JPS60227484A - Semiconductor device manufacturing method - Google Patents
Semiconductor device manufacturing methodInfo
- Publication number
- JPS60227484A JPS60227484A JP59084265A JP8426584A JPS60227484A JP S60227484 A JPS60227484 A JP S60227484A JP 59084265 A JP59084265 A JP 59084265A JP 8426584 A JP8426584 A JP 8426584A JP S60227484 A JPS60227484 A JP S60227484A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- conductive film
- light
- electrode
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 59
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000000034 method Methods 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 239000013078 crystal Substances 0.000 claims description 14
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 238000002425 crystallisation Methods 0.000 claims description 4
- 230000008025 crystallization Effects 0.000 claims description 4
- 230000002186 photoactivation Effects 0.000 claims 1
- 238000000137 annealing Methods 0.000 description 14
- 230000003287 optical effect Effects 0.000 description 13
- 229910052753 mercury Inorganic materials 0.000 description 9
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 8
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 229910001887 tin oxide Inorganic materials 0.000 description 6
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- GHZFPSVXDWJLSD-UHFFFAOYSA-N chromium silver Chemical compound [Cr].[Ag] GHZFPSVXDWJLSD-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910017770 Cu—Ag Inorganic materials 0.000 description 1
- 229910017813 Cu—Cr Inorganic materials 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- ZTXONRUJVYXVTJ-UHFFFAOYSA-N chromium copper Chemical compound [Cr][Cu][Cr] ZTXONRUJVYXVTJ-UHFFFAOYSA-N 0.000 description 1
- DYRBFMPPJATHRF-UHFFFAOYSA-N chromium silicon Chemical compound [Si].[Cr] DYRBFMPPJATHRF-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000001017 electron-beam sputter deposition Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005224 laser annealing Methods 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 150000002730 mercury Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/30—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells
- H10F19/31—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells having multiple laterally adjacent thin-film photovoltaic cells deposited on the same substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Recrystallisation Techniques (AREA)
- Photovoltaic Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は、光照射により光起電力を発生しうる接合を
少なくとも1つ有するアモルファス半導体を含む非単結
晶半導体を、可曲性を有し絶縁表面を有する基板に設け
た光電変換素子(単に素子ともいう)を複数個電気的に
直列接続した、高い電圧の発生の可能な光電変換装置に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method in which a non-single crystal semiconductor including an amorphous semiconductor having at least one junction capable of generating a photovoltaic force upon irradiation with light is provided on a substrate having flexibility and an insulating surface. The present invention relates to a photoelectric conversion device that is capable of generating high voltage and has a plurality of photoelectric conversion elements (also simply referred to as elements) electrically connected in series.
本発明は光照射面側のごく近傍の非単結晶半導体に対し
、500nm以下の波長の強光を照射してPまたはN型
半導体層およびそれに近接したI型半導体層の結晶化を
促し、ひいてはここでの光吸収の減少(吸収損失の低減
化)を図る。またPI接合またはNl接合界面近傍での
再結合中心の密度を少なくするため、この接合界面は電
気的に接合を有するもモホロジー的には同一結晶性を有
せしめた。The present invention irradiates a non-single-crystal semiconductor in the immediate vicinity of the light irradiation surface side with intense light with a wavelength of 500 nm or less to promote crystallization of a P- or N-type semiconductor layer and an I-type semiconductor layer adjacent thereto, and thereby The aim is to reduce light absorption here (reduce absorption loss). Furthermore, in order to reduce the density of recombination centers near the PI junction or Nl junction interface, this junction interface was made to have the same crystallinity in terms of morphology, although it had an electrical junction.
本発明においては、逆に1層内部に水素またはハロゲン
元素が添加されたアモルファスまたは低度の結晶性を有
する非単結晶半導体であって、ここでは逆に光吸収を多
くして光電変換を行わしめたものである。In the present invention, on the contrary, an amorphous or a non-single-crystalline semiconductor having a low degree of crystallinity is used, in which hydrogen or a halogen element is added inside one layer, and here, on the contrary, photoelectric conversion is performed by increasing light absorption. It is closed.
特に本発明は、光照射面側に対しその紫外光のフィルタ
になりやすい透光性導電膜の電極を形成する以前の工程
において、その光吸収が大きい500nun以下一般に
は300〜450nmの強光を照射し、表 。In particular, in the present invention, in the process before forming an electrode of a transparent conductive film that easily acts as a filter for ultraviolet light on the light irradiation surface side, intense light of 500 nm or less, generally 300 to 450 nm, where the light absorption is large, is applied. Irradiate and table.
面の近傍(1000Å以下)の結晶化を促進させるいわ
ゆる光アニールを行った。So-called photo-annealing was performed to promote crystallization near the surface (1000 Å or less).
本発明は、この先アニールにより、同時に伴う電気伝導
度の増加が集積化構造にあってアイソレイションの妨げ
になってはならない。このため本発明方法においてはこ
の光アニールの後、第2の電極用透光性導電膜を形成し
、その後、この導電膜およびその下の非単結晶半導体と
をレーザ光(Qスイッチ)がかけられたYAG レーザ
光により「同時」に除去したものである。その結果、レ
ーザアニールにより得られた多結晶化領域をも同時に除
去してしまうため、各セル間のアイソレイションを何等
の余分の工程を伴わずに完了させることができ、本発明
の所望の光電変換装置を作ることができるという特徴を
有する。In the present invention, the accompanying increase in electrical conductivity due to the subsequent annealing must not interfere with isolation in the integrated structure. Therefore, in the method of the present invention, after this optical annealing, a transparent conductive film for the second electrode is formed, and then this conductive film and the non-single crystal semiconductor underneath are exposed to laser light (Q switch). It was removed "at the same time" using a YAG laser beam. As a result, since the polycrystalline region obtained by laser annealing is also removed, isolation between each cell can be completed without any extra steps, and the desired photovoltaic region of the present invention can be achieved. It has the feature of being able to create a conversion device.
本発明は、可曲性(フレキシブル)の金属箔を母材とし
て有し、この苗土に耐熱性有機樹脂膜または絶縁被膜を
0.1〜3μの厚さにコートした絶縁性表面を有する耐
熱性可曲性基板シート(以下単に基板という)を用いた
ものである。The present invention has a flexible metal foil as a base material, and this seedling soil has an insulating surface coated with a heat-resistant organic resin film or an insulating film with a thickness of 0.1 to 3 μm. This uses a flexible substrate sheet (hereinafter simply referred to as the substrate).
この発明は、複数の素子間の連結に必要な面積を従来の
マスク合わせ方式の1/10〜1 /100にするため
、マスクレス・プロセスであってレーザ・スクライブ方
式(以下LSという)を用いたことを特徴としている。This invention uses a laser scribing method (hereinafter referred to as LS), which is a maskless process, in order to reduce the area required for connecting multiple elements to 1/10 to 1/100 of the conventional mask alignment method. It is characterized by the fact that
本発明においては、レーザ光を被加工面に照射し、この
レーザ光の熱を用いたLSまたは熱と同時に雰囲気気体
または液体との化学反応を併用したLCSC(レーザ・
ケミカル・スクライブ)とを総称してレーザ・スクライ
ブ(LS)という。In the present invention, a laser beam is irradiated onto the surface to be machined, and the heat of the laser beam is used for LS, or LCSC (laser,
Chemical scribe) is collectively called laser scribe (LS).
本発明の装置における素子の配置、大きさ、形状は設計
仕様によって決められる。しかし本発明の内容を簡単に
するため、以下の詳細な説明においては、第1の素子の
下側(基板側)の第1の電極と、その右隣りに配置した
第2の素子の第2の電極(半導体上即ち基板から離れた
側)とを電気的に直列接続させた場合のパターンを基と
して記す。The arrangement, size, and shape of elements in the device of the present invention are determined by design specifications. However, in order to simplify the content of the present invention, in the following detailed description, the first electrode on the lower side (substrate side) of the first element and the second electrode of the second element disposed on the right side thereof will be described. The pattern is based on the case where the electrodes (on the semiconductor, that is, on the side away from the substrate) are electrically connected in series.
そしてこの規定された位置にLS用のレーザ光例えば波
長1.06μまたは0.53μのYAGレーザ(焦点距
離40n+m、レーザ光径25μ)を照射させる。Then, a laser beam for LS, for example, a YAG laser (focal length 40n+m, laser beam diameter 25μ) having a wavelength of 1.06 μm or 0.53 μm is irradiated onto this defined position.
さらにそれを0.05〜5m/分例えばllllZ分の
操作速度で移動せしめ、前工程と従属関係の開溝を作製
せしめる。Further, it is moved at an operating speed of 0.05 to 5 m/min, for example, llllZ, to create an open groove in a dependent relationship with the previous process.
本発明は基板が透光性のガラスである場合、本発明の光
アニールを行わんとしてもこのガラス基板が紫外光を吸
収してしまうためフォトン数の多い光吸収面側の半導体
に対し多結晶化を促すことができない。In the present invention, when the substrate is made of light-transmitting glass, even if the optical annealing of the present invention is performed, this glass substrate absorbs ultraviolet light. It is not possible to encourage
本発明はかかる工程の複雑さを排除し、非透光性基板上
に半導体を形成し、その上面の光照射に対し紫外光アニ
ールを行ったもので、製造工程を増加させることなしに
歩留りを従来の約60%より87%にまで高めることが
できるという画期的な光電変換装置の作製方法を提供す
ることにある。The present invention eliminates the complexity of such processes, forms a semiconductor on a non-light-transparent substrate, and performs ultraviolet annealing when the upper surface is irradiated with light, thereby increasing the yield without increasing the manufacturing process. The object of the present invention is to provide an innovative method for manufacturing a photoelectric conversion device that can increase the conversion rate from about 60% to 87% in the conventional method.
以下に図面に従って本発明の詳細を示す。The details of the invention are shown below in accordance with the drawings.
第1図は本発明の製造工程を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing the manufacturing process of the present invention.
図面において、絶縁表面処理がなされた金属箔の可面性
基板(6)例えば10〜200μ一般には20〜50μ
の厚さのステンレス箔にポリイミド樹脂(7)を0.1
〜3μ一般的には約1.5 μの厚さに形成された基板
(1)であって、長さく図面では左右方向)60cm、
中20cmを用いた。さらにこの上面に全面にわたって
第1の導電膜(2)を形成させた。即ちクロムまたはク
ロムを主成分とする金属膜(25)を0.1〜0.5μ
の厚さにスパッタ法、特にマグネトロンDCスパッタ法
により形成させた。特性の向上には光学的に反射率の高
い反射性金属のクロム中に銅または銀が1〜50重量2
添加された昇華性(レーザ光に対し)金属を用いると、
LSに際して残存物が残らず好ましかった。さらに、か
かるCu−Cr(クロム銅合金)、Cu−Ag(クロム
−銀合金)はクロム導体材料よりも500〜700nm
の波長領域での反射光が約10χも大きく、裏面での反
射を用いる場合光閉じ込め装置に特に有効であった。In the drawing, a metal foil surface substrate (6) with an insulating surface treatment is shown, for example, 10 to 200μ, generally 20 to 50μ.
0.1 of polyimide resin (7) on stainless steel foil with a thickness of
〜3μ Generally, the substrate (1) is formed to a thickness of about 1.5μ, and the length is 60cm (in the left and right direction in the drawing).
A medium length of 20 cm was used. Furthermore, a first conductive film (2) was formed over the entire upper surface. That is, the metal film (25) containing chromium or chromium as a main component has a thickness of 0.1 to 0.5μ.
It was formed by sputtering, particularly magnetron DC sputtering, to a thickness of . To improve the properties, add 1 to 50% copper or silver by weight2 to chromium, a reflective metal with high optical reflectance.
With added sublimable (for laser light) metals,
It was preferable that no residue remained during LS. Furthermore, such Cu-Cr (chromium-copper alloy) and Cu-Ag (chromium-silver alloy) are 500 to 700 nm smaller than chromium conductor materials.
The reflected light in the wavelength region was as large as about 10χ, and it was particularly effective for optical confinement devices when reflection from the back surface was used.
さらに、この金属(25)上に透光性導電膜として弗素
等のハロゲン元素が添加された酸化スズを主成分とする
透光性導電膜またはITO(酸化スズ・インジューム)
(15) (50〜2000人代表的には500〜1
500人)をスパッタ法、スプレー法により形成させて
、第1の導電膜とした。Furthermore, on this metal (25), a transparent conductive film containing tin oxide as a main component or ITO (tin oxide indium) to which a halogen element such as fluorine is added is added.
(15) (50-2000 people typically 500-1
A first conductive film was formed using a sputtering method or a spray method.
この第1の導電膜は、金属(25)のみでもよいが、金
属が後工程において半導体中に逆拡散してしまうことを
防ぐため、酸化スズ(13)のブロッキング層はきわめ
て有効であった。さらにこの酸化スズはその上面のP型
半導体層と、またITOはその上面のN型半導体層との
オーム接触性に優れており、加えて入射光のうちの長波
長光の裏面電極(第1の電極)での反射による実質的な
光路長を大きくする時の反射効果を向上させるためにも
きわめて有効であった。This first conductive film may be made of only the metal (25), but a blocking layer of tin oxide (13) was extremely effective in preventing the metal from back-diffusing into the semiconductor in a subsequent process. Furthermore, this tin oxide has excellent ohmic contact with the P-type semiconductor layer on its upper surface, and ITO has excellent ohmic contact with the N-type semiconductor layer on its upper surface. It was also extremely effective for improving the reflection effect when increasing the substantial optical path length due to reflection at the electrodes.
この後、この基板の上側より、YAGレーザ加工機(日
本電気型)により出力0.3〜3−(焦点距離40mm
)を加え、スポット径20〜70μφ代表的には40μ
φをマイクロコンピュータにより制御して、上方よりレ
ーザ光を照射し、その走査によりスクライブライン用の
第1の開溝(13)を形成させ、各素子間領域(31)
、 (11)に第1の電極(37)を作製した。After that, a YAG laser processing machine (Nippon Denki type) is used to produce an output of 0.3 to 3- (focal length 40 mm) from the upper side of this substrate.
), and the spot diameter is 20 to 70μφ, typically 40μ.
φ is controlled by a microcomputer, a laser beam is irradiated from above, and a first groove (13) for a scribe line is formed by scanning, and a region (31) between each element is formed.
, (11) The first electrode (37) was produced.
LSにより形成された開溝(13)は、巾約50μ長さ
20cmであり、深さはそれぞれ第1の電極を構成させ
るために完全に切断分離した。The open grooves (13) formed by LS had a width of about 50 μm and a length of 20 cm, and the depths were completely cut and separated to form the first electrodes.
かくして第1の素子(31)および第2の素子(11)
を構成する領域の巾は5〜40IIII11例えば15
mmとして形成させた。Thus the first element (31) and the second element (11)
The width of the area that makes up the area is 5 to 40III11, for example 15
It was formed as mm.
この後、この上面にプラズマCVD法、フォトCVD法
またはLPCV D法により光照射により光起電力を発
生する非単結晶半導体即ちPNまたはPIN接合を有す
る水素またはハロゲン元素が添加された非単結晶半導体
層(3)を0.3〜1.0μ代表的には0.7μの厚さ
に形成させた。Thereafter, a non-single-crystal semiconductor that generates photovoltaic force by light irradiation, that is, a non-single-crystal semiconductor to which hydrogen or halogen elements are added having a PN or PIN junction, is formed on the upper surface by plasma CVD, photo-CVD, or LPCVD. Layer (3) was formed to a thickness of 0.3-1.0μ, typically 0.7μ.
その代表例はP型(SixC,−x O< x < 1
)半導体(約300人)(42) −1型アモルファ
スまたはセミアモルファスのシリコン半導体(約0.7
μ”) (43)−N型の微結晶(約200人)を有す
る半導体(44)よりなる一つのPIN接合を有する非
単結晶半導体、またはN型微結晶珪素(約300人)半
導体−I型半導体−P型機結晶化St半導体−P型5I
XCI−X(約50人 X=0.2〜0.3)半導体で
ある。A typical example is P type (SixC, -x O < x < 1
) Semiconductor (approximately 300 people) (42) - Type 1 amorphous or semi-amorphous silicon semiconductor (approximately 0.7
μ'') (43) - A non-single-crystalline semiconductor with one PIN junction consisting of a semiconductor (44) with N-type microcrystals (about 200), or an N-type microcrystalline silicon (about 300) semiconductor - I type semiconductor - P type machine crystallized St semiconductor - P type 5I
XCI-X (approximately 50 people, X=0.2-0.3) is a semiconductor.
かかる非単結晶半導体(3)を全面にわたって均一の膜
厚で形成させた。Such a non-single crystal semiconductor (3) was formed to have a uniform thickness over the entire surface.
さらに第1図(B)に示されるごとく、第1の開溝(1
3)の左方向側(第1の素子側)にわたって第2の開溝
(18)を第2のLSI程により形成させた。Furthermore, as shown in FIG. 1(B), a first open groove (1
A second open groove (18) was formed over the left side (first element side) of 3) by the second LSI process.
この図面では第1および第2の開講(13) 、 (1
4)の中心間を50μずらしている。In this drawing, the first and second openings (13), (1
4) are shifted by 50μ between the centers.
かくして第2の開講(18)は第1の電極の側面(8)
、 (9)を露出させた。Thus, the second opening (18) is the side surface (8) of the first electrode.
, (9) was exposed.
さらに本発明は、第1の電極(37)の透光性導電膜(
15)さらに金属膜(5)の表面のみを露呈させてもよ
いが、製造歩留りの向上のためにはレーザ光が0.1〜
1賀例えば0.8−では多少強すぎ、この第1の電極(
37)の深さ方向のすべてを除去してしまう。その結果
、側面(8)(側面のみまたは側面と上面の端部)に第
1図(C)で第2の電極(38)とのコネクタ(30)
が密接してもその接触抵抗が一般に酸化物−酸化物コン
タクト(酸化スズ−ITOコンタクト)となりその界面
に絶縁物バリアが形成されないため、特に増大する等の
異常がなく、実用上何等問題はなかった。Furthermore, the present invention provides a transparent conductive film (
15) Furthermore, only the surface of the metal film (5) may be exposed, but in order to improve manufacturing yield, the laser beam should be
For example, 0.8- is a little too strong, and this first electrode (
37) in the depth direction. As a result, the connector (30) with the second electrode (38) in FIG.
Even if they are in close contact, the contact resistance generally becomes an oxide-oxide contact (tin oxide-ITO contact) and no insulating barrier is formed at the interface, so there is no abnormality such as increase, and there is no problem in practical use. Ta.
第1図において、さらにこの上面に第1図(C)に示さ
れるごとく、表面の第2の導電膜(5)およびコネクタ
(30)を形成した。In FIG. 1, a second surface conductive film (5) and a connector (30) were further formed on this upper surface as shown in FIG. 1(C).
さらに本発明方法における500 nm以下の波長(一
般には200〜450nm )を発光する光アニール装
置の概要およびその方法を第2図に従って示す。Furthermore, an outline of an optical annealing apparatus and method for emitting light with a wavelength of 500 nm or less (generally 200 to 450 nm) in the method of the present invention is shown in FIG.
被照射基板(60)は第1図(B)に示す。The irradiated substrate (60) is shown in FIG. 1(B).
透光性電極を形成する前の構造をこの第2図の光アニー
ル装置における対象基板とて用いた。The structure before forming the transparent electrode was used as a target substrate in the optical annealing apparatus shown in FIG.
光源は棒状の超高圧水銀灯、出力50叶以上(発光波長
200nm〜650r+m )を用いた。特にここでは
東芝製超真空水銀灯(KHM−50、出力5KW )を
用いた。即ち電源(50)は−次電圧AC200V、3
0^および二次電圧(52) AC4200V、1.1
〜1.6Aとした。さらに水銀灯の発熱を押さえるため
、および基板の発熱による熱アニールの発生を防ぐため
、水銀灯の外側を水冷(519,(51′)より供給し
た。The light source used was a rod-shaped ultra-high pressure mercury lamp with an output of 50 or more (emission wavelength 200 nm to 650 r+m). In particular, a Toshiba ultra-vacuum mercury lamp (KHM-50, output 5KW) was used here. That is, the power supply (50) has a negative voltage of AC200V, 3
0^ and secondary voltage (52) AC4200V, 1.1
~1.6A. Furthermore, in order to suppress the heat generated by the mercury lamp and to prevent the occurrence of thermal annealing due to the heat generated by the substrate, the outside of the mercury lamp was supplied with water from cooling (519, (51')).
水銀灯(54)は300〜450nmの短波長光を発生
すると同時に、長波長の500nm以上の波長の光をフ
ィルタ(59)にてカントし石英レンズ(55)にて集
光した。The mercury lamp (54) generates short wavelength light of 300 to 450 nm, and at the same time, long wavelength light of 500 nm or more is canted by a filter (59) and condensed by a quartz lens (55).
この水銀灯は長さ20cmの棒状を有し、レンズもシリ
ンドリカルレンズを用いた。さらにシャッタ(56)を
十分集光する前またはレンズと水銀灯との間に配設した
。This mercury lamp had a rod shape with a length of 20 cm, and a cylindrical lens was used for the lens. Furthermore, a shutter (56) was placed before sufficiently condensing the light or between the lens and the mercury lamp.
かくして集光された線状紫外光は巾100μ〜2mmを
有し、長さ18cmを有していた。そのエネルギ密度は
約5K11 /a((巾1mmの場合)となった。The linear ultraviolet light thus focused had a width of 100 μm to 2 mm and a length of 18 cm. The energy density was approximately 5K11/a (in the case of a width of 1 mm).
この照射光(57)を被照射面に集光し焦点を合わせX
テーブル(61)上にて一定速度の移動をさせた。This irradiation light (57) is focused on the irradiated surface and focused
It was moved at a constant speed on the table (61).
かくすると、300〜450nI11を中心とする紫外
光は非単結晶半導体中には1000Å以下の深さで殆ど
吸収されてしまい、この表面よりごく薄い領域を結晶化
させることができた。加えてこの本発明方法のアニール
は光アニールのため、既に含有する水素またはハロゲン
元素を脱気することがない。In this way, most of the ultraviolet light centered on 300 to 450 nI11 was absorbed into the non-single crystal semiconductor at a depth of 1000 Å or less, and it was possible to crystallize a region much thinner than this surface. In addition, since the annealing in the method of the present invention is photo-annealing, the hydrogen or halogen elements already contained are not degassed.
加えて結晶性を光アニールにより促進するため、光学的
Egを小さくすることなく、かつ結晶化によりその光吸
収係数を小さくすることができるという二重の特長を有
していた。In addition, since the crystallinity is promoted by photoannealing, it has the dual advantage of being able to reduce the optical absorption coefficient through crystallization without reducing the optical Eg.
しかしこのことは活性領域である1層の内部を光吸収が
大きい即ちアモルファスまたは低度の結晶性を有する状
B(34)に保持し、いわゆる多結晶化してはならない
。逆にPまたはN型またはそれに加えてその近傍の1層
を選択的に光吸収係数を少なくし、加えて接合界面での
再結合中心の密度を少なくさせるために接合界面で結晶
的に連続して多結晶化(33)をさせることが重要であ
る。このことより短波長光での半導体表面近傍のみの選
択的光アニールが重要であることが判明された。However, this means that the interior of one layer, which is the active region, must be kept in a state B (34) with high light absorption, ie, amorphous or low crystallinity, and must not become so-called polycrystalline. On the other hand, in order to selectively reduce the optical absorption coefficient of P or N type or one layer near it, and in addition, to reduce the density of recombination centers at the bonding interface, It is important to achieve polycrystallization (33). From this, it was revealed that selective optical annealing only near the semiconductor surface using short wavelength light is important.
この後、第3のLSにより切断分離をして複数の第2の
電極(39) 、 (38)をアイソレイションして形
成し、第3の開講(20)を得た。Thereafter, a plurality of second electrodes (39) and (38) were isolated and formed by cutting and separating using a third LS, thereby obtaining a third electrode (20).
この第2の導電膜(4)は透光性導電酸化膜(CTF)
(45)を用いた。その厚さは300〜1500人に形
成させた。This second conductive film (4) is a transparent conductive oxide film (CTF)
(45) was used. Its thickness was formed by 300 to 1500 people.
このCTFとして、ここではN型半導体と良好なオーム
接触をするITO(酸化インジューム酸化スズを主成分
とする混合物)(45)を形成した。このCTFとして
酸化インジュームを主成分として形成させることも可能
であった。この結果、半導体に密接して第2の電極(3
8) 、 (39)を有せしめた。このCTFとしてク
ロム−珪素化合物等の非酸化物導電膜よりなる透光性導
電膜を用いてもよい。As this CTF, ITO (a mixture containing indium oxide and tin oxide as main components) (45) which makes good ohmic contact with the N-type semiconductor was formed here. It was also possible to form this CTF with indium oxide as the main component. As a result, the second electrode (3
8), (39) was obtained. As this CTF, a light-transmitting conductive film made of a non-oxide conductive film such as a chromium-silicon compound may be used.
これらは電子ビーム蒸着法またはスパッタ法、フォl−
CVD法、フォト・プラズマCVD法を含むCVD法を
用い、半導体層を劣化させないため、250℃以下の温
度で形成させた。These methods include electron beam evaporation, sputtering, and photolithography.
A CVD method including a CVD method and a photo-plasma CVD method was used to form the semiconductor layer at a temperature of 250° C. or lower in order to prevent deterioration of the semiconductor layer.
さらにこの第3の開港の深さを単に第2の電極のみを除
去するのみでなくその下の半導体層(3)を多結晶化層
(33)を含め同時に除去し第1の電極をもその一部に
露呈せしめることにより、開溝形成の際のLSの照射強
度(パワー密度)のバラツキにより、第2の電極の一部
が残存して、電気的に2つの素子が分離できな(なるこ
とを防いだ。Furthermore, the depth of this third opening is determined by not only removing only the second electrode, but also removing the underlying semiconductor layer (3), including the polycrystalline layer (33), and removing the first electrode as well. By exposing a portion of the second electrode, a portion of the second electrode may remain due to variations in the LS irradiation intensity (power density) when forming the groove, making it impossible to electrically separate the two elements. I prevented that.
このレーザ光は半導体特に第2の電極の下面に密接する
非単結晶半導体(31)特に多結晶化の高い電気伝導度
を有する半導体層(33)をもえくり出し除去し、また
このレーザが照射された領域の非単結晶半導体に対して
このLSと同時に絶縁化を図り、2つの電極(38)
、 (39)間の絶縁性を完全にした。This laser light also excavates and removes the semiconductor, especially the non-single crystal semiconductor (31) that is in close contact with the lower surface of the second electrode, and especially the polycrystalline semiconductor layer (33) that has high electrical conductivity. The non-single crystal semiconductor in the area was insulated at the same time as this LS, and the two electrodes (38)
, (39) perfected the insulation between them.
このため、半導体の下側の第1の電極のCTFをITO
よりも耐熱性に優れた酸化スズを主成分とすると、この
第1の電極を残しレーザ光の熱エネルギーを吸収しやす
い半導体を第2の電極用材料とともに選択的に除去せし
めて第3の開講を容易に形成させることができた。For this reason, the CTF of the first electrode on the lower side of the semiconductor is
When the main component is tin oxide, which has better heat resistance than the first electrode, the semiconductor that easily absorbs the thermal energy of the laser beam is selectively removed along with the second electrode material, leaving this first electrode. could be easily formed.
さらに製造歩留り的にリークが10−5〜10−7人/
cmある重不良装置(全体の5〜10%有する)に関し
ては、この後、弗酸1:硝酸3:酢酸5を水でさらに5
〜10倍希釈して表面部のみを軽くエツチングして、開
溝部の珪素、低級酸化物を化学的に50〜200人の深
さにインジューム等の金属不純物とともに除去すること
はリークの低減に有効であった。Furthermore, in terms of manufacturing yield, the leakage is 10-5 to 10-7 people/
For seriously defective devices (containing 5 to 10% of the total), add 1 part hydrofluoric acid, 3 parts nitric acid, and 5 parts acetic acid to 5 cm with water.
It is possible to reduce leakage by diluting ~10 times and lightly etching only the surface area to chemically remove silicon and lower oxides in the open grooves along with metal impurities such as indium to a depth of 50 to 200 mm. was effective.
か(して第1図(C)に示されるごと(、複数の素子(
31) 、 (11)を連結部(4)で直列接続する光
電変換装置を作ることができた。(as shown in FIG. 1(C)), a plurality of elements (
31) and (11) were connected in series at the connection part (4) to create a photoelectric conversion device.
第1図(D)はさらに本発明を光電変換装置として完成
させんとしたものである。即ちバンシヘイション膜とし
てプラズマ気相法またはフォト・プラズマ気相法により
窒化珪素膜(21)を500〜2000人の厚さに均一
に形成させ、各素子間のリーク電流の湿気等の吸着によ
る発生をさらに防いだ。FIG. 1(D) shows an attempt to further complete the present invention as a photoelectric conversion device. That is, a silicon nitride film (21) is uniformly formed as a banshihation film to a thickness of 500 to 2,000 layers by plasma vapor phase method or photo plasma vapor phase method, and the leakage current between each element is caused by adsorption of moisture, etc. This further prevented the outbreak.
さらに外部引出し端子(23)を周辺部に設けた。Further, an external lead terminal (23) was provided at the peripheral portion.
斯くして照射光(10)に対しこの実施例のごとき基板
(60cm X 20cm)において、各素子を中14
.35mmX192 mmの短冊上に設け、さらに連結
部の巾150外部引出し電極部の1710mm、周辺部
4mmにより、実質的に580mm X 192mm内
に40段を有し、有効面積(192m+n X 14.
35mm 40段1102cm2即ち91.8χ)を得
ることができた。In this way, each element is exposed to the irradiating light (10) in a substrate (60 cm x 20 cm) as in this example.
.. It is provided on a strip of 35 mm x 192 mm, and furthermore, the width of the connecting part is 150 mm, the external extraction electrode part is 1710 mm, and the peripheral part is 4 mm, so that there are essentially 40 stages within 580 mm x 192 mm, and the effective area (192 m + n x 14.
35mm 40 stages 1102cm2, 91.8χ) could be obtained.
その結果、セグメントが11.3%(1,05cm2)
の変換効率を有する場合、パネルにて6.6%(理論的
には9.1%になるが、40段直列連結の抵抗により実
効変換効率が低下した(AMI (100mW /cm
” ) )にて、68.4Wの出力電力を有せしめるこ
とができた。As a result, the segment was 11.3% (1,05 cm2)
If the panel has a conversion efficiency of 6.6% (theoretically 9.1%), the effective conversion efficiency decreased due to the resistance of 40 stages connected in series (AMI (100mW/cm
”)), it was possible to have an output power of 68.4W.
またさらにこのバネJし例え&i 40cm X 40
cmまたしよ60cm X 20cmを3ケまたは4ケ
直タljにアルミサ・ノシの固い枠内またカーボン・フ
゛う・ツクによる可曲性枠内に組み合わせることGこよ
りノ<・ノケージさせ、120cm X 40cmのN
EDO規格の大電力用のノ(ネルを設けることが可能で
ある。Furthermore, this spring J example & i 40cm x 40
120cm x 120cm x 120cm 40cm N
It is possible to provide a channel for high power according to the EDO standard.
またこのNEDO規格のパネル用心こしよシーフレ・ノ
クスによりガラス基板の裏面(照1寸面の反対但す)に
本発明の光電変換装置の上面を番よりあわせて、風圧、
雨等に対し機械強度の増加を図ることも有効である。In addition, according to this NEDO standard panel precaution, the top surface of the photoelectric conversion device of the present invention is aligned with the back surface of the glass substrate (opposite the surface of the photovoltaic device), and the wind pressure,
It is also effective to increase mechanical strength against rain, etc.
さらに本発明を以下に実施例を4己してその詳細を補完
する。Furthermore, the details of the present invention will be supplemented by four examples below.
実施例1
第1図の図面に従ってこの実施91を示1−0即ち絶縁
性被膜を有する金属箔基板(1)として約50μの厚さ
のステンレス箔の表面GこボIJイミド樹脂をPIGを
用いて1.5μの厚さGこコートした基板長さ5Qcm
、中20cmを用しまた。Example 1 This Example 91 is shown in accordance with the drawing in FIG. 1. 1-0, that is, as a metal foil substrate (1) having an insulating coating, a stainless steel foil with a thickness of approximately 50 μm was made of G-column IJ imide resin using PIG. The length of the substrate coated with a thickness of 1.5μ is 5Qcm.
, use the medium 20cm.
さらにその上の銅を1.0〜10重量%例えbi 2
、 s重量%添加してクロムをマグネトロンスノ々・ツ
タ注性により0.1〜0.2人の厚さGこ形成し、さら
Gこその上面にSnowを1050人の厚さGこスノ々
・ツタ法により作製した。Furthermore, the copper on top is 1.0 to 10% by weightbi 2
Add s wt % of chromium to a thickness of 0.1 to 0.2 mm by pouring chromium onto the magnetron, and then add Snow to the top surface to a thickness of 1050 mm.・Produced using the ivy method.
次にこの後、第1の開溝をスポット1蚤50μ、出力0
.5−のYAGレーザーをマイクロコンピュータにより
制御して13〜3IIlZ分(平均3m/分)の走査速
度にて作製した。Next, after this, the first open groove is spot 1 flea 50μ, output 0
.. A 5-YAG laser was controlled by a microcomputer at a scanning speed of 13 to 3 IIlZ minutes (3 m/min on average).
素子領域(31) 、 (11)は15mmdlとした
。The element regions (31) and (11) were set to 15 mm dl.
この後公知のPCVD法、フォトCVD法またGまフォ
ト・プラズマCVD法により第1図に示したPIN接合
を1つ有する非単結晶半導体を作製した。Thereafter, a non-single-crystal semiconductor having one PIN junction as shown in FIG. 1 was manufactured by a known PCVD method, photo-CVD method, or photo-plasma CVD method.
その全厚さは約0.7 μであった。Its total thickness was approximately 0.7μ.
かかる後、第1の開港をテレビにてモニターして、そこ
より50μ第1の素子(31)側にシフトさせ、スポッ
ト径50μ、平均出力0.5W、室温、周波数3KH2
l 操作スピード60cm/分にてLSにより第2の開
講(14)を作製した。After that, the first opening of the port was monitored on the TV, and the spot diameter was 50μ, the average output was 0.5W, the frequency was 3KH2, and the first element (31) was shifted by 50μ.
l A second opening (14) was produced by LS at an operating speed of 60 cm/min.
この後、第2図の装置を用いて光アニール処理をP型半
導体層に対し行った。するとこの微結晶化したP型半導
体層およびその下のI型半導体層(45)の領域(33
)を多結晶化領域として構成せしめ、さらにこの領域(
33)の下側の■型半導体(34)をアモルファスまた
は低度の微結晶の水素を含む珪素半導体として残すこと
ができた。Thereafter, the P-type semiconductor layer was subjected to photo-annealing using the apparatus shown in FIG. Then, the region (33) of this microcrystalized P-type semiconductor layer and the I-type semiconductor layer (45) below it.
) is configured as a polycrystalline region, and this region (
The ■-type semiconductor (34) below 33) could be left as an amorphous or low-grade microcrystalline hydrogen-containing silicon semiconductor.
結晶半導体(33)は約800人の厚さであり、これに
光アニールをテーブルの連続移動速度を可変するまたは
繰り返し照射を施すことにより深くもまた浅くもするこ
とが可能になった。The crystalline semiconductor (33) has a thickness of about 800 nm, and it became possible to make the optical annealing deeper or shallower by varying the continuous movement speed of the table or by repeatedly applying irradiation.
かくして得られた半導体を1 /l0IIF中に浸漬し
て表面の絶縁酸化物を除去し、さらにこの全体をCTF
であるITOをスパッタ法により平均膜厚700人に作
製して、第2の導電膜(5)およびコネクタ(30)を
構成せしめた。The thus obtained semiconductor was immersed in 1/10IIF to remove the insulating oxide on the surface, and the entire semiconductor was then immersed in CTF.
A second conductive film (5) and a connector (30) were formed using ITO having an average thickness of 700 mm by sputtering.
さらに第3の開溝(20)を同様にLSにより第2の開
溝(14)より50μのわたり深さに第1の素子(31
)側にシフトして形成させ第1図(C)を得た。Further, the third open groove (20) is similarly connected to the first element (31) by LS to a depth of 50μ from the second open groove (14).
) side to obtain Fig. 1(C).
この時第3の開溝の深さは図面に示すごとく、その底部
は第1の電極の表面にまで至っていた。At this time, the depth of the third groove was such that the bottom reached the surface of the first electrode, as shown in the drawing.
このため、CTFおよび半導体層は完全に除去されてい
た。Therefore, the CTF and semiconductor layer were completely removed.
レーザ光は平均出力0.5−とじ、他は第2の開溝の作
製と同一条件とした。The average power of the laser beam was 0.5 - and the other conditions were the same as those for producing the second open groove.
かくして第1図(C)を作製した。In this way, FIG. 1(C) was produced.
第1図(C)の工程の後、パネルの端部をレーザ光出力
111にて第1の電極、半導体、第2の電極のすべてを
ガラス端より411II11内側で長方形に走査し、パ
ネルの枠との電気的短絡を防止した。After the process shown in FIG. 1(C), the first electrode, semiconductor, and second electrode are all rectangularly scanned with laser light output 111 inside the glass edge 411II11, and the panel frame is This prevents electrical short circuits.
この後、パッシベイション膜(21)をpcvo法また
はフォト・プラズマCVD法により窒化珪素膜を100
0人の厚さに250℃の温度にて作製した。After this, the passivation film (21) is formed by converting it into a silicon nitride film of 100% by PCVO method or photo plasma CVD method.
It was manufactured at a temperature of 250° C. to a thickness of 0.0 mm.
すると20cm X 60cmのパネルに15mm巾の
素子を40段作ることができた。As a result, we were able to create 40 stages of 15 mm wide elements on a 20 cm x 60 cm panel.
パネルの実効効率として八Ml (100mW/cm”
)にて6.7%、出カフ3.8Wを得ることができた。The effective efficiency of the panel is 8Ml (100mW/cm”
), we were able to obtain 6.7% and a cuff output of 3.8W.
有効面積は1102cm”であり、パネル全体の91.
8%を有効に利用することができた。The effective area is 1102 cm”, and the total panel area is 91.
8% could be used effectively.
実施例2
基板としてステンレス箔厚さ30μm上にPIQコート
処理をした大きさ20c+n X 60cmを用いた。Example 2 As a substrate, a stainless steel foil with a thickness of 30 μm and a PIQ coating treatment was used, and the size was 20 cm + n × 60 cm.
さらに一つの電卓用光電変換装置を5CI11×1CI
11として複数個同一基板上に作製した。ここでは素子
形状を9mm X 9mm5段連続アレーとした。Furthermore, one photoelectric conversion device for the calculator is 5CI11×1CI.
A plurality of samples No. 11 were fabricated on the same substrate. Here, the element shape was a 9 mm x 9 mm five-stage continuous array.
第1の電極は反射性金属のクロム・銀(銀1〜10重量
%例えば2.5重量%)合金とした。ITOを同様のス
パッタ法で形成し、下側の第2の電極をLSにより形成
した。さらにこの上面にNIP接合を有する非単結晶半
導体を設け、さらに裏面に水銀灯にて光照射を行い10
00Å以下の深さの表面近傍を多結晶化させた。さらに
第2の電極をP型半導体上に酸化スズ(1050人)を
用いて作った。その他は実施例1と同様である。The first electrode was a reflective metal chromium-silver (silver 1-10% by weight, e.g. 2.5% by weight) alloy. ITO was formed by the same sputtering method, and the lower second electrode was formed by LS. Furthermore, a non-single crystal semiconductor having an NIP junction was provided on the top surface, and the back surface was further irradiated with light using a mercury lamp.
The vicinity of the surface at a depth of 00 Å or less was made polycrystalline. Furthermore, a second electrode was made using tin oxide (1050 oxide) on the P-type semiconductor. The rest is the same as in Example 1.
連結部は100μとし、外部電極とは第1図(A)(B
)の左端、右端を外部引き出し電極構造として設けた。The connecting part is 100 μm, and the external electrode is as shown in Fig. 1 (A) (B
) were provided as external lead-out electrode structures at the left and right ends.
すると250ケの電卓用装置を一度に作ることができた
。As a result, he was able to make 250 calculator devices at once.
3.8%の実効変換効率以上を良品として螢光打丁50
0 lxでテストをした。Fluorescent cutting knife 50 is considered to be a good product with an effective conversion efficiency of 3.8% or more.
Tested at 0 lx.
その結果76%の最終製造歩留りを得ることができた。As a result, a final production yield of 76% could be obtained.
これは従来方法においては40〜50%しか得られず、
かつ連結部の必要面積が大きかったことを考えると、き
わめて有効なものであった。This can only be achieved by 40-50% using conventional methods,
Considering that the area required for the connecting part was large, it was extremely effective.
その他は実施例1と同様である。The rest is the same as in Example 1.
さらにこのシートより切断する場合、1O−15Wの強
いパルス光を用いたLSにより自動切断が可能となった
。Furthermore, when cutting from this sheet, automatic cutting became possible using LS using strong pulsed light of 10-15W.
この実施例においては、上側の光照射側に透光性保護用
有機樹脂(22)例えば2P(紫外線照射により硬化す
る樹脂)を重合わせることにより、金属層と有機樹脂と
の間に光電変換装置をはさむ構造とすることができ、可
曲性を有し、きわめて安価で多量生産が可能になった。In this example, a photoelectric conversion device is formed between the metal layer and the organic resin by superimposing a transparent protective organic resin (22), for example, 2P (resin that hardens by ultraviolet irradiation) on the upper light irradiation side. It can be made into a structure that sandwiches the material, has flexibility, and can be mass-produced at an extremely low cost.
本発明においては紫外光を水銀灯を用いて行った。しか
しこの100〜500nmの波長光をエキシマレーザ、
窒素レーザ、アルゴン・レーザ等を用いて行うことは有
効であった。In the present invention, ultraviolet light was applied using a mercury lamp. However, this wavelength light of 100 to 500 nm is converted into excimer laser.
It was effective to use nitrogen laser, argon laser, etc.
第1図は本発明の光電変換装置の製造工程を示す縦断面
図である。
第2図は本発明の光アニールを行う装置の概要を示す。
特許出願人
χI■FIG. 1 is a longitudinal sectional view showing the manufacturing process of the photoelectric conversion device of the present invention. FIG. 2 shows an outline of an apparatus for performing optical annealing according to the present invention. Patent applicant χI■
Claims (1)
該金属と該金属上の透光性導電膜とよりなる第1の電極
と、該電極上に密接して光照射により光起電力を発生さ
せうる非単結晶核半導体上に密接した透光性導電膜によ
る第2の電極を形成する工程とを有することを特徴とす
る光電変換半導体装置作製方法。 2、絶縁表面を有する基板上に第1の導電膜を金属被膜
または金属被膜と該金属被膜上の透光性導電膜により形
成する工程と、前記第1の導電膜にレーザ光を照射して
第1の開溝を形成し、前記第1の導電膜を複数の所定の
形状に分割して複数の第1の電極を形成する工程と、該
電極および前記開溝上に光照射により光起電力を発生さ
せる非単結晶半導体を形成する工程と、該半導体にレー
ザ光を照射して第2の開溝または開孔を形成する工程と
、該第2の開溝を形成する前又は後工程において500
nm以下の波長の強光を照射する工程と、前記半導体お
よび上記第2の開溝上に透光性導電膜の第2の電極を形
成する工程と、該工程後、第2の導電膜および前偽半導
体にレーザ光を照射して第3の開溝を前記第2の導電膜
および半導体に形成することにより複数の第2の電極を
形成することを特徴とする光電変換半導体装置作製方法
。 3、特許請求の範囲第1項または第2項において、光ア
ニールが施されることにより非単結晶半導体の表面また
はその近傍に結晶化が促進された領域を形成することを
特徴とする光電変換半導体装置作製方法。[Claims] 1. A first electrode made of a metal on a substrate having an insulating surface, or a first electrode made of the metal and a transparent conductive film on the metal, and a first electrode made of a metal and a transparent conductive film on the metal, and 1. A method for manufacturing a photoelectric conversion semiconductor device, comprising the step of forming a second electrode made of a transparent conductive film in close contact with a non-single-crystal nuclear semiconductor capable of generating a photovoltaic force upon irradiation with light. 2. Forming a first conductive film on a substrate having an insulating surface by a metal coating or a metal coating and a transparent conductive film on the metal coating, and irradiating the first conductive film with a laser beam. forming a first groove and dividing the first conductive film into a plurality of predetermined shapes to form a plurality of first electrodes; and photoactivation by irradiating the electrode and the groove with light. A step of forming a non-single crystal semiconductor that generates electric power, a step of irradiating the semiconductor with laser light to form a second trench or hole, and a step before or after forming the second trench. 500 in
a step of irradiating intense light with a wavelength of nm or less, a step of forming a second electrode of a transparent conductive film on the semiconductor and the second groove, and after the step, a second conductive film and A method for manufacturing a photoelectric conversion semiconductor device, characterized in that a plurality of second electrodes are formed by irradiating a first false semiconductor with a laser beam to form third grooves in the second conductive film and the semiconductor. 3. The photoelectric conversion according to claim 1 or 2, characterized in that a region in which crystallization is promoted is formed on or near the surface of a non-single crystal semiconductor by photoannealing. Semiconductor device manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59084265A JPH0693515B2 (en) | 1984-04-26 | 1984-04-26 | Semiconductor device manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59084265A JPH0693515B2 (en) | 1984-04-26 | 1984-04-26 | Semiconductor device manufacturing method |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4333723A Division JPH06105793B2 (en) | 1992-11-20 | 1992-11-20 | Semiconductor device manufacturing equipment |
JP6160733A Division JP2744979B2 (en) | 1994-06-21 | 1994-06-21 | Light irradiation method for semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60227484A true JPS60227484A (en) | 1985-11-12 |
JPH0693515B2 JPH0693515B2 (en) | 1994-11-16 |
Family
ID=13825617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59084265A Expired - Lifetime JPH0693515B2 (en) | 1984-04-26 | 1984-04-26 | Semiconductor device manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0693515B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63133579A (en) * | 1986-11-25 | 1988-06-06 | Semiconductor Energy Lab Co Ltd | Manufacture of semiconductor device |
US4764476A (en) * | 1984-08-29 | 1988-08-16 | Semiconductor Energy Laboratory Co., Ltd. | Method of making photoelectric conversion device |
EP0763858A3 (en) * | 1995-09-11 | 1998-01-21 | Canon Kabushiki Kaisha | Photovoltaic element array and method of fabricating the same |
US5861337A (en) * | 1991-05-28 | 1999-01-19 | Semiconductor Energy Laboratory Co., Ltd. | Method for annealing a semiconductor |
US5968383A (en) * | 1992-06-26 | 1999-10-19 | Semiconductor Energy Laboratory Co., Ltd. | Laser processing apparatus having beam expander |
US6149988A (en) * | 1986-09-26 | 2000-11-21 | Semiconductor Energy Laboratory Co., Ltd. | Method and system of laser processing |
US6159777A (en) * | 1993-02-04 | 2000-12-12 | Semiconductor Energy Laboratory Co., Ltd. | Method of forming a TFT semiconductor device |
US6261856B1 (en) | 1987-09-16 | 2001-07-17 | Semiconductor Energy Laboratory Co., Ltd. | Method and system of laser processing |
US6576534B1 (en) | 1991-09-21 | 2003-06-10 | Semiconductor Energy Laboratory Co., Ltd. | Method for forming a semiconductor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5623784A (en) * | 1979-08-05 | 1981-03-06 | Shunpei Yamazaki | Manufacture of semiconductor device |
JPS5681981A (en) * | 1979-09-21 | 1981-07-04 | Messerschmitt Boelkow Blohm | Semiconductor forming element for converting light to electric energy |
JPS5753986A (en) * | 1980-07-25 | 1982-03-31 | Eastman Kodak Co | |
JPS5799729A (en) * | 1981-10-20 | 1982-06-21 | Shunpei Yamazaki | Manufacture of semi-amorphous semiconductor |
JPS5825281A (en) * | 1981-08-07 | 1983-02-15 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
-
1984
- 1984-04-26 JP JP59084265A patent/JPH0693515B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5623784A (en) * | 1979-08-05 | 1981-03-06 | Shunpei Yamazaki | Manufacture of semiconductor device |
JPS5681981A (en) * | 1979-09-21 | 1981-07-04 | Messerschmitt Boelkow Blohm | Semiconductor forming element for converting light to electric energy |
JPS5753986A (en) * | 1980-07-25 | 1982-03-31 | Eastman Kodak Co | |
JPS5825281A (en) * | 1981-08-07 | 1983-02-15 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
JPS5799729A (en) * | 1981-10-20 | 1982-06-21 | Shunpei Yamazaki | Manufacture of semi-amorphous semiconductor |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4764476A (en) * | 1984-08-29 | 1988-08-16 | Semiconductor Energy Laboratory Co., Ltd. | Method of making photoelectric conversion device |
US6149988A (en) * | 1986-09-26 | 2000-11-21 | Semiconductor Energy Laboratory Co., Ltd. | Method and system of laser processing |
JPS63133579A (en) * | 1986-11-25 | 1988-06-06 | Semiconductor Energy Lab Co Ltd | Manufacture of semiconductor device |
US6261856B1 (en) | 1987-09-16 | 2001-07-17 | Semiconductor Energy Laboratory Co., Ltd. | Method and system of laser processing |
US6174374B1 (en) | 1991-05-28 | 2001-01-16 | Semiconductor Energy Laboratory Co., Ltd. | Method for annealing a semiconductor |
US6770143B2 (en) | 1991-05-28 | 2004-08-03 | Semiconductor Energy Laboratory Co., Ltd. | Method for annealing a semiconductor |
US5861337A (en) * | 1991-05-28 | 1999-01-19 | Semiconductor Energy Laboratory Co., Ltd. | Method for annealing a semiconductor |
US6494162B1 (en) | 1991-05-28 | 2002-12-17 | Semiconductor Energy Laboratory Co., Ltd. | Method for annealing a semiconductor |
US6576534B1 (en) | 1991-09-21 | 2003-06-10 | Semiconductor Energy Laboratory Co., Ltd. | Method for forming a semiconductor |
US6924212B2 (en) | 1991-09-21 | 2005-08-02 | Semiconductor Energy Laboratory Co., Ltd. | Method for forming a semiconductor |
US7368367B2 (en) | 1991-09-21 | 2008-05-06 | Semiconductor Energy Laboratory Co., Ltd. | Method for forming a semiconductor |
US6440785B1 (en) | 1992-06-26 | 2002-08-27 | Semiconductor Energy Laboratory Co., Ltd | Method of manufacturing a semiconductor device utilizing a laser annealing process |
US6002101A (en) * | 1992-06-26 | 1999-12-14 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device by using a homogenized rectangular laser beam |
US5968383A (en) * | 1992-06-26 | 1999-10-19 | Semiconductor Energy Laboratory Co., Ltd. | Laser processing apparatus having beam expander |
US6991975B1 (en) | 1992-06-26 | 2006-01-31 | Semiconductor Energy Laboratory Co., Ltd. | Laser process |
US7985635B2 (en) | 1992-06-26 | 2011-07-26 | Semiconductor Energy Laboratory Co., Ltd. | Laser process |
US6159777A (en) * | 1993-02-04 | 2000-12-12 | Semiconductor Energy Laboratory Co., Ltd. | Method of forming a TFT semiconductor device |
EP0763858A3 (en) * | 1995-09-11 | 1998-01-21 | Canon Kabushiki Kaisha | Photovoltaic element array and method of fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0693515B2 (en) | 1994-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0072216A2 (en) | The production of semiconductor devices by methods involving annealing | |
EP0675551A2 (en) | Solar cell and production process therefor | |
US4854974A (en) | Electrical contacts for a thin-film semiconductor device | |
US5217921A (en) | Method of photovoltaic device manufacture | |
JPS60227484A (en) | Semiconductor device manufacturing method | |
JPH0476227B2 (en) | ||
JP2001094131A (en) | Method for fabricating integrated photovoltaic power device | |
JP2585503B2 (en) | Laser processing method | |
JP3209702B2 (en) | Photovoltaic device manufacturing method | |
JP2756530B2 (en) | Light irradiation method | |
JP2744979B2 (en) | Light irradiation method for semiconductor | |
JPS6158277A (en) | semiconductor equipment | |
JP2000049371A (en) | Photovoltaic device and its manufacture | |
JPS60211880A (en) | Method for manufacturing photoelectric conversion device | |
JPS61231772A (en) | Manufacture of semiconductor device | |
JPH06105793B2 (en) | Semiconductor device manufacturing equipment | |
JP2001237442A (en) | Solar cell and its manufacturing method | |
JPH0558269B2 (en) | ||
JPS60211881A (en) | Manufacture of semiconductor device | |
JPS6158278A (en) | Method for manufacturing semiconductor devices | |
JPH0682856B2 (en) | Semiconductor device manufacturing method | |
JPS6081874A (en) | Photoelectric conversion device | |
JPS6158276A (en) | Semiconductor device manufacturing method | |
JPH0566755B2 (en) | ||
JPH0572113B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |