[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6022642B2 - Method for producing solid solution of hexagonal monocarbide - Google Patents

Method for producing solid solution of hexagonal monocarbide

Info

Publication number
JPS6022642B2
JPS6022642B2 JP52090618A JP9061877A JPS6022642B2 JP S6022642 B2 JPS6022642 B2 JP S6022642B2 JP 52090618 A JP52090618 A JP 52090618A JP 9061877 A JP9061877 A JP 9061877A JP S6022642 B2 JPS6022642 B2 JP S6022642B2
Authority
JP
Japan
Prior art keywords
heated
solid solution
hexagonal
temperature
monocarbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52090618A
Other languages
Japanese (ja)
Other versions
JPS5424911A (en
Inventor
雅也 三宅
稔 中野
孝春 山本
昭夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP52090618A priority Critical patent/JPS6022642B2/en
Priority to US05/927,904 priority patent/US4216009A/en
Priority to US05/927,903 priority patent/US4216034A/en
Priority to GB7831255A priority patent/GB2003189B/en
Priority to SE7808157A priority patent/SE500646C2/en
Priority to FR7822182A priority patent/FR2398808B1/en
Priority to CA000308177A priority patent/CA1117556A/en
Priority to CA000308176A priority patent/CA1135080A/en
Priority to DE19782833016 priority patent/DE2833016A1/en
Priority to DE19782833015 priority patent/DE2833015A1/en
Publication of JPS5424911A publication Critical patent/JPS5424911A/en
Publication of JPS6022642B2 publication Critical patent/JPS6022642B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、超硬合金、特に合金中のWCがMoCによっ
て置換されることを目的とした、複合炭加物の製造に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of a composite carbide for the purpose of replacing cemented carbide, particularly WC in the alloy, by MoC.

従来、超硬合金はWCを主成分としてこれにTi,Ta
,Nb,Mo,Hf,V,Cr等高融点金属炭化物もし
くは炭窒化物を合金の要求特性に応じて添加され、結合
金属としては鉄グループ金属が用いられている。
Conventionally, cemented carbide has WC as its main component, with Ti and Ta added to it.
, Nb, Mo, Hf, V, Cr, or other high-melting point metal carbides or carbonitrides are added according to the required properties of the alloy, and iron group metals are used as the bonding metals.

しかしながらタングステンは比較的高価な金属であり、
地球上では極く僅かしか発見出釆ないものであるので、
いわゆる「戦略一物質として考えられており、その利用
度は政治的な貴重価値ということが出来る。したがって
WCを主成分とする超硬合金の需要がのびれば当然この
資源問題にぶつかる。
However, tungsten is a relatively expensive metal;
Since it is something that can only be found in very few places on earth,
It is considered as a so-called "strategic material," and its utilization can be said to have political value. Therefore, if the demand for cemented carbide, whose main component is WC, increases, it will naturally lead to resource problems.

もしWCを他の高融点金属炭化物に交換しうれば、その
産業界に与える影響は著しく大きい。この最も有力な懐
補としてモリブデンのモノカーバイドがある。
If WC could be replaced with other high melting point metal carbides, the impact on the industry would be significant. Molybdenum monocarbide is the most promising substitute for this.

このカーバイドのみがWCと同じ結晶構造である単純へ
キサゴナルタィプであり、その機械的性質はWCに近い
と思われる。しかしながらモリブテンモノカーバィドの
単体の存在が今日までも擬間とされており、もっぱらタ
ングステンカーバィドと固落させることによりMoCを
安定させる試みがなされている。この方法は1950年
にW.Dawihlによって初めて発見されたものであ
るが、この固溶体については当時工業的価値を見し、出
さずに、あまり検討が行なわれていなかった。最近にな
ってW価値の高騰にともなって再び(MoxWy)C〔
X+Y=1〕の固漆体を利用する研究が活発になりつつ
ある。しかし何故、今まであまり研究が行なわれず、ま
た使用する試みも積極的に行なわれなかったのか、非常
に興味深い。本発明はMoCを主成分とし、Wa,Va
,町a族との固溶炭化物の安定生産に関するものである
Only this carbide is a simple hexagonal type having the same crystal structure as WC, and its mechanical properties are thought to be close to WC. However, the existence of a single molybdenum monocarbide is still considered to be a pseudo-interference, and attempts have been made to stabilize MoC by collapsing it with tungsten carbide. This method was introduced in 1950 by W. Although this solid solution was first discovered by Robert Dawihl, not much research was done at the time as it was not considered to have any industrial value. Recently, with the rise in the value of W, (MoxWy)C [
Research on the use of solid lacquer bodies with a ratio of X+Y=1 is becoming more active. However, it is very interesting to know why little research has been done on it, and no active attempts have been made to use it. The present invention has MoC as the main component, Wa, Va
, regarding the stable production of solid solution carbide with Town A Group.

本発明の特徴は、MoCを主成分とする炭化物は常温で
は安定しないので、高温でWC等の他炭化物を固溶させ
、該固溶体を常温まで冷却し、これに歪を加える機械処
理もしくは熱的処理を施こ‐した後、再度MoCが安定
する温度に加熱する方法によってモリブデンの炭化物を
WCタイプの単純へキサゴナルタィプの結晶構造に変換
することにある。
The feature of the present invention is that since carbide containing MoC as a main component is not stable at room temperature, other carbides such as WC are dissolved in solid solution at high temperature, the solid solution is cooled to room temperature, and mechanical treatment or thermal treatment that adds strain to the solid solution is performed. After the treatment, molybdenum carbide is converted into a WC type simple hexagonal type crystal structure by heating again to a temperature at which MoC is stabilized.

一般に複合炭化物の製法では、ほとんどの場合、炭化物
同志もしくはCo等の拡散助材を用いて加熱すれば均一
な固溶体になりうる。しかしMoCが70%以上含まれ
る固溶体組成では高温加熱で、相互拡散させるのみでは
均一な園溶体が得られない。これはMoCが高温では不
安定であるが、(MOW)C,−x, や(MOW)3
C2等の間溶体に分解しているのでそのまま冷却しただ
けでは(Mo.W)CのWCタイプの固溶体が得られな
いからである。この安定化方法としては、高温で一度反
応させ、Mo2CとWCの拡散を行なった後、低温で長
時間保持する方法がある。〔侍関昭51一14筋06(
4)〕。しかしながら低温で、(MOW)C4M,(M
OW)3C2から(Mo.W)Cをより出させるための
拡散時間、再結晶時間はかなり要する。このような方法
を工業的に行なおうとすると「完全な炭化物を得るため
に長時間炉中で加熱しなければならない。このことは1
炉当りの生産性が低くなり、このために数多くの炉が必
要とされる。一方連続炉で行なおうとすれば長い加熱炉
が必要とされ、工業的には量産が難かしいという欠点が
ある。本発明者らは(Mo.W)Cの工業的安定した生
産方法を種々検討した結果非常に能率的な方法を発見し
た。
In general, in most cases of manufacturing methods for composite carbides, a uniform solid solution can be obtained by heating the carbides together or using a diffusion aid such as Co. However, in the case of a solid solution composition containing 70% or more of MoC, a uniform solution cannot be obtained only by interdiffusion at high temperature heating. This is because MoC is unstable at high temperatures, but (MOW)C, -x, and (MOW)3
This is because, since it decomposes into an intermediate solution such as C2, a WC type solid solution of (Mo.W)C cannot be obtained just by cooling it as it is. As a method for this stabilization, there is a method of once reacting at a high temperature to diffuse Mo2C and WC, and then holding it at a low temperature for a long time. [Samurai Sekisho 51-14 Suji 06 (
4)]. However, at low temperatures, (MOW)C4M, (M
It takes a considerable amount of time for diffusion and recrystallization to extract more (Mo.W)C from OW)3C2. If such a method is to be carried out industrially, ``in order to obtain a complete carbide, it must be heated in a furnace for a long time.
The productivity per furnace is low and a large number of furnaces are required for this purpose. On the other hand, if it were to be carried out in a continuous furnace, a long heating furnace would be required, which would make mass production difficult from an industrial perspective. The present inventors investigated various methods for industrially stable production of (Mo.W)C, and as a result, discovered a very efficient method.

すなわち高温ではMo.Wの拡散反応により(Mo.W
)2C+Cの複炭化物と炭素の混合物0とした後、これ
を常温まで素早く冷却して、高温の禾反応状態のまま1
次炭化物を得る、この場合は 炭素を数%近く粉末層
内に残っている。この1次炭化物は機械粉砕機にかけて
若干細かくした後、再度(Mo.W)Cの安定温度で短
時間加熱夕することにより完全なモノカーバイドである
(Mo.W)C粉末に変換しうろことがわかった。もし
この機械粉砕が面倒であれば連続炉等を用いて急冷速度
を早くすれば冷却時の急激な収縮により、反応物に歪が
入るので、再度、加熱すれば同0 じように固溶反応が
促進する場合もある。このように、1次反応物に歪みを
加えるときわめて短時間の2次加熱でへキサゴナルモノ
カーバィドが安定化するのかその詳細な理由は不明であ
るが、1次反応物に歪みを与えることによって、結晶格
子中に多数の格子欠陥が生じると考えられ、2次加熱時
に、原子の拡散がこの格子欠陥を介して行われるため、
著しく拡散速度が増大されるため、きわめて短時間の2
次加熱で、ヘキサゴナルモノカ−バィドが安定化するも
のと推定される。本方法は工業的には連続炉の組合せに
より大量の処理が可能であり、途中工程で簡単な衝撃装
置を具備すれば、常に安定した炭化物を得ることが出来
る。
That is, at high temperatures, Mo. Due to the diffusion reaction of W (Mo.W
) After the mixture of 2C+C double carbide and carbon is reduced to 0, it is quickly cooled to room temperature and left in the high temperature hydrogen reaction state.
Next, a carbide is obtained, in which case nearly a few percent of carbon remains in the powder layer. This primary carbide is made into a slightly finer powder by a mechanical crusher, and then heated again for a short time at a stable temperature of (Mo.W)C to convert it into (Mo.W)C powder, which is a complete monocarbide. I understand. If this mechanical pulverization is troublesome, use a continuous furnace or the like to speed up the quenching rate.The rapid contraction during cooling will cause distortion in the reactants, so heating again will cause the same solid solution reaction. may be promoted. In this way, the detailed reason why hexagonal monocarbide is stabilized by extremely short secondary heating when strain is applied to the primary reactant is unknown, but it appears that straining the primary reactant stabilizes hexagonal monocarbide. This is thought to cause a large number of lattice defects in the crystal lattice, and during secondary heating, atoms diffuse through these lattice defects.
2 in a very short time because the diffusion rate is significantly increased.
It is presumed that the hexagonal monocarbide is stabilized by the subsequent heating. Industrially, this method can be used in large quantities by combining continuous furnaces, and if a simple impact device is provided in the middle of the process, a stable carbide can be obtained at all times.

また1次反応物に不均一部分がある場合はいくら加熱条
件を変えても安定した炭化物になり得ない。本発明の方
法ではボールミル等の粉砕機を用いれば反応物の均一性
が増し、2次加熱でよく反応する。本発明において最も
効果を出すのは1次加熱温度が1400『C以上が望ま
しい。
Furthermore, if the primary reactant has non-uniform parts, no matter how much the heating conditions are changed, a stable carbide cannot be obtained. In the method of the present invention, if a pulverizer such as a ball mill is used, the uniformity of the reactants will increase, and the reactants will react well by secondary heating. In the present invention, it is desirable that the primary heating temperature be 1400°C or higher to achieve the most effect.

1400午○以下であるとMo2CとWCの固溶反応が
進まない。
If the temperature is below 1400 pm, the solid solution reaction between Mo2C and WC will not proceed.

また2次加熱温度は100ぴ0が1800ooの温度範
囲なら十分満足する。1000qo以下では拡散反応が
起こりにくい。
Further, the secondary heating temperature is sufficiently satisfied if the temperature range is from 100 to 1800 oo. Diffusion reactions are difficult to occur below 1000 qo.

また180000以上ではMoCとWCの固熔体が不安
定になり、(MoW)Cのモノカーバィドが生成されな
い。本方法で最も効果を出すのは、MoCが70%以上
である場合で、MoCの安定性が欠ける組成で著しい効
果が出しうる。本発明において炭化物の安定のみならず
炭化物中に窒素を含む場合、もしくは酸素を若干含む場
合でも同じ効果が出る。
Moreover, if it exceeds 180,000, the solid melt of MoC and WC becomes unstable, and monocarbide of (MoW)C is not generated. This method is most effective when the MoC is 70% or more, and a significant effect can be achieved with compositions lacking MoC stability. In the present invention, the same effect is obtained not only when the carbide is stabilized but also when the carbide contains nitrogen or a small amount of oxygen.

以上モリブデン、タングステン複合化合物について述べ
たが、これがNa,Va,のa族金属と非金属成分とか
らなるBI型固溶体と併存しても本発明の効果は変わら
ない。実施例 1 1仏のWC粉末24滋,2仏のMo2C粉末71舷に炭
素粉末4をと拡散助剤としてCo粉末1雌加え乾式ボー
ルミルにて約3餌時間混合した。
Although the molybdenum and tungsten composite compound has been described above, the effects of the present invention do not change even if this compound coexists with a BI type solid solution consisting of a group a metal such as Na, Va, and a nonmetallic component. Example 1 1 WC powder (24 g) and 2 F. Mo2C powder (71 g) were loaded with 4 carbon powders and 1 g of Co powder as a diffusion aid, and mixed in a dry ball mill for about 3 hours.

この混合粉末を夕ンマン炉を用いて水素気流中で190
0qoまで昇温し、約1時間ほど加熱した。加熱後、炉
の温度136000まで下げ、この温度で6時間保持し
た。6時間後に得られた炭化物を炉中にとり出し炭素量
分析を行った結果、第1表の如くであった。
This mixed powder was heated to 190°C in a hydrogen stream using a Yuman furnace.
The temperature was raised to 0 qo and heated for about 1 hour. After heating, the furnace temperature was lowered to 136,000 and maintained at this temperature for 6 hours. The carbide obtained after 6 hours was taken out into the furnace and analyzed for carbon content, and the results were as shown in Table 1.

またX線にて固熔炭化物の結晶形を調べた。この結果を
図1一aに示す。表1 表1では遊離炭素が3%近く残っており、配合した炭素
に対して反応した炭素は21%にすぎなかった。
In addition, the crystal form of the solid carbide was examined using X-rays. The results are shown in FIG. 11a. Table 1 In Table 1, nearly 3% of free carbon remained, and only 21% of the carbon that reacted with the blended carbon.

また図1−aのX線回折結果ではMo2Cのピークが多
く残り、モノカーバィドの生成が認められなかった。次
にこの未反応の1次炭化物をボールミルで2時間粉砕し
た後、再び136000の温度で加熱した結果、表2に
示す炭化物に変化した。表2反応率97%にも達し、X
線回折にて炭化物を調べた結果、図1−bに示す如く全
部がWCタイプの結晶形に変化した。
Furthermore, in the X-ray diffraction results shown in FIG. 1-a, many Mo2C peaks remained, and no monocarbide formation was observed. Next, this unreacted primary carbide was pulverized in a ball mill for 2 hours, and then heated again at a temperature of 136,000° C. As a result, it changed to the carbide shown in Table 2. Table 2 Reaction rate reached 97%,
As a result of examining the carbide by line diffraction, it was found that all of the carbides changed to a WC type crystal form as shown in FIG. 1-b.

Mo2Cのピークはほとんど減少した。この炭化物にC
o粉末を混合し、(Mo.W)C−10%Co合金を試
作したが、全くWC−Co合金と同じ組織構造であり、
十分WCを層き換えることが可能であった。実施例 2 実施例1に示す配合比率で(MoB5W,5)Cの固溶
炭化物の試作を試みた。
The peak of Mo2C was almost reduced. C in this carbide
A prototype (Mo.W)C-10%Co alloy was made by mixing O powder, but it had exactly the same structure as the WC-Co alloy.
It was possible to sufficiently replace the WC layer. Example 2 A trial production of solid solution carbide of (MoB5W,5)C was attempted using the blending ratio shown in Example 1.

該混合粉末を入れた黒鉛ボートを真空炉に挿入し、18
00ooまで約3時間かけて昇温し、最高温度で1時間
加熱した後、室温まで1餌時間で冷却した。粉末の炭素
量を調べた結果を表3に示す。やはり結合炭素は少なく
、反応率は35.7%にすぎなかった。このX線回折結
果表3を図2一aに示したが、やはりMQCが多量に残
っていた。
Insert the graphite boat containing the mixed powder into a vacuum furnace and heat it for 18 minutes.
The temperature was raised to 00oo over about 3 hours, heated at the maximum temperature for 1 hour, and then cooled to room temperature in 1 feeding time. Table 3 shows the results of examining the carbon content of the powder. As expected, the amount of bonded carbon was small, and the reaction rate was only 35.7%. This X-ray diffraction result Table 3 is shown in FIG. 21a, and a large amount of MQC remained as expected.

従来の複合炭化物の製造法ではMoCのモノカーバィド
は形成されない。次にこの粉末をジョークラシーで相粉
砕した後、1350ooで加熱されたタンマン炉中に挿
入し、約4船ご間加熱した。この炭化物の特性を調べた
結果を表4に示す。表4 X線結果を図2−bに示す。
MoC monocarbide is not formed in conventional composite carbide manufacturing methods. Next, this powder was phase-pulverized in a jaw machine, then inserted into a Tamman furnace heated at 1350 oo and heated for about 4 hours. Table 4 shows the results of investigating the characteristics of this carbide. Table 4 The X-ray results are shown in Figure 2-b.

Mo2Cのピークはほとんど消え、全てWCタイプの結
晶形となった。比較のため、全く同一の配合の混合粉末
を、同様に黒鉛ボートに入れて真空炉中で1800oo
にて1時間加熱後、炉の温度を135000に下げて1
凪時間加熱した。得られた試料を調べると、ほとんどへ
キサゴナルのモノカーバイドのみであった。ちなみに1
350q0にて1時間加熱したものではMo2Cが多量
に認められた。本発明の方法を用いれば、どんな1次炭
化物もモノカーバィドに変換出来ることがわかった。
The Mo2C peak almost disappeared, and all the crystals became WC type crystals. For comparison, a mixed powder with the same composition was similarly placed in a graphite boat and heated to 1800 oo in a vacuum furnace.
After heating for 1 hour at
Heated for a calm time. When the obtained sample was examined, it was found that it contained almost only hexagonal monocarbide. By the way 1
A large amount of Mo2C was observed in the sample heated at 350q0 for 1 hour. It has been found that any primary carbide can be converted into monocarbide using the method of the present invention.

実施例 3実施例2と同じ配合の粉末を黒鉛ボートに入
れ真空炉中で170000にて1時間加熱した。
Example 3 Powder having the same composition as in Example 2 was placed in a graphite boat and heated in a vacuum furnace at 170,000 °C for 1 hour.

この試料を3粉ご間で常温まで急冷したのち、窒素気流
中01400o0にて1時間加熱した。冷却後試料を調
べるとほとんどへキサゴナルモノカーバイドのみであり
、化学分析すると(Mo84.9W15.1)(C97
.3N2.7)に相当していた。実施例 4 体は(M○,W)(C,N)と若干のMO公および(T
i,Ta,Mo,W)(C,N)とCoの4相が共存す
るものであった。
This sample was rapidly cooled to room temperature in batches of three powders, and then heated at 01400o0 in a nitrogen stream for 1 hour. When the sample was examined after cooling, it was found that it was almost only hexagonal monocarbide, and chemical analysis revealed that it was (Mo84.9W15.1) (C97
.. 3N2.7). Example 4 The body is (M○, W) (C, N) and some MO public and (T
Four phases of i, Ta, Mo, W) (C, N) and Co coexisted.

本焼給体で鋼を切削したところ、良好な切削特性を示し
た。実施例4で得られた、(Mo,W)(C,N)を8
の重量%、(Ti,Ta,W)Cを8重量%、Coを
When cutting steel with this heat-generating body, it showed good cutting characteristics. 8 (Mo, W) (C, N) obtained in Example 4
% by weight, (Ti,Ta,W)C by 8% by weight, Co by weight%

【図面の簡単な説明】[Brief explanation of the drawing]

第1−a、図1一b、図2−a、図2−b、は何れも本
発明の実施例による固溶体のX線回折結果を示す図表で
ある。 12重量%、緑式混合したのち、型押しし、圧粉体を1
45000にて1時間真空焼結した。 得られた焼結図l−o図l‐b 図2‐o 図2‐b
1-a, FIG. 11b, FIG. 2-a, and FIG. 2-b are all charts showing the X-ray diffraction results of solid solutions according to examples of the present invention. After mixing 12% by weight using the green method, it was stamped and the green compact was
Vacuum sintering was performed at 45,000 for 1 hour. Obtained sintered diagram l-o Figure l-b Figure 2-o Figure 2-b

Claims (1)

【特許請求の範囲】 1 モリブデンとタングステンの複合炭加物、炭窒加物
で単純ヘキサゴナル型の結晶構造を有する1種もしくは
それ以上の硬質相からなる固溶体の製造において、原料
粉末を混合した後、該混合粉末を1400℃以上温度で
加熱した後、1度常温まで冷却し、1次反応物に歪みを
もたせた後、再び1000℃〜1800℃の温度で加熱
することを特徴とするヘキサゴナルモノカーバイドの固
溶体の製造法。 2 特許請求の範囲1において該混合粉末を1400℃
以上の温度で加熱した反応物に粉砕もしくはそれに類す
る機械的な歪を加えることを特徴とするヘキサゴナルモ
ノカーバイドの固溶体の製造法。 3 特許請求の範囲1において、該混合粉末を1400
℃以上の温度で加熱した反応物を急速に常温まで冷却す
ることにより、1次反応物に歪を与えた後、再び100
0℃〜1800℃の温度で加熱することを特徴とするヘ
キサゴナルモノカーバイドの固溶体の製造法。 4 許請求の範囲1においてモリブデンの含有量が70
at%以上であることを特徴とするヘキサゴナルモノカ
ーバイドの固溶体の製造法。
[Claims] 1. In the production of a solid solution consisting of one or more hard phases having a simple hexagonal crystal structure in a composite carbide or carbonitride of molybdenum and tungsten, after mixing raw material powders. , a hexagonal monomer characterized in that the mixed powder is heated at a temperature of 1400°C or higher, then cooled once to room temperature, the primary reactant is distorted, and then heated again at a temperature of 1000°C to 1800°C. Method for producing solid solutions of carbides. 2 In claim 1, the mixed powder is heated to 1400°C.
A method for producing a solid solution of hexagonal monocarbide, which comprises applying pulverization or similar mechanical strain to a reactant heated at a temperature above. 3 In claim 1, the mixed powder is
By rapidly cooling the reactant heated above ℃ to room temperature, the primary reactant is strained, and then heated to 100℃ again.
A method for producing a solid solution of hexagonal monocarbide, which comprises heating at a temperature of 0°C to 1800°C. 4 In Claim 1, the content of molybdenum is 70
A method for producing a solid solution of hexagonal monocarbide, characterized in that the hexagonal monocarbide is at % or more.
JP52090618A 1977-07-27 1977-07-27 Method for producing solid solution of hexagonal monocarbide Expired JPS6022642B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP52090618A JPS6022642B2 (en) 1977-07-27 1977-07-27 Method for producing solid solution of hexagonal monocarbide
US05/927,904 US4216009A (en) 1977-07-27 1978-07-25 Method of making alloy and carbide powders of molybdenum and tungsten
US05/927,903 US4216034A (en) 1977-07-27 1978-07-25 Process for the production of a hard solid solution
GB7831255A GB2003189B (en) 1977-07-27 1978-07-26 Alloy powder containing molybdenum and tungsten and use thereof
SE7808157A SE500646C2 (en) 1977-07-27 1978-07-26 Ways to prepare a carbide of molybdenum and tungsten
FR7822182A FR2398808B1 (en) 1977-07-27 1978-07-26 PROCESS FOR PRODUCING ALLOY POWDER CONTAINING MOLYBDENE AND TUNGSTENE
CA000308177A CA1117556A (en) 1977-07-27 1978-07-26 Process for the production of a hard solid solution
CA000308176A CA1135080A (en) 1977-07-27 1978-07-26 Alloy powder containing molybdenum and tungsten and use thereof
DE19782833016 DE2833016A1 (en) 1977-07-27 1978-07-27 Mixed carbide prodn. - by mixing oxide or soln. of metal component and carbon and reducing mixt.
DE19782833015 DE2833015A1 (en) 1977-07-27 1978-07-27 ALLOY CONTAINING MOLYBDA AND TUNGSTEN IN POWDER FORM AND USE OF THIS ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52090618A JPS6022642B2 (en) 1977-07-27 1977-07-27 Method for producing solid solution of hexagonal monocarbide

Publications (2)

Publication Number Publication Date
JPS5424911A JPS5424911A (en) 1979-02-24
JPS6022642B2 true JPS6022642B2 (en) 1985-06-03

Family

ID=14003465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52090618A Expired JPS6022642B2 (en) 1977-07-27 1977-07-27 Method for producing solid solution of hexagonal monocarbide

Country Status (1)

Country Link
JP (1) JPS6022642B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104801A (en) * 1986-10-22 1988-05-10 佐藤 信子 Manufacture of concrete ready-made pile containing pc steel wire and tool for said manufacture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5771853B2 (en) * 2011-03-24 2015-09-02 国立大学法人秋田大学 WC-based W-Mo-Si-C composite ceramics and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104801A (en) * 1986-10-22 1988-05-10 佐藤 信子 Manufacture of concrete ready-made pile containing pc steel wire and tool for said manufacture

Also Published As

Publication number Publication date
JPS5424911A (en) 1979-02-24

Similar Documents

Publication Publication Date Title
Balasubramanian et al. Effect of ball-milling on the phase formation and enhanced thermoelectric properties in zinc antimonides
KR102084452B1 (en) MANUFACTURING METHOD OF Mo-Si-B ALLOY
JPS6022642B2 (en) Method for producing solid solution of hexagonal monocarbide
JP2004142993A (en) Hexagonal composite carbide, and production method therefor
Ramberg et al. Fabrication and High‐Temperature Phase Stability of Mo (Al, Si) 2—MoSi2 Intermetallics
JP2006509908A (en) Composite metal products and methods of manufacturing such products
JP3625928B2 (en) Method for producing Ta / Si based sintered alloy
CN115611242B (en) Refractory metal high-entropy nitride powder and preparation method thereof
JPH03193623A (en) Production of conjugated boride powder in as mo2feb2-base
US2848315A (en) Process for producing titanium, zirconium, and alloys of titanium and zirconium by reduction of oxides of titanium or zirconium
JPS589821B2 (en) Manufacturing method of cemented carbide containing molybdenum
JP2665014B2 (en) Manufacturing method of thermoelectric conversion element material
JPS5938168B2 (en) Method for producing hard solid solution containing molybdenum
US11963448B2 (en) Method for producing thermoelectric conversion element
JPS58213619A (en) Production of powder of composite carbonitride solid solution
JPH06216414A (en) Manufacture of thermoelectric conversion material
EP3633745B1 (en) Thermoelectric material and thermoelectric element comprising same
US3380839A (en) Solid solutions of fine grain metallic carbides and method
Qiaodan et al. Synthesis of Ti3GeC2 Powders from Ti-Ge-TiC Mixtures by Pressureless Sintering
KR820000588B1 (en) Process for the production of a hard solid solution
JPH1136022A (en) Production of cemented carbide containing plate crystal wc
WO1999015705A1 (en) Hard material titanium carbide based alloy, method for the production and use thereof
JPH06216415A (en) Manufacture of thermoelectric conversion material
JPS6152081B2 (en)
US3128541A (en) High temperature resistant metal