[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60211917A - Forming method of pattern - Google Patents

Forming method of pattern

Info

Publication number
JPS60211917A
JPS60211917A JP59067574A JP6757484A JPS60211917A JP S60211917 A JPS60211917 A JP S60211917A JP 59067574 A JP59067574 A JP 59067574A JP 6757484 A JP6757484 A JP 6757484A JP S60211917 A JPS60211917 A JP S60211917A
Authority
JP
Japan
Prior art keywords
film
monomolecular
substrate
pattern
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59067574A
Other languages
Japanese (ja)
Inventor
Yutaka Hirai
裕 平井
Hiroshi Matsuda
宏 松田
Yoshinori Tomita
佳紀 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59067574A priority Critical patent/JPS60211917A/en
Publication of JPS60211917A publication Critical patent/JPS60211917A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • H01L21/02285Langmuir-Blodgett techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To enable the control of two-dimentional arrangement of a monomolecular film or a monomolecular accumulated film, by scanning the surface of a substrate by means of electron beams without the presence of an ambient gas, and by forming thereafter a pattarn according to which the monomolecular film or the monomolecular accumulated film is formed. CONSTITUTION:An Si (100) plate 1-1 being used as a substrate, for instance, oxygen is made to flow along the surface part of the substrate, and the surface of the substrate is scanned by electron beams so as to be oxidized by about 100Angstrom , whereby a stripe pattern is formed. Next, a monomolecular accumulated film of arachidic acid is formed by the LB method. More concretely, first the substrate is dipped in water, and the monomolecular film of arachidic acid is developed and then deposited. When ultrasonic vibrations are applied thereto subsequently, the monomolecular accumulated film of arachidic acid in a part 1-3 is exfoliated, and thus the film is formed only in a part 1-2 in accordance with the pattern.

Description

【発明の詳細な説明】 [技術分野1 本発明は新規なパターン形成方法に関する。更に具体的
には、単分子膜又は単分子累積膜のパターンを、下地上
に形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field 1] The present invention relates to a novel pattern forming method. More specifically, the present invention relates to a method of forming a pattern of a monomolecular film or a monomolecular cumulative film on a substrate.

[背景技術] 従来、半導体技術分野並びに光学技術分野に於ける素材
利用はもっばら比較的取扱いが容易な無機物を対象にし
て進められてきた。これは有機化学分野の技術進展が無
機材料分野のそれに比べて著しく遅れていたことが一因
している。
[Background Art] Conventionally, the use of materials in the semiconductor technology field and the optical technology field has mainly focused on inorganic materials that are relatively easy to handle. One reason for this is that technological progress in the field of organic chemistry has lagged significantly behind that in the field of inorganic materials.

しかしながら、最近の有機化学分野の技術進歩には目を
みはるものがあり、又、無機物対象の素材開発もほぼ限
界に近づいてきたといわれている。そこで無機物を凌ぐ
新しい機能素材としての機能性有機材料の開発が要望さ
れている。有機材料の利点は安価かつ製造容易であるこ
と、機能性に富むこと等である。反面、これまで劣ると
されてきた耐熱性、機械的強度に対しても、最近これを
克服した有機材料が次々に生まれている。このような技
術的背景のもとで、論理素子、メモリー素子、光電変換
素子等の集積回路デバイスやマイクロレンズ・アレイ、
光導波路等の光学デバイスの機能を荷う部分(主として
薄膜部分)の一部又は全部を従来の無機薄膜に代えて、
有機薄膜で構成しようという提案から、ばては1個の有
機分子に論理素子やメモリ素子等の機能を持たせた分子
電子デバイスや生体関連物質からなる論理素子(例えば
バイオ・チップス)を作ろうという提案が最近、いくつ
かの研究機関により発表された。
However, recent technological advances in the field of organic chemistry have been remarkable, and it is said that the development of materials for inorganic substances has almost reached its limit. Therefore, there is a demand for the development of functional organic materials as new functional materials that surpass inorganic materials. The advantages of organic materials are that they are inexpensive, easy to manufacture, and highly functional. On the other hand, organic materials that have overcome heat resistance and mechanical strength, which have been thought to be inferior, have recently been created one after another. Under this technical background, integrated circuit devices such as logic elements, memory elements, photoelectric conversion elements, microlens arrays,
By replacing part or all of the functional parts (mainly thin film parts) of optical devices such as optical waveguides with conventional inorganic thin films,
From the proposal to construct a structure using organic thin films, we started to create molecular electronic devices in which a single organic molecule has functions such as a logic element or a memory element, and logic elements made from biologically related materials (e.g., biochips). Several research institutes have recently announced this proposal.

かかる有機材料を用いて上記の各種デバイス等を作成す
る際の薄膜は公知の単分子累積法、すなわちラングミュ
ア・プロジェット法(LB法)(新実験化学講座 18
巻 498頁〜507頁 丸首)によって形成すること
ができる。
When creating the various devices mentioned above using such organic materials, thin films are prepared using the known single molecule accumulation method, namely the Langmuir-Prodgett method (LB method) (New Experimental Chemistry Course 18).
Volume 498-507 round neck).

LB法は、例えば分子内に・親水基と疎水基を有する構
造の分子において、両者のバランス(両親媒性のバラン
ス)が適度に保たれているとき、分子は水面で親木基を
下に向けて単分子の層になることを利用して単分子膜ま
たは単分子層の累積膜を作成する方法である。
In the LB method, for example, in a molecule with a structure that has a hydrophilic group and a hydrophobic group, when the balance between the two (balance of amphiphilicity) is maintained appropriately, the molecule is placed on the water surface with the parent group below. This is a method of creating a monomolecular film or a cumulative film of monomolecular layers by utilizing the fact that the film becomes a monomolecular layer.

ところで、このような単分子膜又は単分子累積膜に光導
電性等の各種の機能を持たせ、前述の如き各種デバイス
等を作成するためには、単分子膜又は単分子累積膜の二
次元的な配置を制御する必要がある。しかしながら、上
記の方法では単分子膜又は単分子累積膜が基体全面に形
成されるため、単分子膜又は単分子累積膜の二次元的な
パターニングは、特殊な光重合性を利用したりソグラフ
ィ応用のフォトレジストの場合を除いて、すなわち単分
子膜又は単分子累積膜を構成する分子がフォトレジスト
としての性状を有する場合を除いて制御できない欠点が
あった。
By the way, in order to provide various functions such as photoconductivity to such a monomolecular film or a monomolecular cumulative film and to create various devices as described above, it is necessary to It is necessary to control the physical placement. However, in the above method, a monomolecular film or a monomolecular cumulative film is formed on the entire surface of the substrate, so two-dimensional patterning of a monomolecular film or a monomolecular cumulative film cannot be achieved by using special photopolymerizability or by applying lithography. There is a drawback that the method cannot be controlled except in the case of a photoresist, that is, unless the molecules constituting a monomolecular film or a monomolecular cumulative film have properties as a photoresist.

[発明の開示] 本発明の目的は、単分子膜又は単分子累積膜の二次元的
な配置を制御することが可能な新規なパターン形成方法
を提供することにある。
[Disclosure of the Invention] An object of the present invention is to provide a novel pattern forming method that can control the two-dimensional arrangement of a monomolecular film or a monomolecular cumulative film.

本発明の目的は、以下のパターン形成方法によって達成
される。
The object of the present invention is achieved by the following pattern forming method.

すなわち、少なくとも下地表面を雰囲気ガス不存在下電
子線を走査した後、単分子膜又は単分子累積膜を形成し
パターンを形成することを特徴とするパターン形成方法
によって達成される。
That is, this is achieved by a pattern forming method characterized by scanning at least the underlying surface with an electron beam in the absence of an atmospheric gas, and then forming a monomolecular film or a monomolecular cumulative film to form a pattern.

本発明では、下地表面を酸化性ガス雰囲気下で電子線を
走査させることにより改質する。ここで、下地とは、単
分子膜または単分子累積膜が所定のパターンに従って積
層される部材を指称する。そのような部材としては、例
えば、前述した各種の半導体デバイス等に用いられるガ
ラス、5i02等の無機物からなる基板、ポリエチレン
、ポリエチレンテレフタレート、ポリイミド等の有機物
からなる基板、AI、 Ta、 W、In、 Cu等の
金属やこれらの合金等からなる基板、これ等の基板上に
設けられた各種の層(所定のパターンに従って形成され
ている)、例えばA1. Ta、 W、In、 Cu等
の蒸着メタル膜、シリコン、ゲルマニウム等のアモルフ
ァス、多結晶あるいは単結晶半導体膜、5n02 、 
I To (In203+5n02)等の導電性酸化物
ガラスIII、等の分子性アモルファス半導体膜等が挙
げられる。また、このような基板、膜、あるいは膜が積
層されている基板上に、更に単分子膜又は単分子累積膜
等が積層されている部位等も利用し得るものとして挙げ
られる。
In the present invention, the underlying surface is modified by scanning an electron beam in an oxidizing gas atmosphere. Here, the base refers to a member on which a monomolecular film or a monomolecular cumulative film is laminated according to a predetermined pattern. Such members include, for example, glass used in the various semiconductor devices mentioned above, substrates made of inorganic substances such as 5i02, substrates made of organic substances such as polyethylene, polyethylene terephthalate, polyimide, etc., AI, Ta, W, In, Substrates made of metals such as Cu or alloys thereof, and various layers (formed according to predetermined patterns) provided on these substrates, for example A1. Vapor-deposited metal films such as Ta, W, In, and Cu, amorphous, polycrystalline, or single crystal semiconductor films such as silicon and germanium, 5n02,
Examples include conductive oxide glass III such as I To (In203+5n02), and molecular amorphous semiconductor films such as I To (In203+5n02). Further, such a substrate, a film, or a portion where a monomolecular film, a monomolecular cumulative film, or the like is further laminated on the substrate on which the film is laminated can also be used.

特に好ましくは、蒸着AI、 In膜、シリコンのアモ
ルファス、多結晶あるいは単結晶半導体膜、単分子膜又
は単分子累積膜等が積層されている下地などが挙げられ
る。
Particularly preferable examples include a base layer on which a vapor-deposited AI film, an In film, an amorphous silicon film, a polycrystalline or single crystal semiconductor film, a monomolecular film or a monomolecular cumulative film, etc. are laminated.

本発明に用いる電子線は集束して用、い、波長が短いの
で、数lθ〜数100Aの密度でパターン形成が可能で
ある。電子線による表面の改質を行なうためには、10
ジユール/ cm2〜5 X 10’ジユール/ c+
s2のエネルギーが必要である。
Since the electron beam used in the present invention is used in a focused manner and has a short wavelength, it is possible to form a pattern at a density of several lθ to several 100 A. In order to modify the surface with electron beam, 10
Joule/cm2~5 X 10' Joule/c+
Energy of s2 is required.

電子線による表面の改質は、例えば、以下のようにして
行われる。 5ffl、 Ge等の半導体の場合には酸
素を流しながら電子線で走査すると、表面が疎水性であ
ったのが親水性に変化したり、より疎水性がつよくなる
。また、蒸着AIMの場合には、酸素を流しながら電子
線で走査すると、酸化されてより親水性がつよくなる。
Surface modification by electron beams is performed, for example, as follows. In the case of semiconductors such as 5ffl and Ge, when scanning with an electron beam while flowing oxygen, the surface changes from hydrophobic to hydrophilic, or becomes even more hydrophobic. In addition, in the case of vapor-deposited AIM, if it is scanned with an electron beam while flowing oxygen, it will be oxidized and become more hydrophilic.

上記の様に下地表面を改質することによってパターニン
グを行い、形成されたパターンに従って単分子膜又は単
分子累積膜が下地上に形成される。
Patterning is performed by modifying the base surface as described above, and a monomolecular film or a monomolecular cumulative film is formed on the base according to the formed pattern.

単分子膜又は単分子累積膜が下地上に形成された後、超
音波振動を加えることは、分子間力が大きく膜が固体膜
に近いときあるいは膜が薄いときに特に有効である。す
なわち、超音波振動を加えることにより微細なパターニ
ングが可能となる。
Applying ultrasonic vibration after a monomolecular film or a monomolecular cumulative film is formed on a substrate is particularly effective when intermolecular forces are large and the film is close to a solid film or when the film is thin. That is, fine patterning becomes possible by applying ultrasonic vibration.

また、明瞭なパターンの形成が可能となる。超音波振動
を加えることは、エツチング工程を別に設けるよりも時
間の短縮も可能であるばかりではなく、エツチングが不
完全なことも生じない長所を有する。更に材料選択の範
囲もほとんど制限を受けない。
Further, it becomes possible to form a clear pattern. Applying ultrasonic vibrations has the advantage that it not only takes less time than providing a separate etching process, but also prevents incomplete etching. Furthermore, the range of material selection is hardly restricted.

なお、本発明における単分子膜又は単分子累積膜を構成
する分子は、その分子内に疎水性部分及び親木性部分を
有する分子であれば広く使用可能である。
In addition, the molecules constituting the monomolecular film or the monomolecular cumulative film in the present invention can be widely used as long as they have a hydrophobic part and a woody part within the molecule.

このような分子の疎水性部分の構成要素として最も代表
的なものはアルキル基であって、炭素数5〜30、好ま
しくは、炭素数lθ〜25の直鎖状あるいは分枝状のも
のが使用しうる。疎水性部分を構成する基としては、上
記アルキル基の他、例えばビニレン、ビニリデン、アセ
チレン等のオレフィン系炭化水素基、フェニル、ナフチ
ル、アントラニル等の如き縮合多環フェニル基、ビフェ
ニル、ターフェニル等の鎖状多環フェニル基等の疎水基
等が挙げられる。これらは各々単独であるいは組合され
て上記分子の疎水性部分を構成し、分子の末端や中間に
位置する。
The most typical component of the hydrophobic portion of such a molecule is an alkyl group, which is a linear or branched group having 5 to 30 carbon atoms, preferably 1θ to 25 carbon atoms. I can do it. In addition to the above-mentioned alkyl groups, examples of groups constituting the hydrophobic moiety include olefinic hydrocarbon groups such as vinylene, vinylidene, and acetylene, condensed polycyclic phenyl groups such as phenyl, naphthyl, and anthranyl, biphenyl, and terphenyl. Examples include hydrophobic groups such as a chain polycyclic phenyl group. Each of these, alone or in combination, constitutes the hydrophobic portion of the molecule and is located at the end or in the middle of the molecule.

一方、親木性部分の構成要素として最も代表的なものは
、例えばカルボキシル基及びその金属塩並びにアミン塩
、スルホン酸基及びその金属塩並びにアミン塩、スルホ
ンアミド基、アミド基、アミノ基、イミノ基、ヒドロキ
シル基、4級アミン基、オキシアミ7基、オキシイミノ
基、ジアゾニウム基、グアニジン基、ヒドラジン基、リ
ン酸基、ケイ酸基、アルミン酸基等が挙げられる。これ
らも各々単独であるいは組合されて上記分子の親水性部
分を構成し、分子の末端や中間に位置する。
On the other hand, the most typical constituent elements of the wood-philic moiety are, for example, carboxyl groups and their metal salts and amine salts, sulfonic acid groups and their metal salts and amine salts, sulfonamide groups, amide groups, amino groups, imino group, hydroxyl group, quaternary amine group, oxyamine group, oximino group, diazonium group, guanidine group, hydrazine group, phosphoric acid group, silicate group, aluminate group, and the like. These also constitute the hydrophilic portion of the above molecule either alone or in combination, and are located at the ends or in the middle of the molecule.

ここで、分子内に親水性部分及び疎水性部分を有すると
は、例えば分子が上記のような親木基及び疎水基の両者
を分子内に一つずつ有するか、又は分子内に一つ以上の
親水性基及び疎水基を有する場合には、分子全体の構成
においである部分が他の部分との関係において親木性で
あり、一方後者の部分は前者の部分との関係において疎
水性の関係を有することをいう。
Here, having a hydrophilic part and a hydrophobic part in a molecule means, for example, that a molecule has both one parent group and one hydrophobic group as described above in the molecule, or one or more in the molecule. When it has a hydrophilic group and a hydrophobic group, in the overall structure of the molecule, one part is hydrophilic in relation to other parts, while the latter part is hydrophobic in relation to the former part. It means having a relationship.

本発明における単分子膜又は単分子累積膜を構成する分
子としては、下記の如き機能性を有することが所望され
る。
The molecules constituting the monomolecular film or monomolecular cumulative film in the present invention are desired to have the following functionality.

■所望の機能性を荷う部位、即ち機能性部分(例えばπ
電子系)が同時に強い親水性(又は強い疎水性)として
の性質を併有する分子、あるいは■機能性部分が特に親
水性、疎水性を有さず、上記の如き親木基、疎水基等を
導入することで、分子内に親水性部分と疎水性部位を構
成する分子、例えば、 イ0機能性部分が親水性部分の側にあるもの、例えば、
光導電性を有する長鎖アルキル置換のメロシアニン色素
等、 口1機能性部分が疎水性部分の側にあるもの、例えば、
ピレンに長鎖アルキルカルボン酸を結合したもの等、 ハ9機能性部分が中央付近、即ち疎水性部分と親木性部
分の中間にあるもの、例えば、アントラセン誘導体、ジ
アゾ色素の誘導体等、二8機能性部分がなく、疎水性部
分と親木性部分のみでできているもの、例えば、長鎖飽
和脂肪酸であるステアリン酸、アラキシン酸等が具体的
なものとして挙げられる。
■ Parts that carry the desired functionality, i.e., functional parts (for example, π
Molecules that have strong hydrophilicity (or strong hydrophobicity) at the same time (electronic system), or molecules in which the functional moiety does not have particular hydrophilicity or hydrophobicity and do not contain the above-mentioned parent groups, hydrophobic groups, etc. By introducing molecules that have a hydrophilic part and a hydrophobic part in the molecule, for example, those in which the functional part is on the side of the hydrophilic part, for example,
Those in which the functional part is on the side of the hydrophobic part, such as long-chain alkyl-substituted merocyanine dyes with photoconductivity, for example,
Products in which a long-chain alkyl carboxylic acid is bonded to pyrene, etc. (iii) Products in which the functional part is near the center, that is, between the hydrophobic part and the lignophilic part, such as anthracene derivatives, diazo dye derivatives, etc. Specific examples include those that have no functional part and are made only of hydrophobic parts and woody parts, such as long-chain saturated fatty acids such as stearic acid and alaxic acid.

特に好ましくは、長鎖アルキル置換のメロシアニン色素
、アントラセン誘導体、アラキシン酸などが挙げられる
Particularly preferred are long-chain alkyl-substituted merocyanine dyes, anthracene derivatives, alaxic acid, and the like.

本発明を更に具体的に祝用するために、以下に実施例を
示す。
In order to more specifically demonstrate the present invention, examples are shown below.

実施例1 第1図に示す方法にてパターンを形成した。Example 1 A pattern was formed by the method shown in FIG.

5i(100)基板1−1を下地とした。下地表面を電
子ビーム照射装置に装填し、1 x 1G4Torrに
した後、酸素を下地表面部分に流入させ、表面で4 x
 1O−3Torrの圧力に保ぢながら、l0KV、0
.IA、ビーム径5鱗の電子ビームで走査して下地表面
を約100A酸化し、最小 5μ巾のストライプパター
ンを形成した。
A 5i (100) substrate 1-1 was used as the base. After loading the base surface into an electron beam irradiation device and setting it to 1
While maintaining the pressure at 1O-3Torr, 10KV, 0
.. The substrate surface was oxidized by approximately 100A by scanning with an electron beam having a beam diameter of 5 scales to form a stripe pattern with a minimum width of 5μ.

次に、LB法でアラキシン酸の単分子累積膜を形成した
。最初に下地を水中に浸めておき、アラキシン酸の単分
子膜を展開した後、表面圧40 dyne/cm、引き
上げ速度2 cm/sinにて5層積層した0次に出力
100Wの超音波発生装置を用いて水中で超音波振動を
加えると約5分で1−3の部分の7ラキジン酸の単分子
累積膜は剥離して、1−2の部分のみにパターンに従っ
て形成された。
Next, a monomolecular cumulative film of araxic acid was formed by the LB method. First, the base was soaked in water, and after developing a monomolecular film of alexic acid, 5 layers were laminated at a surface pressure of 40 dyne/cm and a pulling speed of 2 cm/sin, and ultrasonic waves with an output of 100 W were generated at the 0th order. When ultrasonic vibration was applied in water using a device, the monomolecular cumulative film of 7-rachidic acid in the portion 1-3 was peeled off in about 5 minutes, and a pattern was formed only in the portion 1-2.

以上のように、下地を酸化性ガス雰囲気下で電子線走査
により改質することにより、下地表面にパターン状に単
分子膜又は単分子累積膜を形成することが可能である。
As described above, by modifying the base by electron beam scanning in an oxidizing gas atmosphere, it is possible to form a monomolecular film or a monomolecular cumulative film in a pattern on the base surface.

電子線を集光することにより微細なパターン形成が可能
である。従ってSi集積回路への応用も可能である。ま
た、電子線の強さを変化させ、下地表面への単分子膜又
は単分子累積膜の付着力を変えたり、同時に単分子膜又
は単分子累積膜の構成分子として親木部分、疎水部分の
強さの異なる分子を用いることによって、植種の分子に
よる二次元配置も可能である。また、これらの組合わせ
により複雑な三次元構造のデバイスの製造も可能である
Fine patterns can be formed by focusing electron beams. Therefore, application to Si integrated circuits is also possible. In addition, by changing the intensity of the electron beam, the adhesion force of the monomolecular film or monomolecular cumulative film to the underlying surface can be changed, and at the same time, the parent part and the hydrophobic part can be used as constituent molecules of the monomolecular film or monomolecular cumulative film. By using molecules with different strengths, two-dimensional arrangement of inoculum molecules is also possible. Moreover, by combining these, it is also possible to manufacture devices with complicated three-dimensional structures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のパターン形成方法の実施態様を示す
。 1−1・・・5i(100)基板 1−2・・・下地改質部分 1−3・・・下地非改質部分
FIG. 1 shows an embodiment of the pattern forming method of the present invention. 1-1...5i (100) Substrate 1-2... Base modified part 1-3... Base unmodified part

Claims (1)

【特許請求の範囲】[Claims] 少なくとも下地表面を酸化性ガス雰囲気下で電子線を走
査し、単分子膜又は単分子累積膜のパターンを形成後、
超音波振動を加えることを特徴とするパターン形成方法
After scanning at least the base surface with an electron beam in an oxidizing gas atmosphere to form a pattern of a monomolecular film or a monomolecular cumulative film,
A pattern forming method characterized by applying ultrasonic vibration.
JP59067574A 1984-04-06 1984-04-06 Forming method of pattern Pending JPS60211917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59067574A JPS60211917A (en) 1984-04-06 1984-04-06 Forming method of pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59067574A JPS60211917A (en) 1984-04-06 1984-04-06 Forming method of pattern

Publications (1)

Publication Number Publication Date
JPS60211917A true JPS60211917A (en) 1985-10-24

Family

ID=13348847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59067574A Pending JPS60211917A (en) 1984-04-06 1984-04-06 Forming method of pattern

Country Status (1)

Country Link
JP (1) JPS60211917A (en)

Similar Documents

Publication Publication Date Title
JPH0434818B2 (en)
US7875197B2 (en) Methods of etching articles via microcontact printing
US6517995B1 (en) Fabrication of finely featured devices by liquid embossing
US6180239B1 (en) Microcontact printing on surfaces and derivative articles
US20150309073A1 (en) Multifunctional graphene coated scanning tips
WO1996029629A9 (en) Microcontact printing on surfaces and derivative articles
EP0812434A2 (en) Microcontact printing on surfaces and derivative articles
JPS60211917A (en) Forming method of pattern
JPS60211915A (en) Forming method of pattern
JPS60211826A (en) Pattern forming means
JPS60211830A (en) Forming method for pattern
JPS60211922A (en) Forming method of pattern
JPS60211930A (en) Method for formation of pattern
JPS60211924A (en) Method for formation of pattern
JPS60211921A (en) Forming method of pattern
JPS60211916A (en) Forming method of pattern
JPS60211920A (en) Forming method of pattern
JPS60211923A (en) Method for formation of pattern
JPS60211927A (en) Method for formation of pattern
JPS60211835A (en) Forming method for pattern
JPS60211836A (en) Forming method for pattern
JPS60211827A (en) Pattern forming means
JPS60211931A (en) Method for formation of pattern
JPS60211832A (en) Forming method for pattern
JPS60211932A (en) Method for formation of pattern