JPS60227163A - Electromagnetic ultrasonic transducer for transversal wave using high-frequency magnetic core - Google Patents
Electromagnetic ultrasonic transducer for transversal wave using high-frequency magnetic coreInfo
- Publication number
- JPS60227163A JPS60227163A JP6518084A JP6518084A JPS60227163A JP S60227163 A JPS60227163 A JP S60227163A JP 6518084 A JP6518084 A JP 6518084A JP 6518084 A JP6518084 A JP 6518084A JP S60227163 A JPS60227163 A JP S60227163A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic core
- magnetic field
- shaped
- frequency magnetic
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2412—Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
間素材の探傷に用いて有用な横波用電磁超音波探傷用ト
ランスジューサに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a transducer for transverse wave electromagnetic ultrasonic flaw detection useful for flaw detection of intermediate materials.
従来の横波用電磁超音波トランスジー−サとして第1図
に示すよう々構造のものがある。第1図は円筒状の鉄心
IJとそのまわシに施した励磁コイルI2により電磁石
を形成し、この電磁石の下端面に送信コイル13および
受信コイル14として渦巻状のス・ぐイラルコイルを配
置する構成のものである。次に第1図にもとづいて原理
を説明する。A conventional electromagnetic ultrasonic transducer for transverse waves has a structure as shown in FIG. Fig. 1 shows a configuration in which an electromagnet is formed by a cylindrical iron core IJ and an excitation coil I2 attached to the cylindrical core, and spiral spiral coils are arranged as a transmitting coil 13 and a receiving coil 14 on the lower end surface of this electromagnet. belongs to. Next, the principle will be explained based on FIG.
励磁コイル12に直流電流を流すと被検体表面15には
、これを垂直方向にバイアス磁界が印加される。次に送
信コイル13に高周波電流を流すと被検体表面J5には
、スパイラルコイルとほぼ同形の円形分布を有する高周
波渦電流が誘導される。この誘導渦電流と被検体表面に
垂直と々る・くイアス磁界との相互作用により被検体表
面15にはローレンツ力16が発生し横波の超音波が励
振される。しかるに、第1図の構造においては、送信コ
イル13が円形であるため被検体表面15に働くローレ
ンツ力16は径方向を向き、その分布は円形であシ、こ
のため励振される超音波は放射状の振動変位を有する横
波となっている。When a direct current is passed through the excitation coil 12, a bias magnetic field is applied to the surface 15 of the subject in a perpendicular direction. Next, when a high frequency current is passed through the transmitting coil 13, a high frequency eddy current having a circular distribution approximately the same shape as the spiral coil is induced on the surface J5 of the subject. Due to the interaction between this induced eddy current and the magnetic field perpendicular to the surface of the object, a Lorentz force 16 is generated on the surface 15 of the object, and a transverse ultrasonic wave is excited. However, in the structure shown in FIG. 1, since the transmitting coil 13 is circular, the Lorentz force 16 acting on the object surface 15 is directed in the radial direction, and its distribution is circular, so that the excited ultrasonic waves are radially distributed. It is a transverse wave with a vibrational displacement of .
ところで、従来の圧電トランスジ。、−サを用いた超音
波探傷法では偏波面の揃った横波が用いられており、第
1図の場合のような放射状の偏波面をもつ横波を超音波
探傷に適用することには多くの問題がある。さらに、電
磁石の下に送受信コイルを設けるため、それだけ電磁石
と被検体との間の距離が大きくなり、このためバイアス
磁界の減少を招き送受波感度が劣化することが考えられ
る。By the way, conventional piezoelectric transformer. In the ultrasonic flaw detection method using , -sa, transverse waves with uniform polarization plane are used. There's a problem. Furthermore, since the transmitter/receiver coil is provided under the electromagnet, the distance between the electromagnet and the subject increases accordingly, which may lead to a decrease in the bias magnetic field and deteriorate the wave transmitter/receiver sensitivity.
本発明は上記のような点に鑑みてなされたもので、一定
方向の偏波面をもつ純粋な平面波に近い横波を励振し、
かつ送受信コイルを被検体近傍に設けない構造のトラン
スジー−サを提供することを目的としている。The present invention was made in view of the above points, and excites a transverse wave close to a pure plane wave with a plane of polarization in a certain direction,
Another object of the present invention is to provide a transducer having a structure in which no transmitter/receiver coil is provided near the subject.
以下本発明の原理を第2図により説明する。The principle of the present invention will be explained below with reference to FIG.
図において、E形高周波磁心21の中央の脚に巻装した
バイアス磁界発生用励磁コイル22に直流の電流を流す
と磁心21には直流の磁束23が発生し、被検体24の
表面にはこれと垂直となるような磁界が印加される。次
に送信コイル25はコイル電流の作る磁束が磁心の外側
の両脚を環流するような極性の接続とし、これに高周波
電流を流すと磁心21には図の破線で示した高周波磁束
26が発生するが、この磁束26は被検体24に、入シ
得にいため、被検体表面には境界条件を満足するように
誘導渦電流27が流れる。この結果E形磁心21の中央
の脚の直下の部分において、バイアス磁界23と誘導渦
電流27の相互作用によ!ll被検体表面に平行左方向
にほぼ一様な分布をもつローレンツ力28が発生し、平
面波の横波が励振されることになる。しかし第2図の構
成ではローレンツ力28と同時に、不要な応答の原因と
なると考えられる被検体表面に対して垂直で斜対称の分
布を有するローレンツ力29が発生する。この問題を解
消する方法として本発明の他の発明例を第3図に示す。In the figure, when a direct current is passed through the excitation coil 22 for bias magnetic field generation wound around the center leg of the E-shaped high frequency magnetic core 21, a direct current magnetic flux 23 is generated in the magnetic core 21, and this is generated on the surface of the object 24. A magnetic field perpendicular to is applied. Next, the transmitting coil 25 is connected with a polarity such that the magnetic flux generated by the coil current circulates through the outer legs of the magnetic core, and when a high-frequency current is passed through this, high-frequency magnetic flux 26 is generated in the magnetic core 21 as shown by the broken line in the figure. However, this magnetic flux 26 cannot enter the subject 24, and an induced eddy current 27 flows on the surface of the subject so as to satisfy the boundary conditions. As a result, the interaction between the bias magnetic field 23 and the induced eddy current 27 occurs in the portion directly below the central leg of the E-shaped magnetic core 21! A Lorentz force 28 having a substantially uniform distribution in the left direction parallel to the object surface is generated, and a transverse plane wave is excited. However, in the configuration shown in FIG. 2, at the same time as the Lorentz force 28, a Lorentz force 29 is generated that is perpendicular to the surface of the object and has an obliquely symmetrical distribution, which is considered to be the cause of an unnecessary response. Another example of the present invention is shown in FIG. 3 as a method for solving this problem.
第3図において、原理は第2図の場合とほぼ同様である
が、E形磁心31の中央の脚に第2図の励磁コイル22
と同様な励磁コイル32を巻装し。In FIG. 3, the principle is almost the same as that in FIG. 2, but the excitation coil 22 in FIG.
An excitation coil 32 similar to the above is wound.
この励磁コイル32により被検体表面24に垂直となる
ようなバイアス磁界23を供給する。さらに、E形磁心
とほぼ直角に立体的に交差するように配置したU形の高
周波磁心33の両脚に送信コイル34を巻装し、これに
高周波電流を流し、被検体表面に渦電流27を誘導する
。このバイアス磁界23と誘導渦電流27によシ被検体
表面に平行な方向に一様な分布をもつローレンツ力28
が発生し平面波の横波が励振されることになる。第3図
の構造は、第2図の構造と異なり探傷の際に不要な応答
の原因と考えられる。縦波29は殆ど励振されないと考
えられる。This excitation coil 32 supplies a bias magnetic field 23 perpendicular to the surface 24 of the subject. Furthermore, a transmitting coil 34 is wound around both legs of a U-shaped high-frequency magnetic core 33 arranged to three-dimensionally intersect the E-shaped magnetic core at almost right angles, and a high-frequency current is passed through this to generate an eddy current 27 on the surface of the subject. Induce. Due to the bias magnetic field 23 and the induced eddy current 27, the Lorentz force 28 has a uniform distribution in the direction parallel to the surface of the object to be examined.
occurs, and a transverse plane wave is excited. The structure shown in FIG. 3 is different from the structure shown in FIG. 2 and is thought to be the cause of unnecessary responses during flaw detection. It is considered that the longitudinal wave 29 is hardly excited.
以上、送波動作について説明したが、変換の可逆性から
横波の受波も可能であることは言うまでもない。Although the wave transmission operation has been described above, it goes without saying that transverse wave reception is also possible due to the reversibility of the conversion.
本発明の第2図、第3図のような高周波磁心を用いた横
波用電磁超音波トランスジー−サは、送信コイルにより
発生する高周波磁束が高周波磁心を環流するため送・受
信コイルを高周波磁心の任意の場所に設けてよいから従
来の方式のように送受信コイルを必ずしも被検体表面近
傍に設ける必要がなく、その分トランスノーーサ・被検
体間距離を大きくとって検査することができる。さらに
。In the transverse wave electromagnetic ultrasonic transducer using a high-frequency magnetic core as shown in FIGS. 2 and 3 of the present invention, the high-frequency magnetic flux generated by the transmitting coil circulates through the high-frequency magnetic core. Since the transmitting and receiving coils do not necessarily need to be provided near the surface of the subject as in the conventional method, the distance between the transducer and the subject can be increased accordingly. moreover.
脚間隔の大きいU形あるいはE形磁心を用いるとそれだ
けバイアス磁界および高周波磁界を長い距離にわたって
与えることができるのでますますトランスジューサ・被
検体間距離を大きくとって検査をすることができるよう
になる。If a U-shaped or E-shaped magnetic core with a large leg spacing is used, a bias magnetic field and a high-frequency magnetic field can be applied over a long distance, so that testing can be performed with a larger distance between the transducer and the subject.
以下9本発明の第2図の一実施例について第4図を参照
して説明する。An embodiment of the present invention shown in FIG. 2 will be described below with reference to FIG. 4.
第4図は、U形の高周波磁心41の腹部中央に工形の磁
心42を接着してE形の磁心を形成したものである。工
形磁心41の両脚を被検体の対峙面43a、43bを除
いて、絶縁層44a、44bで被覆し、その外側を例え
ば0.2順厚の銅板で作られたシールド板45a、45
bで覆っている。In FIG. 4, an E-shaped magnetic core is formed by bonding a shaped magnetic core 42 to the center of the abdomen of a U-shaped high-frequency magnetic core 41. Both legs of the engineered magnetic core 41, except for surfaces 43a and 43b facing the subject, are covered with insulating layers 44a and 44b, and the outside thereof is covered with shield plates 45a and 45 made of copper plates with a normal thickness of 0.2, for example.
Covered with b.
更に、シールド板45a 、45bの外側に再度絶縁層
46a、46bを施し、この外側に送信コイル47a、
47bを巻装する。シールド板45a。Further, insulating layers 46a and 46b are applied again to the outside of the shield plates 45a and 45b, and transmitting coils 47a and 46b are applied to the outside of the shield plates 45a and 45b.
47b. Shield plate 45a.
45bは、工形磁心41を取シ巻く短絡路を形成するこ
とのないよう部分的に切断、絶縁されている。45b is partially cut and insulated so as not to form a short circuit surrounding the shaped magnetic core 41.
送信コイル46a、46bの接続は、コイル電流によっ
て生ずる高周波磁束が工形磁心41を環流するように接
続される。なお送信コイル47a。The transmitting coils 46a and 46b are connected so that high frequency magnetic flux generated by the coil current circulates through the shaped magnetic core 41. Note that the transmitting coil 47a.
47bの巻数は例えばそれぞれ12回巻きとし必ノ 要により2層以上をもって巻装するものである。The number of turns of 47b must be, for example, 12 turns each. If necessary, it is wrapped in two or more layers.
中央の工形磁心42には、絶縁層48を施した後。After applying an insulating layer 48 to the central shaped magnetic core 42.
バイアス磁界発生のだめの励磁コイル49を巻装する。An excitation coil 49 for generating a bias magnetic field is wound.
励磁コイル49の巻数は例えば20回巻きとし、必要に
応じて、それ以上の巻数あるいは2層以上をもって巻装
する。The number of turns of the excitation coil 49 is, for example, 20, and if necessary, the excitation coil 49 may be wound with a larger number of turns or two or more layers.
第4図において、E形磁心を構成する方法として必ずし
も工形磁心と工形磁心による組合せのみではなく工形磁
心を2個用いてE形を形成しても良く、高周波磁心の材
料として周波数の高い(数10kHz以上の)帯域で渦
電流損失の少ない磁性材料であれば良い。また、工形磁
心に巻装した励磁コイルは単に被検体表面に垂直となる
・ぐイアス磁界を発生させるためのものであり、この部
分を高周波磁束は通過しないため、工形磁心の材料は必
ずしも高周波磁心を用いる必要はなく2通常の鉄心でも
良い。さらに、゛I工形磁心代わシに永久磁石を用いて
、励磁コイルと励磁電流を省く方法も考えられる。とこ
ろでシールド、板45a、45bは送信コイル47a、
47bによシU形磁心41に発生する高周波磁束のもれ
を減少させることを意図したものであり、シールド板4
5a、45bの有無や形状によりトランスジー−サの動
炸原理に変わりはない。さらに第4図と同一の構造で超
音波を受信することも可能であり、送信コイル47a、
47bは受信コイルとして兼用することもできるが、別
に送信コイルおよび受信コイルを別々に設ける構造も考
えられる。したがって上記の各事項の変更は9本発明の
範囲を越えるものではない。これらのことは、第3図を
実施する場合も同様である。In Fig. 4, the method of configuring the E-shaped magnetic core is not necessarily limited to the combination of two shaped magnetic cores, but it is also possible to use two shaped magnetic cores to form the E-shaped core, and as a material for the high-frequency magnetic core, it is possible to form an E-shaped core. Any magnetic material may be used as long as it has low eddy current loss in a high frequency band (several tens of kHz or more). In addition, the excitation coil wound around the shaped magnetic core is simply used to generate a magnetic field perpendicular to the surface of the test object, and high-frequency magnetic flux does not pass through this part, so the material of the shaped magnetic core is not necessarily the same. It is not necessary to use a high frequency magnetic core, and two ordinary iron cores may be used. Furthermore, it is also possible to use a permanent magnet instead of the I-shaped magnetic core, thereby omitting the excitation coil and excitation current. By the way, the shield plates 45a and 45b are the transmitting coil 47a,
47b is intended to reduce the leakage of high frequency magnetic flux generated in the U-shaped magnetic core 41, and the shield plate 4
The principle of the explosion of the transformer does not change depending on the presence or absence and shape of 5a and 45b. Furthermore, it is also possible to receive ultrasonic waves with the same structure as shown in FIG.
Although 47b can also be used as a receiving coil, a structure in which a transmitting coil and a receiving coil are provided separately is also conceivable. Therefore, changes to the above items do not go beyond the scope of the present invention. These things are the same when implementing FIG. 3.
次に以上のような横波用電磁超音波トランスノー−サの
特性を測定するための実験装置のブロックダイヤグラム
を第5図に示し、これについて説明する。この場合の被
検体51としてアルミニウムブロックまたは鉄ブロック
を用いた。Next, a block diagram of an experimental apparatus for measuring the characteristics of the electromagnetic ultrasonic transducer for transverse waves as described above is shown in FIG. 5, and will be explained. An aluminum block or an iron block was used as the test object 51 in this case.
送信用トランスジューサ52として、第4図のものを使
用し、かつこのトランスジー−サ52の高周波磁心には
50μm厚硅素鋼板巻鉄心を切断したものを用いた。受
信用トランスジューサ53として、第6図に示した従来
の周期構造マグネットを用いた横波用電磁超音波トラン
スソー−サを用いた。As the transmitting transducer 52, the one shown in FIG. 4 was used, and the high-frequency magnetic core of the transducer 52 was made by cutting a 50 μm thick silicon steel plate wound core. As the receiving transducer 53, an electromagnetic ultrasonic transducer for transverse waves using a conventional periodic structure magnet shown in FIG. 6 was used.
第5図において、54はトリガiJ?ルス発生器。In FIG. 5, 54 indicates the trigger iJ? rus generator.
55は・やルス遅延回路、56は第7図のような構成を
有するバイアス用瞬間大電流発生回路であり。Reference numeral 55 is a pulse delay circuit, and reference numeral 56 is an instantaneous large current generating circuit for bias having a configuration as shown in FIG.
同回路56は、直流電源61によって充電せられpcコ
ンデンサの電荷をトリガ・やルス発生器54のトリガ/
9ルスでSCRをオンとすることにょシ、共振放電させ
て低周波大電流を励磁コイル49に供給するものである
。The circuit 56 is charged by the DC power supply 61 and triggers the electric charge of the PC capacitor and triggers the pulse generator 54.
When the SCR is turned on at 9 pulses, a resonance discharge is caused and a low frequency large current is supplied to the excitation coil 49.
57は、第8図のような構成を有する送信回路であシ、
同回路57は高圧直流電源81によって充電せられたコ
ンデンサの電荷を遅延・やルス発生器のトリがパルスで
放電スイッチをオンとすることにより共振放電させて、
高周波大電流を送信コイル47a、47bに供給するも
のである。送信用トランスジ、−ザ52の駆動は、励磁
コイル49への放電々流がほぼ最大に々っだとき、超音
波を発生するようにパルス遅延回路55でトリがパルス
を遅延させた後、送信回路に加えている。57 is a transmitting circuit having a configuration as shown in FIG.
The circuit 57 causes the charge of the capacitor charged by the high-voltage DC power supply 81 to be resonantly discharged by turning on the discharging switch with a pulse of the delay generator.
A high frequency large current is supplied to the transmitting coils 47a and 47b. The transmission transducer 52 is driven after the pulse is delayed by the pulse delay circuit 55 so as to generate ultrasonic waves when the discharge current to the excitation coil 49 is almost at its maximum. added to the circuit.
一方、被検体内を伝搬した超音波は受信用l・ランスジ
ューサに受信され受信用トランスジー−サ53の出力は
例えば入力インピーダンスが50Ω、利得が40dBの
広帯域増幅器を使用し、その波形を例えばオシロスコー
プで観、測する。また58は受信用トランスジユーザと
被検体との間の厚さが例えば0.85mm1のスペーサ
である。On the other hand, the ultrasonic waves propagated inside the subject are received by the receiving transducer 53, and the output of the receiving transducer 53 is obtained by using a wideband amplifier with an input impedance of, for example, 50Ω and a gain of 40 dB, and the waveform thereof is, for example, Observe and measure with an oscilloscope. Further, 58 is a spacer having a thickness of, for example, 0.85 mm1 between the receiving transuser and the subject.
以上のような実験用ブロックダイヤグラムに基づいて得
られた特性図を第9図および第10図に示す。まず第9
図は、送信感度とバイアス磁界発生用励磁コイル49の
電流の大きさの関係を示す特性図である。但し、この実
験例では、送信用トランスジューサの空隙長59を40
μmとし送信用高圧直流電源81の電圧を16 kVと
した。特性図から検討するに鉄ブロッンを被検体に用い
た場合のほうがアルミニウムブロックの場合よシも大き
な送波感度が得られているが、これは、鉄の場合にはア
ルミニウムの場合に比べて、透磁率が大きいためバイア
ス磁界を供給するだめの磁気回路の磁気抵抗が減ってバ
イアス磁界が大きくなったためと考えられる。Characteristic diagrams obtained based on the experimental block diagram as described above are shown in FIGS. 9 and 10. First, the 9th
The figure is a characteristic diagram showing the relationship between the transmission sensitivity and the magnitude of the current of the excitation coil 49 for generating a bias magnetic field. However, in this experimental example, the air gap length 59 of the transmitting transducer was set to 40
μm, and the voltage of the high-voltage DC power source 81 for transmission was 16 kV. Examining the characteristic diagram, we can see that when using an iron block as the test object, a higher transmission sensitivity is obtained than when using an aluminum block. This is thought to be due to the large magnetic permeability, which reduces the magnetic resistance of the magnetic circuit that supplies the bias magnetic field, increasing the bias magnetic field.
次に第10図は、送信感度と送信用トランスジー−サの
空隙長59との関係を示す図である。この実験例では、
バイアス磁界発生用励磁コイル49の電流の大きさを5
00A、送信用高圧直流電源81の電圧を16kVとし
た。第8図と同様に、鉄ブロックを被検体とした場合の
ほうが、アルミニウムゾロツクの場合より大きな送信感
度が得られているが2次第に空隙長59を大きくしてい
つ、た場合。Next, FIG. 10 is a diagram showing the relationship between the transmission sensitivity and the gap length 59 of the transmission transducer. In this example experiment,
The magnitude of the current of the excitation coil 49 for bias magnetic field generation is set to 5.
00A, and the voltage of the high-voltage DC power source 81 for transmission was set to 16 kV. Similar to FIG. 8, when the iron block is used as the object, a greater transmission sensitivity is obtained than when the aluminum block is used, but when the gap length 59 is gradually increased.
送信感度の減少の割合はアルミニウムブロックの場合の
ほうが鉄ブロックの場合に比べ小さくなっている。しか
し、5問以上のトランスジューサ・被検体間距離でも被
検体が鉄ブロック、アルミニウムの両者の場合とも十分
な感度で超音波が送信されていることがわかる。The rate of decrease in transmission sensitivity is smaller in the case of aluminum blocks than in the case of iron blocks. However, it can be seen that even when the distance between the transducer and the subject is 5 or more, ultrasonic waves are transmitted with sufficient sensitivity both when the subject is an iron block or aluminum.
本願は誘導渦電流に働くローレンッカを利用しているの
で非接触トランスジー−ザとして可能となシ、圧電トラ
ンスジ斗−サの場合のようにトランスジー−サと被検体
との間の結合媒質は不要である。この結果1表面に凹凸
のある材料や9表面を塗料で被った材料、さらには高温
の物体、あるいは高速で移動する物体の検査、特にそれ
ら被検体のクラックや内部欠陥をチェックするセンサー
として可能である。Since this application uses a low roller that acts on induced eddy currents, it can be used as a non-contact transducer.As in the case of piezoelectric transducers, the coupling medium between the transducer and the test object is Not necessary. As a result, it can be used as a sensor to inspect 1) materials with uneven surfaces, 9) materials whose surfaces are coated with paint, high-temperature objects, or objects that move at high speed, especially for checking for cracks and internal defects in these objects. be.
そして1本願は横波の電磁超音波を利用しているために
、被検体を磁性体としてもその感度が損うことなく測定
できるものである。Since the present application uses transverse electromagnetic ultrasound, it is possible to measure even if the object to be examined is a magnetic material without losing its sensitivity.
第1図は、従来のス/Fイラルコイルを用いて構成した
横波用電磁超音波トランスジー−サの原理図、第2図は
本発明のE形高周波磁心を用いた横波用電磁超音波トラ
ンスジー−サの原理図、第3図はE形とU形の高周波磁
心を互いに直交させた構造を有する横波用電磁超音波ト
ランスノー−サの原理図、第4図はE形高周波磁心を用
いた横波用電磁超音波トランスジー−サの実施例を示す
図。
第5図は、特性測定のだめの実験のブロックダイヤグラ
ム、また、第6図、第7図はそれぞれバイアス磁界発生
用瞬間大電流発生回路および送信回路、第8図は、送信
感度と励磁電流の関係を示す特性図、第9図は送信感度
をトランスジー−サ・被検体間距離の関係を示す特性図
である。
児3図
第6図
第7図
第8区
励磁電流(A)Fig. 1 is a principle diagram of an electromagnetic ultrasonic transducer for transverse waves constructed using a conventional spiral coil, and Fig. 2 is a diagram of the principle of an electromagnetic ultrasonic transducer for transverse waves using the E-shaped high frequency magnetic core of the present invention. Figure 3 is a diagram of the principle of an electromagnetic ultrasonic transducer for transverse waves that has a structure in which E-shaped and U-shaped high-frequency magnetic cores are orthogonal to each other. The figure which shows the Example of the electromagnetic ultrasonic transducer for transverse waves. Figure 5 is a block diagram of the experiment for measuring characteristics, Figures 6 and 7 are the instantaneous large current generation circuit and transmission circuit for generating bias magnetic field, respectively, and Figure 8 is the relationship between transmission sensitivity and excitation current. FIG. 9 is a characteristic diagram showing the relationship between the transmission sensitivity and the distance between the transducer and the subject. Child 3 Figure 6 Figure 7 Figure 8 Section Excitation current (A)
Claims (1)
ぼ垂直にバイアス磁界を与え、且つそのバイアスされた
領域において主成分が被検体表面に平行な高周波磁界を
発生・検出するように、磁路の開いた形状の高周波磁心
を配置し、これに送・受信コイルを巻装して構成され、
上記高周波磁界の方向の振動変位をもつ横波超音波を発
生・検出することを特徴とする横波用電磁超音波トラン
スジューサ。 2) E形の形状を有する高周波磁心、またはU形(ま
たはC形、コの字形など′)の高周波磁心の中央にI形
の鉄心を付してE形の形状にした磁心を用い、該磁心の
中央の脚にはバイアス磁界発生用の励磁コイルを巻装し
、外側の両脚には送・受信コイルを巻装し、高周波磁束
が外側の両脚を通って環流するように両脚の送・受信コ
イルを接続して構成したことを特徴とする前記第1項の
横波用電磁超音波トランスジー−サ。 3)中央脚の直下に垂直なバイアス磁界を発生するよう
に励磁コイpvを巻装したE形の磁心と。 送・受信コイルを巻装したU形(またはC形、コの字形
など)の高周波磁心とを、立体的に交差するように配置
したことを特徴とする前記第1項の横波用電磁超音波ト
ランスノー−サ。 4)上記2)及び3)項のトランスジー−ザにおいて、
E形の磁心の一部を永久磁石とすることにより、励磁コ
イルを省き、励磁電流を不要としたことを特徴とする横
波用電磁超音波トランスジーーサ。[Claims] 1) Applying a bias magnetic field almost perpendicularly to the surface of a metal object using an electromagnet or a permanent magnet, and generating a high-frequency magnetic field whose main component is parallel to the surface of the object in the biased region. For detection, a high-frequency magnetic core with an open magnetic path is placed, and a transmitter/receiver coil is wound around it.
An electromagnetic ultrasonic transducer for transverse waves, characterized in that it generates and detects transverse ultrasonic waves having vibrational displacement in the direction of the high-frequency magnetic field. 2) Using a high-frequency magnetic core having an E-shape, or a U-shape (or C-shape, U-shape, etc.) high-frequency magnetic core with an I-shaped iron core attached to the center to make an E-shape, An excitation coil for generating a bias magnetic field is wound around the central leg of the magnetic core, and transmitting/receiving coils are wound around the outer legs. The electromagnetic ultrasonic transducer for transverse waves according to item 1 above, characterized in that it is constructed by connecting a receiving coil. 3) An E-shaped magnetic core wrapped with an excitation coil PV to generate a perpendicular bias magnetic field just below the central leg. The electromagnetic ultrasonic wave for transverse waves according to item 1 above, characterized in that a U-shaped (or C-shaped, U-shaped, etc.) high-frequency magnetic core around which transmitting/receiving coils are wound is arranged so as to intersect three-dimensionally. Transnosa. 4) In the transformer of items 2) and 3) above,
An electromagnetic ultrasonic transformer for transverse waves, characterized in that a part of the E-shaped magnetic core is made into a permanent magnet, thereby eliminating the need for an excitation coil and excitation current.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6518084A JPS60227163A (en) | 1984-04-03 | 1984-04-03 | Electromagnetic ultrasonic transducer for transversal wave using high-frequency magnetic core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6518084A JPS60227163A (en) | 1984-04-03 | 1984-04-03 | Electromagnetic ultrasonic transducer for transversal wave using high-frequency magnetic core |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60227163A true JPS60227163A (en) | 1985-11-12 |
JPH0257267B2 JPH0257267B2 (en) | 1990-12-04 |
Family
ID=13279451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6518084A Granted JPS60227163A (en) | 1984-04-03 | 1984-04-03 | Electromagnetic ultrasonic transducer for transversal wave using high-frequency magnetic core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60227163A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0579255A2 (en) * | 1992-07-16 | 1994-01-19 | Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. | Ultrasonic test head |
KR100584758B1 (en) * | 2001-12-26 | 2006-05-30 | 주식회사 포스코 | Ultrasonic Sensor and Long Range Inspection Device |
US7312549B2 (en) | 2001-05-08 | 2007-12-25 | Aalborg Universitet | Transverse flux machine with stator made of e-shaped laminates |
US7738232B2 (en) * | 2003-05-12 | 2010-06-15 | Canon Kabushiki Kaisha | Alignment apparatus |
KR101109138B1 (en) | 2009-11-11 | 2012-02-24 | 한국원자력연구원 | Apparatus for generating the pulsed magnetic field |
CN103217481A (en) * | 2013-04-02 | 2013-07-24 | 厦门大学 | Magnetoacoustic tomography-with-magnetic-induction probe applying magnetostriction |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5314388A (en) * | 1976-07-26 | 1978-02-08 | Meisei Engineering | Process and apparatus for recovery of copper wire from insulated copper wire |
JPS57165761A (en) * | 1981-04-03 | 1982-10-12 | Nippon Kokan Kk <Nkk> | Transducer for electro-magnetic ultrasonic wave |
JPS58127358U (en) * | 1982-02-22 | 1983-08-29 | 三菱電機株式会社 | Electromagnetic ultrasound probe device |
-
1984
- 1984-04-03 JP JP6518084A patent/JPS60227163A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5314388A (en) * | 1976-07-26 | 1978-02-08 | Meisei Engineering | Process and apparatus for recovery of copper wire from insulated copper wire |
JPS57165761A (en) * | 1981-04-03 | 1982-10-12 | Nippon Kokan Kk <Nkk> | Transducer for electro-magnetic ultrasonic wave |
JPS58127358U (en) * | 1982-02-22 | 1983-08-29 | 三菱電機株式会社 | Electromagnetic ultrasound probe device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0579255A2 (en) * | 1992-07-16 | 1994-01-19 | Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. | Ultrasonic test head |
EP0579255A3 (en) * | 1992-07-16 | 1994-11-23 | Fraunhofer Ges Forschung | Ultrasonic test head. |
US7312549B2 (en) | 2001-05-08 | 2007-12-25 | Aalborg Universitet | Transverse flux machine with stator made of e-shaped laminates |
KR100584758B1 (en) * | 2001-12-26 | 2006-05-30 | 주식회사 포스코 | Ultrasonic Sensor and Long Range Inspection Device |
US7738232B2 (en) * | 2003-05-12 | 2010-06-15 | Canon Kabushiki Kaisha | Alignment apparatus |
KR101109138B1 (en) | 2009-11-11 | 2012-02-24 | 한국원자력연구원 | Apparatus for generating the pulsed magnetic field |
CN103217481A (en) * | 2013-04-02 | 2013-07-24 | 厦门大学 | Magnetoacoustic tomography-with-magnetic-induction probe applying magnetostriction |
Also Published As
Publication number | Publication date |
---|---|
JPH0257267B2 (en) | 1990-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4127035A (en) | Electromagnetic transducer | |
Vasile et al. | Excitation of horizontally polarized shear elastic waves by electromagnetic transducers with periodic permanent magnets | |
Kannan et al. | SHM of pipes using torsional waves generated by in situ magnetostrictive tapes | |
KR101068350B1 (en) | Contact Sh-Wave Magnetostrictive Transducer | |
US11774409B2 (en) | Electromagnetic acoustic transducer (EMAT) for corrosion mapping | |
Rueter et al. | Ultrasound generation with high power and coil only EMAT concepts | |
US20180164256A1 (en) | Non Destructive Magnetostrictive Testing With Unidirectional Guided Waves Generated By Ferromagnetic Strip Sensor | |
CN106814140A (en) | A kind of ultra-magnetic telescopic guided wave for pipe surface coupling encourages transducer | |
JPS60227163A (en) | Electromagnetic ultrasonic transducer for transversal wave using high-frequency magnetic core | |
US3963980A (en) | Ultrasonic instrument for non-destructive testing of articles with current-conducting surface | |
CN110614213A (en) | Guided wave excitation transducer of pipeline detection composite vibrator structure | |
Jin et al. | Electromagnetic stimulation of the acoustic emission for fatigue crack detection of the sheet metal | |
CA2510799C (en) | Electromagnetic ultrasound probe | |
JP2006511173A (en) | Electromagnetic ultrasonic transducer | |
CN107941902A (en) | A kind of high-efficiency electromagnetic ultrasonic transducer for using stacking silicon steel sheet as backboard | |
US5987993A (en) | Test apparatus and method for nondestructive material testing | |
JP2006189413A (en) | Magnetic deformation transducer using tail patch, and elastic wave measuring instrument using same | |
CN114441641A (en) | Longitudinal wave electromagnetic ultrasonic probe and detection method | |
CN115032279A (en) | Broadband magnetostrictive SH0 modal guided wave monitoring transducer | |
JPH0113533B2 (en) | ||
Da Cunha et al. | Improved longitudinal EMAT transducer for elastic constant extraction | |
Ge et al. | Development of High Temperature Rayleigh Wave Electromagnetic Acoustic Transducer with Double Coil Structure | |
RU2243550C1 (en) | Electromagnetic-acoustic transducer | |
Thompson | AD P002996 | |
RU2270443C2 (en) | Electromagnetic acoustic transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |