[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60183974A - Power source - Google Patents

Power source

Info

Publication number
JPS60183974A
JPS60183974A JP59037256A JP3725684A JPS60183974A JP S60183974 A JPS60183974 A JP S60183974A JP 59037256 A JP59037256 A JP 59037256A JP 3725684 A JP3725684 A JP 3725684A JP S60183974 A JPS60183974 A JP S60183974A
Authority
JP
Japan
Prior art keywords
high frequency
voltage
transistor
capacitor
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59037256A
Other languages
Japanese (ja)
Inventor
Shiro Nakagawa
士郎 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP59037256A priority Critical patent/JPS60183974A/en
Publication of JPS60183974A publication Critical patent/JPS60183974A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To suppress a spike noise by composing a resonance circuit by adding a capacitor to the primary side winding of a high frequency transformer, and connecting an inductance in series with the secondary side winding. CONSTITUTION:A coil L is connected in series with one end of the secondary side winding W3 of a high frequency transformer T2. This coil L has a function of breaking a load R6 of the secondary side in a high frequency manner. Accordingly, the primary side winding W1 and the capacitor C7 connected with the both ends are resonated irrespective of the ON and OFF of a diode D2 due to a high frequency signal presented at the secondary side winding W3, a voltage waveform at the collector of a transistor Tr does not become rectangular but becomes a quasi-sinusoidal wave, thereby suppressing the spike voltage.

Description

【発明の詳細な説明】 (技術分野) 本発明は電源装置に関し、より詳細にはスイッチング電
源に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a power supply device, and more particularly to a switching power supply.

(背景技術) 商用交流電源をより高周波に変換し、高周波トランス及
びその二次巻線の出力を整流して希望の直流電圧を得る
いわゆるスイッチング電源は、形状が小形であること、
効率が良いこと及び軽量であることなど多くの利点があ
るため、広く用いられるようになってきた。
(Background Art) A so-called switching power supply that converts commercial AC power to a higher frequency and rectifies the output of a high-frequency transformer and its secondary winding to obtain a desired DC voltage has a small size.
It has become widely used because it has many advantages such as high efficiency and light weight.

第1図は、従来のスイッチング電源の回路図であり、こ
れは一般に方形波スイッチング電源と呼ばれている。同
図において、1−1’は入力端子で、商用交流電圧を整
流して直流電圧を形成する商用化電源(図示しない)が
接続される。TIは高周波トランスで、−次側の巻線W
、、W2及び二次側の:43線W3を有し、それぞれの
極性は図示の如く設定されている。巻線WIには、発生
する高圧のスパイク電圧を吸収するためのコンデンサC
3と抵抗R2が直列に接続されている。@3線W2の一
端は、トランジスタTrのスイッチング周期を決定する
抵抗R5とコンデンサC4からなる昨定数回路を介して
、トランジスタTrのベースに接続され、他端はトラン
ジスタTr(7)エミッタに接続されている。二次側巻
線W3は、ダイオードD2を介して負荷抵抗R6に接続
されている。
FIG. 1 is a circuit diagram of a conventional switching power supply, commonly referred to as a square wave switching power supply. In the figure, 1-1' is an input terminal to which a commercial power source (not shown) that rectifies commercial AC voltage to form DC voltage is connected. TI is a high-frequency transformer, and the negative side winding W
, , W2 and a :43 wire W3 on the secondary side, and the polarity of each is set as shown in the figure. A capacitor C is installed in the winding WI to absorb the high voltage spike voltage that occurs.
3 and resistor R2 are connected in series. @3 One end of the wire W2 is connected to the base of the transistor Tr via a constant circuit consisting of a resistor R5 and a capacitor C4 that determines the switching period of the transistor Tr, and the other end is connected to the emitter of the transistor Tr (7). ing. Secondary winding W3 is connected to load resistor R6 via diode D2.

RjとR,1はバイアス抵抗、C1とC,は平滑用コン
デンサである。
Rj and R,1 are bias resistors, and C1 and C are smoothing capacitors.

この回路の動作はブロッキング発振に従う。すなわち、
入力端子1−1′に印加された直流電圧は抵抗R1とコ
ンデンサC7+の時定数で決まる周期で方形波電圧に変
換される。方形波を用いる理由は、トランジスタTrの
コレクタ損失を最も少なくするためである。つまり、ト
ランジスタTrを0級で動作させ、コレクタ電流が流れ
ている間はコレクタ電圧がトランジスタTrのコレクタ
飽和電圧となる場合であり、方形波はこの条件を簡単に
満足するからである。
The operation of this circuit follows blocking oscillation. That is,
The DC voltage applied to the input terminal 1-1' is converted into a square wave voltage at a period determined by the time constant of the resistor R1 and the capacitor C7+. The reason for using a square wave is to minimize the collector loss of the transistor Tr. That is, this is the case when the transistor Tr is operated at class 0 and the collector voltage becomes the collector saturation voltage of the transistor Tr while the collector current is flowing, and a square wave easily satisfies this condition.

しかしながら、このようなスイッチング電源は、直流電
圧を高周波に変換する際、−上述の如く高周波として方
形波を用いるため、スパイク状の極めて大きな雑音が発
生するという問題点がある。このようなスパイク電圧は
大きな雑Bとなり、精密;゛[源としては勿論、一般の
オーディオ機器等には不向きであるばかりでなく、多様
化されるに従い周辺の機器への雑音の影響が無視できな
くなっている。
However, such a switching power supply has a problem in that when converting a DC voltage to a high frequency, a square wave is used as the high frequency as described above, and therefore extremely large spike-like noise is generated. Such spike voltages result in large noise B, and are not only unsuitable for precision sources, but also for general audio equipment, etc., and as they become more diversified, the influence of noise on peripheral equipment can be ignored. It's gone.

ここで、第1図に示す回路において、高周波トランスT
1の巻線W1に共振用コンデンサを負荷し、この共振を
用いてトランジスタTrの動作は0級でかつ正弦波の′
電源が構成され、スパイク電圧を抑制することが一応考
えられる。しかしなから、この構成は、トランジスタT
rがオンで高周波トランスT1の二次側巻線W3に接続
された整tQ用タイオードD2がオンになっているとき
、高周波i・ランスT、の巻線W1は短絡に低いインピ
ーダンスが並列に接続されたものと等価になり、通常こ
の条ヂ1では巻線W1は共振特性をもつことはできない
ので、実現困難であった。
Here, in the circuit shown in FIG. 1, the high frequency transformer T
A resonant capacitor is loaded on the winding W1 of the transistor Tr, and by using this resonance, the operation of the transistor Tr is 0 class and a sine wave.
It is conceivable that the power supply is configured to suppress the spike voltage. However, this configuration requires the transistor T
When r is on and the regulating tQ diode D2 connected to the secondary winding W3 of the high frequency transformer T1 is on, the winding W1 of the high frequency i lance T is short-circuited and a low impedance is connected in parallel. Normally, in this condition 1, the winding W1 cannot have resonance characteristics, so it was difficult to realize.

このように、スイッチング電源のスパイク性雑音は変換
された高周波が方形波であることから発生し、極めて広
い周波数スペクトラムをもち、雑j″?とじては最も避
けるへきものである。
In this way, the spike noise of a switching power supply is generated because the converted high frequency is a square wave, has an extremely wide frequency spectrum, and is the worst noise to avoid.

第2図はスイッチング電源を半正弦波とした回路図であ
って、図71<のコイルしがない場合、すなわち高周波
トランスT2のニー次側巻線W3の一端とダイオードD
のアノードを直接接続したスイッチング電源を本出願人
は提案している。以下の説明では、コイルしがない状態
について説明する。
FIG. 2 is a circuit diagram in which the switching power supply is a half-sine wave, and when there is no coil as shown in FIG.
The applicant has proposed a switching power supply in which the anodes of In the following description, a state in which there is no coil will be described.

同図においてT、は高周波トランスで、巻線WlとW2
を有する一次側と巻線W3を有する二次側で構成されて
いる。巻線WlとW3の極性はIA示の如く設定されて
いる。これは、二次側はダイオードD2による半波整流
であり、この場合高周波トランスの一次側と二次側の極
性を図示の如く設定することにより、スイッチング用ト
ランジスタTr とタイオードD2が共にオフである期
間を1没けるためである。−次側の′Ij3線W1には
共振用のコンデンサC7が接続されている。従って、ト
ランジスタTr とダイオードD2が共にオフである期
間内では、高周波トランスの一次側巻線WIは低インピ
ータンスで短絡されることなく、巻線WIとコンデンサ
C7とで共振回路が形成される。トランジスタTrのオ
ンとオフの時間はほぼ等しく設定することができるので
、このような場合、変換された高周波は半正弦波となり
、コレクタ電流の流れている期間はトランジスタTrは
飽和しているので、コレクタ損失は最低となる。半IF
弦波は方形波と異なり、その周波数スペクトラムは極め
て狭くかつ高周波レベルも低いため、方形波の場合に比
べて雑音発生を極めて小さくすることができる。
In the same figure, T is a high frequency transformer, and windings Wl and W2
The primary side has a winding W3, and the secondary side has a winding W3. The polarities of windings Wl and W3 are set as shown in IA. This is half-wave rectification using the diode D2 on the secondary side, and in this case, by setting the polarities of the primary and secondary sides of the high-frequency transformer as shown, both the switching transistor Tr and the diode D2 are turned off. This is to eliminate one period. - A resonant capacitor C7 is connected to the 'Ij3 line W1 on the next side. Therefore, during the period when both the transistor Tr and the diode D2 are off, the primary winding WI of the high frequency transformer has a low impedance and is not short-circuited, and a resonant circuit is formed by the winding WI and the capacitor C7. Since the on and off times of the transistor Tr can be set approximately equal, in such a case, the converted high frequency becomes a half sine wave, and the transistor Tr is saturated during the period when the collector current is flowing. Collector loss is the lowest. Half IF
Unlike a square wave, a string wave has an extremely narrow frequency spectrum and a low high frequency level, so that noise generation can be extremely reduced compared to a square wave.

次に、抵抗R[(、コンデンサC7、ダイオードD3及
びツェナーダイオードD4はオートバイアス回路を形成
する。オートバイアス回路を形成する。オートバイアス
回路は、負荷R6が小さくなると共振回路のQが高くな
り、この結果トランジスタTrのコレクタ電圧が上昇す
るのを防Inする。すなわちコレクタ電圧が上昇すると
、巻線W2の73圧も」−Hする。この電圧はコンデン
サ07及びダイオードD3を介してトランジスタTrに
逆方向のバイアスを与える。従ってバイアスは深くなり
、コレクタ電流が減少することにより、先のコレクタ電
圧の上昇は抑制される。
Next, the resistor R[(, capacitor C7, diode D3, and Zener diode D4 form an auto-bias circuit. In the auto-bias circuit, when the load R6 becomes smaller, the Q of the resonant circuit increases, As a result, the collector voltage of the transistor Tr is prevented from increasing.In other words, when the collector voltage increases, the 73 voltage of the winding W2 also becomes -H.This voltage is reversed to the transistor Tr via the capacitor 07 and the diode D3. Therefore, the bias becomes deeper and the collector current decreases, suppressing the previous rise in collector voltage.

しかしながら、第2図においてコイルLがない場合にお
いては、出力側において両波整流をすることができない
ことは、D2のオフ時にのみ共振特性をもつことから明
らかである。半正弦波形型々;ミにおいても、半波整流
よりも両波整流の方が好ましいことは当然である。
However, in the case where the coil L is not present in FIG. 2, it is clear that double-wave rectification cannot be performed on the output side since the resonance characteristic occurs only when D2 is off. Of course, for half-sine waveform types, double-wave rectification is preferable to half-wave rectification.

(発明の目的) 本発明はこのような従来の問題点に着目してなされたも
ので、スパイク性雑音の発生を抑制するこができ、かつ
出力側で両波整流が可能な電源装置を提供することを目
的とする。
(Objective of the Invention) The present invention has been made by focusing on such conventional problems, and provides a power supply device that can suppress the generation of spike noise and can perform double-wave rectification on the output side. The purpose is to

以下、本発明を実施例に基づき図面を参照して説明する
Hereinafter, the present invention will be explained based on embodiments and with reference to the drawings.

(発明の構成及び作用) 第2図は本発明による電源装置の一実施例の回路図であ
る。本発明の特徴は、高周波トランスT2の二次側巻線
W3の一端に直列に接続されたコイルしにある。コイル
しは二次側の負荷R6を高周波的に遮断する機能を有す
る。従って二次側巻線Wjに現われた高周波信号による
ダイオードD2のオン中オフにかかわらず、−次側巻線
W1とこの両端に接続されたコンデンサC7は共振する
。従って、トランジスタTrのコレクタにおける電圧波
形は方形波ではなく準正弦波となり、スパイク電圧の発
生は抑制される。ここで、C7のイー(としては数千ピ
コファラッドが好ましく、Lのイ〆iとしては数マイク
ロヘンリーないし数十マイクロヘンリーが好ましい。尚
、コイルLは整置用チョークコイルとしても動作し、(
通常この機能としては数百マイクロヘンリーのコイルが
用いられる)、スパイク電圧の発生をより一層抑制する
。また前述したように、ダイオードD2のオン時及びオ
フ時に共振するので、出力側すなわち高周波トランスT
2の二次側で両波整流が可能となる。
(Structure and operation of the invention) FIG. 2 is a circuit diagram of an embodiment of the power supply device according to the invention. The present invention is characterized by a coil connected in series to one end of the secondary winding W3 of the high frequency transformer T2. The coil has a function of blocking the load R6 on the secondary side at a high frequency. Therefore, regardless of whether the diode D2 is turned on or off due to the high frequency signal appearing in the secondary winding Wj, the negative winding W1 and the capacitor C7 connected to both ends thereof resonate. Therefore, the voltage waveform at the collector of the transistor Tr is not a square wave but a quasi-sine wave, and the generation of spike voltage is suppressed. Here, the e of C7 is preferably several thousand picofarads, and the i of L is preferably several microhenries to several tens of microhenries.The coil L also operates as a choke coil for alignment,
(Usually, a coil of several hundred microhenries is used for this function), further suppressing the generation of spike voltages. Furthermore, as mentioned above, since the diode D2 resonates when it is on and off, the output side, that is, the high frequency transformer T
Double-wave rectification is possible on the secondary side of 2.

尚、その他の構成は第2図と同様である。Note that the other configurations are the same as in FIG. 2.

次に動作について説明する。トランジスタTrは、ペー
スに印加される電圧に従ってオン・オフを繰り返す。コ
ンデンサC7と巻線W1とで形成される共振回路はコイ
ルしにより二次側の負荷が高周波的に遮断されているの
で、オン時及びオフ時のいずれでも共振する。この結果
、二次側巻線W3にも対抗する高周波信号が現われ、ダ
イオードD2及び平滑コンデンサC5を介して両波整流
及び1・滑された所望の出力が負荷R6に供給される。
Next, the operation will be explained. The transistor Tr repeats on and off according to the voltage applied to the pace. The resonant circuit formed by the capacitor C7 and the winding W1 resonates both when it is on and when it is off, because the load on the secondary side is blocked at high frequency by the coil. As a result, an opposing high frequency signal also appears in the secondary winding W3, and a desired double-wave rectified and 1-smoothed output is supplied to the load R6 via the diode D2 and the smoothing capacitor C5.

以−1−1本発明を一実施例にノふづき説明した6本発
明の他の実施例として、例えば高周波トランスT、の一
時側に接続されるトランジスタをプッシュプルとし、出
力側で両波整流を行なうものが挙げられる。
Below-1-1 The present invention has been explained based on one embodiment. 6 As another embodiment of the present invention, for example, the transistor connected to the temporary side of the high frequency transformer T is push-pull, and the output side is double-wave rectified. Examples include those that perform

(発明の効果) 以1−説明したように、本発明によれば、スパイク性雑
音の発生が十分に抑制されかつ出力側で両波整流が可能
な電源装置を提供することができる。
(Effects of the Invention) As described in 1-1 above, according to the present invention, it is possible to provide a power supply device in which the generation of spike noise is sufficiently suppressed and double-wave rectification is possible on the output side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のスイッチング形電源の回路図、及び第2
図は本発明による電源装置の一実施例の回路図である。 R1〜R,−−−一抵抗、 C1〜C8−−m−コンデンサ、 L−一一一コイル、 T、、T2−m−高周波トランス。 W、−W、−−−一巻線。 Dl 〜D3−−−−ダイオード、 D7+−m−ツェナータイオード、 Tr−−一 トランジスタ。 特1;1出願人 ティーディーケイ株式会社 特許出願代理人 ブ1)埋土 山木恵−
Figure 1 shows a circuit diagram of a conventional switching type power supply, and Figure 2 shows a circuit diagram of a conventional switching type power supply.
The figure is a circuit diagram of an embodiment of a power supply device according to the present invention. R1 to R,----resistor, C1 to C8--m-capacitor, L--11-coil, T,, T2--m-high frequency transformer. W, -W,---Single winding. Dl~D3---diode, D7+-m-zener diode, Tr--1 transistor. Special 1;1 Applicant TDC Co., Ltd. Patent Application Agent B1) Buried soil Megumi Yamaki

Claims (1)

【特許請求の範囲】[Claims] 交流商用電源を整流及び平滑して直流電圧を得る手段と
、該直流電圧を高周波電圧に変換する高周波トランスと
、所望の値に変換された高周波電圧を整流素子により整
流し更に平滑して所望の直流電圧を得るスイッチング電
源装置において、前記高周波トランスの一次側巻線にコ
ンデンサを付加して共振回路となし、二次側巻線にはイ
ンダクタを直列に接続したことを特徴とする電源装置。
A means for rectifying and smoothing an AC commercial power source to obtain a DC voltage, a high-frequency transformer for converting the DC voltage into a high-frequency voltage, and a rectifying element to rectify and further smooth the high-frequency voltage converted to a desired value to obtain the desired value. A switching power supply device for obtaining a direct current voltage, characterized in that a capacitor is added to the primary winding of the high frequency transformer to form a resonant circuit, and an inductor is connected in series to the secondary winding.
JP59037256A 1984-03-01 1984-03-01 Power source Pending JPS60183974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59037256A JPS60183974A (en) 1984-03-01 1984-03-01 Power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59037256A JPS60183974A (en) 1984-03-01 1984-03-01 Power source

Publications (1)

Publication Number Publication Date
JPS60183974A true JPS60183974A (en) 1985-09-19

Family

ID=12492564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59037256A Pending JPS60183974A (en) 1984-03-01 1984-03-01 Power source

Country Status (1)

Country Link
JP (1) JPS60183974A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625063U (en) * 1979-08-01 1981-03-07
JPS5651485B2 (en) * 1976-08-19 1981-12-05
JPS5727884B2 (en) * 1974-05-17 1982-06-14
JPS57138868A (en) * 1981-02-17 1982-08-27 Toshiba Corp Voltage resonance type high frequency switching circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727884B2 (en) * 1974-05-17 1982-06-14
JPS5651485B2 (en) * 1976-08-19 1981-12-05
JPS5625063U (en) * 1979-08-01 1981-03-07
JPS57138868A (en) * 1981-02-17 1982-08-27 Toshiba Corp Voltage resonance type high frequency switching circuit

Similar Documents

Publication Publication Date Title
JP3260024B2 (en) Power circuit
US4469988A (en) Electronic ballast having emitter coupled transistors and bias circuit between secondary winding and the emitters
JP3387456B2 (en) Switching power supply
US20080219033A1 (en) Switching power supply device
US6388902B1 (en) Switching power supply circuit
US6324081B1 (en) Switching power source apparatus
KR900008392B1 (en) High frequency heating apparatus
JPH0670543A (en) Series resonance converter
JP3221185B2 (en) Switching power supply
US4709189A (en) Transistor inverter device for fluorescent lamp
JPH08126332A (en) Switching power supply device
JPS604676B2 (en) power supply
JPS60183974A (en) Power source
US6768275B2 (en) Discharge lamp lighting circuit
JP3223695B2 (en) Switching power supply
JP3198831B2 (en) Switching power supply
JPH0424688Y2 (en)
JP3500868B2 (en) Switching regulator
JPH01114366A (en) Dc-dc converter
JPS60183966A (en) Switching power source
JPS60183965A (en) Power source
JPH0468863B2 (en)
JPS60128867A (en) Dc/dc converter
JP3051753B2 (en) Discharge lamp lighting device
JPS646551Y2 (en)