、発色性試験の際に印
字したものと比較した。耐湿性が悪ければ発色性試験の
際に印字したものより発色濃度は低下し、両者の差は大
きくなるが、耐湿性が良くなるに従い、その差はなくな
り、良好なカプセルといえる。
(6) Moisture resistance: The upper paper was prepared in the same manner as for the color development test, and was kept at 40°C and 90% relative humidity in a constant humidity state.
After being left for a week, it was printed on a commercially available carbonless base paper (trade name: Microchemical Peno: -NW400 manufactured by Daio Paper Co., Ltd.) using a typewriter, and compared with that printed during the color development test. If the moisture resistance is poor, the color density will be lower than that printed during the color development test, and the difference between the two will be large; however, as the moisture resistance improves, this difference disappears, and it can be said that the capsule is a good capsule.

以上の評価の結果を次の第1表に編めて示す。The results of the above evaluation are summarized in Table 1 below.

前掲の第1表から明らかなよ5に、本発明によるカプセ
ルはいずれも平均粒径が8.7〜4.2μと小さく、カ
プセルスラリーの粘度も190〜480cpsと低く、
カプセル化率に優れており、カプセルの発色性、耐湿性
も良く、圧力による発色汚れも少ない良好な品質のもの
であった。これに対し、比較例によるカプセルは、平均
粒径が5μ以上と大きく、カプセルスラリーの粘度が高
く、耐湿性に劣り、圧力による発色汚れも多く、良好な
品質とはいえなかった。また、比較例8においては、カ
プセル化工程中に系全体が凝集してしまい、カプセルは
得られなかった。従って、本発明は各特性に亘って優れ
たマイクロカプセルを製造することができ、産業上極め
て有用である。
As is clear from Table 1 above, all the capsules according to the present invention have a small average particle size of 8.7 to 4.2μ, and the viscosity of the capsule slurry is as low as 190 to 480 cps.
The encapsulation rate was excellent, and the capsules had good color development and moisture resistance, and were of good quality with little color staining due to pressure. On the other hand, the capsules according to the comparative example had a large average particle size of 5 microns or more, the viscosity of the capsule slurry was high, the moisture resistance was poor, and there was a lot of colored staining due to pressure, and the quality could not be said to be good. Furthermore, in Comparative Example 8, the entire system agglomerated during the encapsulation process, and no capsules were obtained. Therefore, the present invention can produce microcapsules that are excellent in all properties, and is extremely useful industrially.

Claims (1)

【特許請求の範囲】 1 アニオン性高分子%I屏質の酸性水溶液中に疎水性
芯物質を乳化分散させた後当該芯物省の周囲にアミノ樹
脂を壁膜とするカプセルを形成させるマイクロカプセル
の製造方法において、前記アニオン性高分子電解質がア
クリル酸類とアクリルアミドとアクリロニトリルとから
成るアニオン性三元共重合体水溶性高分子であることを
特徴とするマイクロカプセルの製造方法。 東 特許請求の範囲第1項記載のマイクロカプセルの製
造方法に於て、アミン樹脂がメラミンホルムアルデヒド
樹脂であるマイクロカプセルの製造方法。 & 特許請求の範囲第1項記載のマイクロカプセルの製
造方法に於て、アミン樹脂が尿素ホルムアルデヒド樹脂
であるマイクロカプセルの製造方法。 4 %許請求の範囲第1項記載のマイクロカプセルの製
造方法に於て、アニオン性三元共重合体水溶性高分子の
共重合比がアクリル酸類9〜92モル%、アクリルアミ
ド8〜87モル%、アクリロニトリル4〜26モル%で
あるマイクロカプセルの製造方法。 五 特許請求の範囲第1項記載のマイクロカプセルの製
造方法に於て、アニオン性三元共重合体水溶性高分子が
疎水性芯物質100重量部に対し1〜80重量部である
マイクロカプセルの製造方法。 a 特許請求の範囲第1項記載のマイクロカプセルの製
造方法に於て、アニオン性三元共重合体水溶性高分子の
酸性水溶液の粘度が50〜200000cpsであるマ
イクロカプセルの製造方法。 I 特許請求の範囲第6項記載のマイクロカプセルの製
造方法に於て、アニオン性三元共重合体水溶性高分子の
酸性水溶液の粘度が100〜10000cpsであるマ
イクロカプセルの製遣方法。
[Scope of Claims] 1. Microcapsules in which a hydrophobic core substance is emulsified and dispersed in an acidic aqueous solution of an anionic polymer %I membrane, and then a capsule having an amino resin as a wall membrane is formed around the core substance. A method for producing microcapsules, wherein the anionic polymer electrolyte is an anionic terpolymer water-soluble polymer composed of acrylic acids, acrylamide, and acrylonitrile. Higashi A method for producing microcapsules according to claim 1, wherein the amine resin is a melamine formaldehyde resin. & The method for producing microcapsules according to claim 1, wherein the amine resin is a urea formaldehyde resin. 4% In the method for producing microcapsules according to claim 1, the copolymerization ratio of the anionic terpolymer water-soluble polymer is 9 to 92 mol% of acrylic acids and 8 to 87 mol% of acrylamide. , a method for producing microcapsules containing 4 to 26 mol% of acrylonitrile. (5) In the method for producing microcapsules according to claim 1, the amount of the anionic terpolymer water-soluble polymer is 1 to 80 parts by weight based on 100 parts by weight of the hydrophobic core substance. Production method. a. The method for producing microcapsules according to claim 1, wherein the acidic aqueous solution of the anionic terpolymer water-soluble polymer has a viscosity of 50 to 200,000 cps. I. The method for producing microcapsules according to claim 6, wherein the acidic aqueous solution of the anionic terpolymer water-soluble polymer has a viscosity of 100 to 10,000 cps.
JP59094629A 1984-05-14 1984-05-14 Preparation of microcapsule Pending JPS60238140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59094629A JPS60238140A (en) 1984-05-14 1984-05-14 Preparation of microcapsule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59094629A JPS60238140A (en) 1984-05-14 1984-05-14 Preparation of microcapsule

Publications (1)

Publication Number Publication Date
JPS60238140A true JPS60238140A (en) 1985-11-27

Family

ID=14115551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59094629A Pending JPS60238140A (en) 1984-05-14 1984-05-14 Preparation of microcapsule

Country Status (1)

Country Link
JP (1) JPS60238140A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140189A (en) * 1984-07-31 1986-02-26 Matsumoto Yushi Seiyaku Kk Ink composition for non-carbon type pressure-sensitive manifold paper
JPS6140188A (en) * 1984-07-31 1986-02-26 Matsumoto Yushi Seiyaku Kk Microcapsules for non-carbon type pressure-sensitive manifold paper
JPS6140187A (en) * 1984-07-31 1986-02-26 Matsumoto Yushi Seiyaku Kk Non-carbon type pressure-sensitive manifold paper
EP0435489A1 (en) * 1989-12-07 1991-07-03 The Mead Corporation Microcapsules, their production, and their use in recording sheets
US5281266A (en) * 1991-06-18 1994-01-25 The Wiggins Teape Group Limited Solvent compositions for use in pressure-sensitive copying paper
US5464803A (en) * 1992-06-04 1995-11-07 The Wiggins Teape Group Limited Pressure-sensitive record material
JP2011516618A (en) * 2008-02-11 2011-05-26 ジボダン エス エー Product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425277A (en) * 1977-07-27 1979-02-26 Fuji Photo Film Co Ltd Method of producing microcapsule
JPS5551431A (en) * 1978-10-12 1980-04-15 Fuji Photo Film Co Ltd Manufacture of microcapsule

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425277A (en) * 1977-07-27 1979-02-26 Fuji Photo Film Co Ltd Method of producing microcapsule
JPS5551431A (en) * 1978-10-12 1980-04-15 Fuji Photo Film Co Ltd Manufacture of microcapsule

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140189A (en) * 1984-07-31 1986-02-26 Matsumoto Yushi Seiyaku Kk Ink composition for non-carbon type pressure-sensitive manifold paper
JPS6140188A (en) * 1984-07-31 1986-02-26 Matsumoto Yushi Seiyaku Kk Microcapsules for non-carbon type pressure-sensitive manifold paper
JPS6140187A (en) * 1984-07-31 1986-02-26 Matsumoto Yushi Seiyaku Kk Non-carbon type pressure-sensitive manifold paper
JPH0351235B2 (en) * 1984-07-31 1991-08-06 Matsumoto Yushi Seiyaku Kk
JPH0351234B2 (en) * 1984-07-31 1991-08-06 Matsumoto Yushi Seiyaku Kk
JPH0351233B2 (en) * 1984-07-31 1991-08-06 Matsumoto Yushi Seiyaku Kk
EP0435489A1 (en) * 1989-12-07 1991-07-03 The Mead Corporation Microcapsules, their production, and their use in recording sheets
US5281266A (en) * 1991-06-18 1994-01-25 The Wiggins Teape Group Limited Solvent compositions for use in pressure-sensitive copying paper
US5472489A (en) * 1991-06-18 1995-12-05 The Wiggins Teape Group Limited Solvent compositions for use in pressure-sensitive copying paper
US5464803A (en) * 1992-06-04 1995-11-07 The Wiggins Teape Group Limited Pressure-sensitive record material
JP2011516618A (en) * 2008-02-11 2011-05-26 ジボダン エス エー Product

Similar Documents

Publication Publication Date Title
KR880002539B1 (en) Process for producing microcapsules and microcapsule slurry
US4450123A (en) Process for producing microcapsules
US4328119A (en) Method of making microcapsules
JPS6244970B2 (en)
EP0570209A1 (en) Production method of microcapsules
US4957666A (en) Method of producing a slurry of microcapsules
JPH0620535B2 (en) Microcapsule manufacturing method
JPH0229033B2 (en)
JPS60238140A (en) Preparation of microcapsule
JPH0611396B2 (en) Microcapsule manufacturing method
US4753968A (en) Process for preparing microcapsules
KR840001591B1 (en) Process of preparing microcapsule for pressure-sensitive recording paper
JPH02273540A (en) Manufacture of micro-capsule
US4470935A (en) Process for producing microcapsules containing hydrophobic core material for carbonless duplicating sheets
JPH0229032B2 (en)
KR20010000621A (en) method for preparing microcapsules
JPH0551339B2 (en)
JP2534691B2 (en) Method for producing high-density microcapsules
JPH0459932B2 (en)
JP2675594B2 (en) Emulsifier for producing microcapsule, microcapsule using the emulsifier, method for producing the same, and carbon-free pressure-sensitive copying paper using the microcapsule
JPH0547259B2 (en)
JPH01164433A (en) Production of microcapsule
JPS6111138A (en) Preparation of microcapsule
JPS60190227A (en) Preparation of microcapsule
JPS6365944A (en) Preparation of microcapsule