[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60207067A - Gas insulating three-phase current transformer - Google Patents

Gas insulating three-phase current transformer

Info

Publication number
JPS60207067A
JPS60207067A JP59062191A JP6219184A JPS60207067A JP S60207067 A JPS60207067 A JP S60207067A JP 59062191 A JP59062191 A JP 59062191A JP 6219184 A JP6219184 A JP 6219184A JP S60207067 A JPS60207067 A JP S60207067A
Authority
JP
Japan
Prior art keywords
magnetic field
optical
light
field sensor
current transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59062191A
Other languages
Japanese (ja)
Inventor
Satoshi Ooyama
大山 敏
Shoji Harada
昌治 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59062191A priority Critical patent/JPS60207067A/en
Publication of JPS60207067A publication Critical patent/JPS60207067A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Transformers For Measuring Instruments (AREA)

Abstract

PURPOSE:To make it possible to exclude the influence of the magnetic field of other phase by detecting only the intensity of a magnetic field of each phase itself, by using a magneto-optical element generating a Faraday rotary angle by the intensity of the magnetic field present only in a light passing direction. CONSTITUTION:One continuous optical magnetic field sensor 18 formed into a yarn like form lead glass having flexibility is wound around the periphery of each of conductors 2u-2w at least once and this lead glass generates a Faraday rotary angle by the intensity of a magnetic field present only in the optical axis direction of a light path. A hermetically sealed terminal 7 is provided to a position in close vicinity to the optical magnetic field sensor 18 of each phase on a tank 1. When light is sent from a light emitter LED through this hermetically sealed terminal 7, light is incident to a Faraday element through a polarizer and an 1/4 wavelength plate and converted to oval polarized light corresponding to the magnitude of the magnetic field. Then, this light is returned to the hermetically sealed terminal 7 through a light detector and received by a light receiver PD while a signal proportional to the magnitude of the magnetic field is outputted from an operator OP.

Description

【発明の詳細な説明】 [発明の技術分野1 本発明は、3相一括型のガス絶縁開閉装置に用いられる
変流器に関づるものであり、特に磁気光学効果を持つ光
磁界レン4)によって構成した変流器に係る。
[Detailed Description of the Invention] [Technical Field of the Invention 1] The present invention relates to a current transformer used in a three-phase integrated type gas-insulated switchgear, and in particular relates to a current transformer used in a three-phase integrated type gas-insulated switchgear, and in particular to a magneto-optic field transformer having a magneto-optical effect. This relates to a current transformer constructed by

[発明の技術的背景] 従来、3相一括型のガス絶縁間閉装胃に用いられるガス
絶縁3相変流器は、グイ素鋼板にコイルを巻きイ1りて
なる鉄心タイプの変流器=Iアにより構成されていた。
[Technical Background of the Invention] Conventionally, a gas-insulated three-phase current transformer used in a three-phase all-in-one type gas-insulated closed stomach is an iron-core type current transformer made by winding a coil around a steel plate. = It was composed of Ia.

 ゛ この様な従来のガス絶縁3相変流器の一例を第1図に暴
いて説明する。円筒形のタンク1内にはU、\/、W相
の3相の導体2(」〜2wが配設されている。タンク1
の前後には絶縁スベーリ3が設【プられ、これにJ:っ
′C導体2(」〜2wが支持されている。タンク1は、
その軸に垂直に前後に分割され、前方にあって本来の径
を有するタンク1aと、後方にあって変流器コア4の寸
法分だけ径が大きくされたタンク1bとから構成されて
いる。
An example of such a conventional gas-insulated three-phase current transformer will be illustrated and explained in FIG. Inside the cylindrical tank 1, three-phase conductors 2 (''~2w) of U, \/, and W phases are arranged.Tank 1
An insulating slide 3 is installed before and after the tank 1, and a J:'C conductor 2(''~2w) is supported on this.
It is divided into front and rear parts perpendicular to its axis, and consists of a tank 1a located at the front having the original diameter, and a tank 1b located at the rear having a diameter increased by the dimension of the current transformer core 4.

このタンク1bの内側端部の導体2u−2wの延長上に
夫々変流器コアが殺菌されている。そして、この変流器
コア4の前方〈即ち、後方のタンク1bの端部)には支
持板5が設番プられ、変流器コア4の内側に(よこれど
連結して絶縁シールド6が設(プIうれ、これらにより
、変流器コア4の支持、及ヒ導体2(」〜2Wとの絶縁
がなされている。更に、タンク1の下部には、変流器コ
ア4の電流を引き出す為の密封端子7が設けられている
A current transformer core is sterilized on each of the extensions of the conductors 2u-2w at the inner end of the tank 1b. A support plate 5 is installed in front of the current transformer core 4 (that is, at the end of the rear tank 1b), and is connected to the inside of the current transformer core 4 (which is connected to an insulating shield 6). These support the current transformer core 4 and insulate it from the conductor 2 (~2W).Furthermore, at the bottom of the tank 1, there is a A sealed terminal 7 for drawing out is provided.

ところで、この様なガス絶縁3相変流器においては、3
箇所に設りる変流器コアが重い為、これを支える支持板
、絶縁シールド等もかなりの大きさとなり、これらを3
箇所に設置]る為に機器が複雑・大型化し、mmも大き
くなってしなう。また、変流器コアは1コアで1用途に
しか使用できない為、継電器用やバ1測用などに複数の
コアが必要となり、これも大型化の原因となり、ロスト
的にも高価となってしまう。
By the way, in such a gas-insulated three-phase current transformer, three
Because the current transformer core installed at the location is heavy, the support plate, insulation shield, etc. that support it are also quite large, and these are
Because the equipment is installed in different locations, the equipment becomes more complex and larger, and the mm also becomes larger. In addition, since one current transformer core can only be used for one purpose, multiple cores are required for relays, bar measurement, etc., which also causes larger size and is expensive in terms of loss. Put it away.

これらの欠点に鑑み、最近では、細径性、絶縁性、無誘
導性、耐環境性等の優れた特徴を有づ゛る光ファイバー
を用いた計測技術が注目され、これを応用した光磁界セ
ンナにより変流器を構成する試みがなされている。
In view of these shortcomings, recently, measurement technology using optical fibers, which have excellent characteristics such as small diameter, insulation, non-induction, and environmental resistance, has been attracting attention, and optical magnetic field sensors that apply this are attracting attention. Attempts have been made to construct a current transformer.

第2図に従って、この様な光磁界センサを用いたカス絶
縁3相変流器の一例を説明りる。
An example of a cass-insulated three-phase current transformer using such an optical magnetic field sensor will be explained with reference to FIG.

タンク1内に配設された3相の導体2 u−2Wには、
その高電界側に光磁界センソ8が設【ノられ、この延長
十のタンク1外側には、蜜月CHI了7が設()られて
いる。光磁界セン98は、Z n S e等のファラデ
ー素子を主体として偏光子、−1//I波長板、検光子
等から構成され、密11端子7(よ光送信器と、光受信
器及び演粋子からなる検出装置に接続されるものである
The three-phase conductor 2 u-2W installed in the tank 1 has
An optical magnetic field sensor 8 is installed on the high electric field side, and a honeymoon CHI sensor 7 is installed outside the extended tank 1. The optical magnetic field sensor 98 is mainly composed of a Faraday element such as ZnSe, a polarizer, a -1//I wavelength plate, an analyzer, etc. It is connected to a detection device consisting of an element.

このガス絶縁3相変流器の作用(1次の通りである。即
ち、密封端子7を介して光送信器から光磁界Uンリ8に
光が送られると、この光(jまづ”偏光子を通り、ラン
ダム偏光から直線偏光になり、1/4波長板で位相変調
を受1]で円偏光となる。そして、ファラデー素子を通
過づる際に14&界の大きさに応じた楕円偏光となって
、検光子で強度変調されて再び密封端子7に戻り、これ
に接続された検出装置に送られ光受信器ににっで光パワ
ーとして取り出して、演算処理によって磁界の大きさに
比例した出力が取り出される。
The action of this gas-insulated three-phase current transformer is as follows: In other words, when light is sent from the optical transmitter to the optical magnetic field unit 8 via the sealed terminal 7, this light After passing through the Faraday element, the random polarized light becomes linearly polarized light, which undergoes phase modulation with a quarter-wave plate and becomes circularly polarized light.Then, as it passes through the Faraday element, it becomes elliptically polarized light according to the size of the field. The intensity is modulated by the analyzer, returns to the sealed terminal 7, is sent to the detection device connected to this, is sent to the optical receiver, and is extracted as optical power, which is proportional to the magnitude of the magnetic field through arithmetic processing. Output is retrieved.

光磁界セン1J゛は絶縁性に優れる為、]2記の如く導
体2u〜2Wの近傍に配Vjtでさ、また密封端子7も
小型化できる。その結果、ガス絶縁3相変流器は大幅に
縮小、4IyfJi化される。特に具体的に数値を示じ
ば、長さについては20%程度、直径については60%
程亀に縮小された実例がある。また、光限界セン4ノは
、信号の冬用化か自由である為、従来の様に、使用用途
別に複数のコアを設【プるものと違い、1つのセンソを
設りるだりで、これを多用途に使用ηきる。従って、こ
の点においで、変流器をより小型化・簡略化づることか
可能であり、ロスト的にも安価である。
Since the optical magnetic field sensor 1J' has excellent insulation properties, it is possible to arrange Vjt near the conductors 2u to 2W as shown in [2], and the sealed terminal 7 can also be miniaturized. As a result, the gas-insulated three-phase current transformer is significantly reduced to 4IyfJi. Specifically, the length is about 20% and the diameter is about 60%.
There is an example of a scaled-down version in Hodokame. In addition, since the optical limit sensor 4 is free to use winter signals, it is possible to install only one sensor, unlike the conventional one, which has multiple cores for each purpose. This can be used for many purposes. Therefore, in this respect, it is possible to further downsize and simplify the current transformer, and it is also inexpensive in terms of lost costs.

[青用技術の問題点] ところで、この様なガス絶縁3相変流器においては、t
qられだ)1界のテ゛−タから、導体の電流を演算によ
ってめている。この演算(よ周囲の磁界と中心電流との
関係式であるアンペア(Ampere)の周回路の法則
による公式 %式% く磁界をト1.712流1.積分路の微小長さく」S)
に基いて行われる。
[Problems with blue technology] By the way, in such a gas-insulated three-phase current transformer, t
The current in the conductor is calculated from the data in the first field. This calculation (formula based on Ampere's circuit law, which is the relation between the surrounding magnetic field and the center current)
It is carried out based on.

しかしながら、この様な光磁界レンυを用いたガス絶縁
3相変流器においては、3引導体が近接して配列されて
いる為に、他相磁界の影響が大きくなり、充分な精度が
得られないと考えられる。
However, in a gas-insulated three-phase current transformer using such an optical magnetic field lens υ, since the three conductors are arranged close to each other, the influence of other phase magnetic fields increases, making it difficult to obtain sufficient accuracy. It is thought that it will not be possible.

以下この点について、第3図及び本発明に先行する技術
として記載した第4図に従って説明ηる。
This point will be explained below with reference to FIG. 3 and FIG. 4, which is described as a technique prior to the present invention.

即ち、第3図において、U相の導体2uの電流を考える
と、図中の磁力線Φが、V相W相の導体2■、2Wを横
切る為、■相、W相の導体近傍においては各相の導体自
身の電流にJ、−)て生ヂる磁界に、このU相の導体2
uの電流による磁界が合成される。このことは■相、W
相の導体2v、2Wの電流を考えた場合にも同様であり
、各導体近傍の磁界は、複雑な様相を呈している。従っ
て、導体近傍に、当該導体の電流と位相を4測づる光磁
界センサを設りる際には、他相磁界の影響を排除しなり
れば、81測データの精度は大幅に低下してしまう。
That is, in Fig. 3, considering the current in the U-phase conductor 2u, the magnetic field line Φ in the figure crosses the V-phase and W-phase conductors 2■ and 2W, so in the vicinity of the conductors of the This U-phase conductor 2 is affected by the magnetic field generated by the current of the phase conductor itself.
The magnetic field due to the current of u is synthesized. This means ■ phase, W
The same is true when considering the currents of 2V and 2W in the phase conductors, and the magnetic field near each conductor has a complicated aspect. Therefore, when installing an optical magnetic field sensor near a conductor that measures the current and phase of the conductor, the accuracy of the 81 measurement data will be significantly reduced unless the influence of other phase magnetic fields is eliminated. Put it away.

しかしながら、この様なガス絶縁3相変流器にa3いて
は、この様な他相磁界の影響をJJI除できず、しかも
第4図に示す如く、導体表面に複数の光磁界センサ8を
光ファイバー9で連結して円周状に配置する構成である
為1点在的なデータのみでデータの無いレンリ聞を補充
して、全県路弁の磁界強度を演算することになる。即ち
、全県路弁の磁界強度が検出できない為、前述のアンペ
アの周回路の法則による公式が成立せず、電流をめた際
には大きな誤差がにJ−じてしまう恐れがある。
However, in such a gas-insulated three-phase current transformer, it is not possible to eliminate the influence of such other-phase magnetic fields, and as shown in FIG. Since the configuration is such that they are connected by 9 and arranged in a circumferential manner, the magnetic field strength of all prefectural road valves is calculated by supplementing the gaps where there is no data with only one scattered data. That is, since the magnetic field strength of all prefectural road valves cannot be detected, the above-mentioned formula based on Ampere's circuit law does not hold, and there is a risk that a large error may occur when current is applied.

従って、この様なガス絶縁3相変流器においで、一般に
4測用に用いられる1級乃至3級クラスの高精度の変流
器を得ることは困難であると考えられる。
Therefore, it is thought that it is difficult to obtain a high-precision current transformer of the 1st to 3rd class, which is generally used for 4-meter measurements, among such gas-insulated three-phase current transformers.

[発明の目的] 本発明は上述の点に鑑みなされたものであり、その目的
は、光磁界レンジの構成に改良を施すことにより、各相
の光磁界レンジに対する他相の磁界の影響を排除し、1
つ全沿路分の磁界強度の検出を可能とすることにより、
アンペアの周回路の公式を成立させ、精度の高いガス絶
縁3相変流器を提供することである。
[Object of the Invention] The present invention has been made in view of the above points, and its purpose is to eliminate the influence of the magnetic fields of other phases on the optical magnetic field range of each phase by improving the configuration of the optical magnetic field range. 1
By making it possible to detect the magnetic field strength along the entire road,
The purpose is to establish a formula for the ampere circuit and provide a highly accurate gas-insulated three-phase current transformer.

[発明の概要] 本発明によるガス絶縁3相変流器は、光路の光軸方向に
のみ(即ち光の通過方向にのみ)存在する磁界強度によ
りファラデー回転角を牛しる磁気光学素子にて光磁界セ
ン11を構成し、この光磁界はンリを導体を周回する1
個の)弔続した構成どすることにJ:す、各相自身の磁
界強度のみを検出して他相の磁界の影響を排除し、目つ
仝磁路分の磁界強度の検出を可能どしたものである。。
[Summary of the Invention] The gas-insulated three-phase current transformer according to the present invention uses a magneto-optical element that controls the Faraday rotation angle by the strength of a magnetic field that exists only in the optical axis direction of the optical path (that is, only in the direction in which the light passes). This opto-magnetic field constitutes an opto-magnetic field sensor 11, and this opto-magnetic field is
J: What is the best way to create a continuous configuration in which each phase detects only its own magnetic field strength, eliminates the influence of the magnetic fields of other phases, and makes it possible to detect the magnetic field strength of a separate magnetic path? This is what I did. .

[発明の実施例] 以上説明した様な本発明によるガス絶縁3相変流器の実
施例を第5図及び第6図を用いて具体的に説明する1、
なお、従来技術と同一部分については同一符号をイ」シ
、説明を省略する。
[Embodiments of the Invention] Examples of the gas-insulated three-phase current transformer according to the present invention as explained above will be specifically explained using FIGS. 5 and 6.
Note that the same parts as those in the prior art are designated by the same reference numerals, and the description thereof will be omitted.

第5図に示すものは本発明によるガス絶縁3相変流器の
第1実施例である。第5図にa3いて、導体2u〜2W
の周囲には可撓性のある鉛ガラスにより糸状に形成され
!ζ′1つの連続した光磁界Lンナ18が少なくとも1
周巻き付番プられている。この鉛ガラスは、光路の光軸
方向にのみ存在する磁界強度によりファラデー回転角を
生じる磁気光学素子である。〜方、タンク1上には、各
相の光磁界センサ18に近接する位冒に密」4端子7が
設(プられ、更にタンク1外部には光送信器L E D
、光受信器P D ’を演Q了OPから成る検出装置1
0が設りられ、順次光ファイバー9で接続されている。
What is shown in FIG. 5 is a first embodiment of a gas-insulated three-phase current transformer according to the present invention. A3 in Figure 5, conductors 2u to 2W
The surrounding area is made of flexible lead glass shaped like a thread! ζ' One continuous optical magnetic field Lnner 18 is at least 1
It is numbered around the circumference. This lead glass is a magneto-optical element that generates a Faraday rotation angle due to the strength of the magnetic field that exists only in the optical axis direction of the optical path. On the other hand, four terminals 7 are installed on the tank 1 in close proximity to the optical magnetic field sensors 18 of each phase, and an optical transmitter L E D is installed on the outside of the tank 1.
, a detection device 1 consisting of an optical receiver P D '
0 are provided and are sequentially connected by optical fibers 9.

以上の構成を有する本実施例の作゛用は次の通りである
The operation of this embodiment having the above configuration is as follows.

まず、光磁界はンリ18が導体2 LJ〜2■の周囲に
巻き付けられ、全沿路分をカバーしている為に、全県路
弁の磁界強度検出ができる。特に本実施例では、光磁界
レンジ18が可撓性を有する鉛ガラスで糸状に形成され
、これを導体2U〜2■に巻き付ける構成の為、組立作
業も容易であり、また、変流器にJ3いC各相の導体に
複数個設けられていた光磁界センサが、一つにまとめら
れたことにより、レンジど光)7フイバーとの接続箇所
や部品点数が削減される利点がある。
First, since the optical magnetic field is wrapped around the conductors 2LJ to 2■ and covers the entire roadside area, the magnetic field strength of all prefectural road valves can be detected. In particular, in this embodiment, the optical magnetic field range 18 is made of flexible lead glass in the form of a thread and is wound around the conductors 2U to 2■, so assembly work is easy and the current transformer is By combining the plurality of optical magnetic field sensors provided on the conductors of each phase of J3 and C into one, there is an advantage that the number of parts and the number of connection points with the microwave (optical)7 fibers can be reduced.

更に、光磁界しンリ18を導体2u〜2vの周囲に巻き
付けた為、その光路の光軸方向は、各相自身の磁界方向
である導体周回方向と一致づ゛る為、前述の如き鉛ガラ
スの特性により、光磁界センサ18は、他相の磁界強度
の影響な(、各相の磁界強度のみを検出できる。
Furthermore, since the optical magnetic field thin film 18 is wrapped around the conductors 2u to 2v, the optical axis direction of the optical path coincides with the direction of conductor circumference, which is the magnetic field direction of each phase itself. Due to the characteristics, the optical magnetic field sensor 18 can detect only the magnetic field strength of each phase without the influence of the magnetic field strength of other phases.

従って、本実施例のガス絶縁3相変流器では、各相自身
の全磁路分の磁界強度を正確に検出できる為、アンペア
の周回路の法則による公式1式% が成立し、この構成による周回積分が可能となる為、1
級乃至3級クラスの高い精度を得られる。
Therefore, in the gas-insulated three-phase current transformer of this example, since the magnetic field strength for the entire magnetic path of each phase itself can be accurately detected, the formula 1 according to Ampere's circuit law holds true, and this configuration Since it is possible to perform circular integration by 1
High accuracy of class 3 to class 3 can be obtained.

次に、第6図に本発明によるガス絶縁3相変流器の第2
実施例を示す。
Next, FIG. 6 shows the second part of the gas-insulated three-phase current transformer according to the present invention.
An example is shown.

本実施例では、前記実施例と同じ鉛ガラスで光磁界セン
サ゛28を構成しているが、その断面形状はこれを略正
方形として、その中央の内聞口部で導体2 ’Lj〜2
■の外側に挿入され、導体2u〜2′ Wに取付番)ら
れている。また、光磁界センサ28とタンク1との間に
光ファイバー9は設けられず、光は直接空間伝送される
様になっている。
In this embodiment, the optical magnetic field sensor 28 is made of the same lead glass as in the previous embodiment, but its cross-sectional shape is approximately square, and the conductor 2'Lj~2
(1) and is attached to the conductors 2u to 2'W (attachment number). Further, the optical fiber 9 is not provided between the optical magnetic field sensor 28 and the tank 1, and light is directly transmitted through space.

本実施例の構成は3相共に同一であるので、以下、本実
施例の構成を第7図を用いてU相のみ説明する。
Since the configuration of this embodiment is the same for all three phases, only the U phase will be described below with reference to FIG. 7.

導体2uにMSttノられた断面略正方形の光磁界セン
サ28は、4方の平面11a〜11d及びコーt一部1
2.a〜12dより形成されている。4方のコーナ一部
12a〜12dのうち、3方のコーナ一部12b〜12
(jには、夫々のコーナ一部を形成する二平面に対し4
5度の角度をなす全反射面が形成されている。全反射面
とならないコーナ一部12aを構成する一方の平面11
dには、2つの45度反射面を対向させた逆反射用のコ
ーナーキューブ13が設けられており、他方の平面11
aは、タンク1に対向して、光の出入面14を構成して
いる。そして、タンク1上において、この出入面14に
対向リ−る位置には、密封端子7の代りに直接光送信器
LED等から成る検出装置10が設置)られ、光路の光
軸と前述の光磁界センサの光の出入面14とは、光路の
光軸と直交する様に配置されている。
The optical magnetic field sensor 28, which has a substantially square cross section and is connected to the conductor 2u, has four planes 11a to 11d and a portion of the coat 1.
2. It is formed from a to 12d. Among the four corner parts 12a to 12d, three corner parts 12b to 12
(j has 4 planes for the two planes forming part of each corner.
A total reflection surface forming an angle of 5 degrees is formed. One plane 11 constituting the corner part 12a that does not become a total reflection surface
d is provided with a corner cube 13 for retro-reflection with two 45-degree reflective surfaces facing each other, and the other flat surface 11
A faces the tank 1 and forms a light entrance/exit surface 14 . Then, on the tank 1, a detection device 10 consisting of a direct optical transmitter LED, etc. is installed in place of the sealed terminal 7 at a position opposite to this entrance/exit surface 14, and the optical axis of the optical path and the aforementioned The light entrance/exit surface 14 of the magnetic field sensor is arranged perpendicular to the optical axis of the optical path.

なお、本実施例にJ3いては、偏光子及び検光子は夫々
光送信器LED及び検出装置10側に設番プられている
In addition, in this embodiment, in J3, the polarizer and analyzer are installed on the optical transmitter LED and the detection device 10 side, respectively.

以上の構成を右づる本実施例の作用は次の通りである。The operation of this embodiment based on the above configuration is as follows.

まず、光送信器LEDから偏光子を介して送られた直線
偏光は、光磁界セン1ノ28のコーナ一部12aから光
の出入面14に垂直に入用し、平面11bに沿って直進
し、次のコーナ一部12bにおいて直角方向に全反射し
て、今度はt17面11cに沿って直進する。同様にし
てコーナ一部に12G、12dを経由して平面11aに
沿ってコーナー128に大剣し、回部に設【ノられたL
l−ナーキューブ13により逆反射して、再び前とは逆
に]−す一部を12d、12c、12bの順で進んでコ
ーナ一部12aの平面11aより再び空間伝送され、検
出装M10の光受信器PDに到達づる。
First, the linearly polarized light sent from the optical transmitter LED via the polarizer enters from the corner part 12a of the optical magnetic field sensor 1 28 perpendicularly to the light entrance/exit surface 14, and travels straight along the plane 11b. , is totally reflected in the right angle direction at the next corner portion 12b, and then travels straight along the t17 plane 11c. In the same way, a large sword is attached to the corner 128 along the plane 11a via 12G and 12d to a part of the corner.
It is retro-reflected by the corner cube 13 and travels through the corner section 12d, 12c, and 12b in the order of 12d, 12c, and 12b, and is spatially transmitted again from the plane 11a of the corner section 12a, and is transmitted to the detector M10. It reaches the optical receiver PD.

従って、本実施例によっても、光磁界はンサ28が導体
2u周囲をカバーし、光が導体の周囲を周回する為、前
実施例と同様周回積分がj」能である。
Therefore, in this embodiment as well, the optical magnetic field is covered by the sensor 28 around the conductor 2u, and the light circulates around the conductor, so that the orbital integral can be calculated as in the previous embodiment.

特に本実施例では、光磁界センサ28の断面形状を略正
方形とづることにより、空間伝送を可能とした為、絶縁
耐力が増大する長所がある。
In particular, in this embodiment, the cross-sectional shape of the optical magnetic field sensor 28 is approximately square, thereby enabling spatial transmission, which has the advantage of increasing dielectric strength.

なお、本実施例において、各コーナ一点での全反射によ
る複屈折は、光を往復させることで補償される為、副側
精度上問題はない。
In this embodiment, birefringence due to total reflection at one point at each corner is compensated for by reciprocating the light, so there is no problem in terms of secondary accuracy.

以上の様に本発明は、各相の導体の全周囲に光磁界セン
サを周回させて周回積分を可能としたもので、その構成
は、図示の実施例に限定されるものではない。例えば、
第1実施例において、光磁界セン1ノの周回数は1回以
上なダ何回巻き付けても良く、巻付は回数に拘わらず同
様の効果が得られる。また、第1実施例においては、タ
ンク外部に検出装置を設り、密封端子を貫通プる光ファ
イバーで検出装置と光磁界ヒレ1ノを接続したが、これ
に限らず、例えば、タンクに直接検出装置を取り付けて
両者を光ファイバーで接続しても良い。
As described above, in the present invention, the optical magnetic field sensor is circulated around the entire circumference of the conductor of each phase to enable circular integration, and the configuration is not limited to the illustrated embodiment. for example,
In the first embodiment, the number of turns of the optical magnetic field sensor 1 may be one or more, and the same effect can be obtained regardless of the number of turns. In addition, in the first embodiment, the detection device was installed outside the tank, and the detection device and the optical magnetic field fin 1 were connected using an optical fiber that penetrated the sealed terminal. The device may be attached and the two may be connected using optical fiber.

[発明の効果] 以」−説明した様に本発明によれば、導体の周囲に配設
する磁気光学素子を採用し、これを1個の連続した構成
として導体全周囲に配設置”るという簡単な構成により
、他相の磁界の影響を排除し、且つ全磁路弁の磁界強度
が検出可能である為、磁界強度と電流の関係式にお(プ
る誤差が大幅に縮小され、高精度のガス絶縁−3相変流
器を提供できる。
[Effects of the Invention] As explained above, according to the present invention, a magneto-optical element is adopted to be arranged around a conductor, and the magneto-optical element is arranged around the entire circumference of the conductor as one continuous structure. With a simple configuration, the influence of magnetic fields of other phases can be eliminated, and the magnetic field strength of the full magnetic path valve can be detected. We can provide precision gas-insulated three-phase current transformers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は、夫々従来のガス絶縁3相変流器を
示す図で、第1図(Δ)(B)は夫々変流器コアを用い
たガス絶縁3相変流器を示J正面図と側断面図、第2図
<A)(B)は人々光磁界センサを用いたガス絶R3相
変流器を示寸正面図と側断面図、第3図は他相の磁界の
影響を示1断面図、第4図は本発明に先行する技術であ
る光磁界センソ〜を用いたガス絶縁3相変流器をJ、り
具体的に示す断面図である。第5図乃至第7図は本発明
によるガス絶縁3相変流器の実施例を承り図で、第5図
及び第6図は夫々第1実茄例と第2実施例を示す断面図
、第7図は第2実施例の部分拡大断面図である。 1.1a、1b−・・タンク、2 u 〜2 W−>5
体、3・・・絶縁スペーリ、4・・・変流器コア、5・
・・支持板、6・・・絶縁シールド、7・・・密封端子
、8,18.28・・・光磁界センサ、9・・・光ファ
イバー、10・・・検出装置、11 a 〜11 d−
・・平面、12a〜12d・・・コーナ一部、13・・
・コーナーキューブ、14゜15・・・光の出入面、L
ED・・・光送信器、PD・・・光受信器、OP・・・
演粋子。 第1図 (A) (B) 第2図 (A) CB)
Figures 1 to 4 are diagrams showing conventional gas-insulated three-phase current transformers, respectively, and Figures 1 (Δ) and (B) respectively show gas-insulated three-phase current transformers using current transformer cores. Figures 2A and 2B show a front view and side sectional view of a gas-free R3-phase current transformer using an optical magnetic field sensor. 1 is a sectional view showing the influence of a magnetic field, and FIG. 4 is a sectional view specifically showing a gas-insulated three-phase current transformer using an optical magnetic field sensor, which is a technology prior to the present invention. 5 to 7 are diagrams showing embodiments of the gas-insulated three-phase current transformer according to the present invention, and FIGS. 5 and 6 are sectional views showing the first and second embodiments, respectively; FIG. 7 is a partially enlarged sectional view of the second embodiment. 1.1a, 1b-...tank, 2 u ~ 2 W->5
body, 3... insulation spacer, 4... current transformer core, 5...
... Support plate, 6... Insulation shield, 7... Sealed terminal, 8, 18.28... Optical magnetic field sensor, 9... Optical fiber, 10... Detection device, 11 a to 11 d-
...Plane, 12a to 12d...Part of corner, 13...
・Corner cube, 14°15...Light entrance/exit surface, L
ED...optical transmitter, PD...optical receiver, OP...
Actor. Figure 1 (A) (B) Figure 2 (A) CB)

Claims (3)

【特許請求の範囲】[Claims] (1)SF6ガス等の絶縁ガスが14人されたタンク内
に3相の導体を備え、夫々の導体の周囲には磁界強度に
よりファラデー回転角を生ずる磁気光学素子により構成
される光磁界センサ゛を配設したガス絶縁3相変流器で
あって、 前記磁気光学素子は、光路の光軸方向に存在する磁界強
度のみに反応し、且つこの磁気光学素子は単一で導体の
周囲を周回する様に4jl、i成されて、この磁気光学
素子を通過づる光が導5木の周囲を周回するものとし、 タンク上又はタンク外部には、光発信器と光受信器等か
ら成る検出装置を配設し、この検出装置の光受信機には
前記光磁界センタで周回積分された光を伝送する構成と
したことを特徴とづ゛るガス絶縁3相変流器。
(1) Three-phase conductors are installed in a tank filled with 14 insulating gases such as SF6 gas, and around each conductor is an optical magnetic field sensor consisting of a magneto-optical element that generates a Faraday rotation angle depending on the strength of the magnetic field. A gas-insulated three-phase current transformer is provided, wherein the magneto-optical element reacts only to the magnetic field strength existing in the optical axis direction of the optical path, and the magneto-optical element is single and orbits around a conductor. The light passing through this magneto-optical element orbits around the guiding tree, and a detection device consisting of an optical transmitter, an optical receiver, etc. is installed on or outside the tank. A gas-insulated three-phase current transformer, characterized in that the light receiver of the detection device is configured to transmit the light that has been round-integrated at the optical magnetic field center.
(2)光磁界セン勺が、磁気光学素子として鉛ガラス等
の可撓性を有するものを採用し、糸状に形成された上で
、磁界センサに巻き付けられたものであり、且つ、検出
装置と光磁界センサとの光伝送が、この間に接続された
光ファイバーによって行なわれるものである特許請求の
範囲第1項記載のガス絶縁3相変流器。
(2) The optical magnetic field sensor employs a flexible material such as lead glass as a magneto-optical element, is formed into a thread shape, and is wound around the magnetic field sensor, and is also used as a detection device. The gas-insulated three-phase current transformer according to claim 1, wherein optical transmission with the optical magnetic field sensor is performed by an optical fiber connected therebetween.
(3)光磁界センナが、断面が略四角形で、光の出入面
、全反射面、逆反射面を備えた形状とされ、且つ、検出
装置が、タンク上の前記光磁界セン勺に対向して、しか
し検出装−と光磁界センサの光の出入面が光路の光軸に
直交する様に配置され、この検出装置と光磁界センサと
の光の伝送がこの間の空間を介して行なわれるものであ
る特許請求の範囲第1項記載のガス絶縁3相変流器。
(3) The optical magnetic field sensor has a substantially rectangular cross section, and has a shape including a light entrance/exit surface, a total reflection surface, and a retroreflection surface, and the detection device faces the optical magnetic field sensor on the tank. However, the detection device and the optical magnetic field sensor are arranged so that the light entrance/exit surfaces are perpendicular to the optical axis of the optical path, and the light transmission between the detection device and the optical magnetic field sensor is performed through the space between them. A gas-insulated three-phase current transformer according to claim 1.
JP59062191A 1984-03-31 1984-03-31 Gas insulating three-phase current transformer Pending JPS60207067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59062191A JPS60207067A (en) 1984-03-31 1984-03-31 Gas insulating three-phase current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59062191A JPS60207067A (en) 1984-03-31 1984-03-31 Gas insulating three-phase current transformer

Publications (1)

Publication Number Publication Date
JPS60207067A true JPS60207067A (en) 1985-10-18

Family

ID=13193003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59062191A Pending JPS60207067A (en) 1984-03-31 1984-03-31 Gas insulating three-phase current transformer

Country Status (1)

Country Link
JP (1) JPS60207067A (en)

Similar Documents

Publication Publication Date Title
US8624579B2 (en) Fiber optic current sensor
US6281672B1 (en) Optical current transformer
JPH10185961A (en) Light current transformer
US5295207A (en) Optical apparatus for measuring current in a grounded metal-clad installation
KR20090131386A (en) 3-phase batch gis spacer using optical fiber current sensor
JPS60207067A (en) Gas insulating three-phase current transformer
JP3836146B2 (en) Current measurement method for turbine generator
JP2001033490A (en) Optical current transformer
JP2958796B2 (en) Zero-phase current measurement sensor
JPS60203863A (en) Gas-insulated three-phase current transformer
JP2001264364A (en) Optical current transformer
JP2000111586A (en) Current-measuring device
JPH10142265A (en) Optical current transformer
CN212845562U (en) Optical zero sequence current transformer
ATE154443T1 (en) CURRENT MEASURING ARRANGEMENT FOR A CABLE ROUTE
JPS59145977A (en) Magnetic field measuring device
JPS62163976A (en) Photocurrent transformer
JP4215313B2 (en) Light current transformer
JPS6348463A (en) Current measuring instrument
JPH0511505Y2 (en)
JPS62276468A (en) Gas insulating current transformer
JPH0546161B2 (en)
JPS62163978A (en) Photocurrent transformer
JPS60207071A (en) Gas insulating current transformer
JPS63311177A (en) Zero-phase current detecting method utilizing optical magnetic field sensor