[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60186406A - Continuous preparation of alpha type silicon nitride - Google Patents

Continuous preparation of alpha type silicon nitride

Info

Publication number
JPS60186406A
JPS60186406A JP4069184A JP4069184A JPS60186406A JP S60186406 A JPS60186406 A JP S60186406A JP 4069184 A JP4069184 A JP 4069184A JP 4069184 A JP4069184 A JP 4069184A JP S60186406 A JPS60186406 A JP S60186406A
Authority
JP
Japan
Prior art keywords
furnace
silicon nitride
tunnel furnace
metal silicon
alpha type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4069184A
Other languages
Japanese (ja)
Other versions
JPH0218284B2 (en
Inventor
Mitsuo Umemura
梅村 光雄
Yasushi Matsudaira
靖 松平
Yoshihiro Kubota
芳宏 久保田
Toshimi Kobayashi
小林 利美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP4069184A priority Critical patent/JPS60186406A/en
Publication of JPS60186406A publication Critical patent/JPS60186406A/en
Publication of JPH0218284B2 publication Critical patent/JPH0218284B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0682Preparation by direct nitridation of silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To prepare high-purity alpha type Si3N4 in high yield continuously, by calcining finely powdered metal silicon in a tunnel furnace in an nitrogen gas atmosphere having extremely low oxygen content at high temperature. CONSTITUTION:In a pressure type tunnel furnace equipped with vacuum replacement chambers at the inlet and the outlet, metal silicon powder having particle size adjusted to <=325 meshes is placed on a bed plate made of silicon nitride, and passed through it. The metal silicon of a raw material is sent through the vacuum replacement chamber at the inlet, air attached to the metal silicon is almost completely removed, and passed through the tunnel furnace. The furnace has an N2 gas atmosphere with <=10<-10> oxygen partial pressure and a small amount of reducing gases such as H2, CO, etc., and is heated at 1,000-1,500 deg.C to nitrigenize the metal silicon. Powder of alpha type Si3N4 having at least >=90% purity of alpha type Si3N4 is formed continuously, and taken out through the vacuum replacement chamber from the tunnel furnace.

Description

【発明の詳細な説明】 本発明は、窒化けい素の連続的製法に関し、特にプッシ
ャ一式トンネル炉を用いて、連続的且っ高収率でアルフ
ァ(α)型窒化けい素を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously producing silicon nitride, and in particular to a method for producing alpha (α) type silicon nitride continuously and in high yield using a pusher-equipped tunnel furnace. .

窒化けい素は、低温型のαと高温型のβの二つの変態が
知られているが、それぞれの単−相を得ることはむずか
しく1通常、混合物として存在する。また、窒化けい素
は、共有結合性の強い物質であって、高温強度や化学的
耐食性などに優れ。
Silicon nitride is known to undergo two transformations: a low-temperature type α and a high-temperature type β, but it is difficult to obtain a single phase of each of them, so they usually exist as a mixture. In addition, silicon nitride is a substance with strong covalent bonds and has excellent high-temperature strength and chemical corrosion resistance.

また熱膨張率が極めて小さい特性を有し、各種エンジン
部材や熱交換器、あるいはその他各種耐熱性材料として
の利用が期待され、広く用途研究が進められている。し
かし、一般に窒化けい素焼給体を高温高応力材料として
実用に供する場合には。
In addition, it has an extremely low coefficient of thermal expansion, and is expected to be used in various engine parts, heat exchangers, and various other heat-resistant materials, and research on its use is widely underway. However, in general, when a silicon nitride burner is used as a high-temperature, high-stress material for practical use.

高温での物理的、化学的安定性が厳しく要求される。こ
の物理的、化学的特性は、焼結体を構成する素材の種類
、純屓−粒度及び結晶型等に大きく影響され、特に窒化
けい素を素材とする焼結体にあっては、α型を可及的高
度に含有した窒化けい素粉床が望ましく、高強度焼結体
構造物を提供することができる。
Physical and chemical stability at high temperatures is strictly required. These physical and chemical properties are greatly influenced by the type, grain size, crystal type, etc. of the material that makes up the sintered body. In particular, in the case of a sintered body made of silicon nitride, α-type A silicon nitride powder bed containing as high as possible is desirable and can provide a high strength sintered structure.

従来、α型窒化けい素の工業的製造法として。Conventionally, as an industrial manufacturing method for α-type silicon nitride.

金属けい素を窒素ガスを含む雰囲気中で1000〜15
00℃の温度で加熱するバッチ式方法が最も広く実用さ
れている。しかし、この方法は、炉の気密性を保ってN
2 及び/又はNH,雰囲気中で加熱反応させることが
重要で、特に−けい素の窒化反応の反応熱(381+ 
2N2=Si3N4+176 K cat)を利用する
関係から、炉内の原料の充てん位置によって窒化反応開
始時間が異なり。
1000-15 in an atmosphere containing nitrogen gas
A batch method using heating at a temperature of 0.000C is most widely used. However, this method maintains the airtightness of the furnace and
2 and/or NH, it is important to carry out the reaction by heating in an atmosphere, especially the reaction heat of the nitriding reaction of -silicon (381+
2N2=Si3N4+176 K cat), the nitriding reaction start time differs depending on the filling position of the raw material in the furnace.

反応の進行もばらばらで、そのため均一な加熱反応が得
られない。その結果、α型を高い割合で含有する窒化け
い素を得ることは極めて困難であり。
The progress of the reaction is uneven, and therefore a uniform heating reaction cannot be obtained. As a result, it is extremely difficult to obtain silicon nitride containing a high proportion of α-type.

更にバッチ間の品質のばらつきも避けられないなど工業
的製法としては望ましい方法ではない。
Furthermore, variations in quality between batches are unavoidable, making this method undesirable as an industrial manufacturing method.

このようなバッチ式製法の改善法として、けい素の粉末
等を棚仮に載置し、これをトンネル炉に入れて窒素を含
む非酸化性ガスと向流で接触させ。
As an improvement to such a batch-type manufacturing method, silicon powder or the like is placed on a shelf, placed in a tunnel furnace, and brought into contact with a non-oxidizing gas containing nitrogen in a countercurrent flow.

常温から次第に温度を上昇させるようにして加熱反応さ
せる方法が提案された(特開昭58−88107号公報
)。しかし、この方法によって製造された窒化けい素は
一α型の含有率がいずれも80%未満であり、充分満足
しつるに至っていない。
A method has been proposed in which a heating reaction is carried out by gradually raising the temperature from room temperature (Japanese Patent Application Laid-open No. 88107/1983). However, the silicon nitride produced by this method has a content of -α type less than 80% in all cases, and is not fully satisfactory.

本発明者らは、このような実状において、更に高純度の
α型窒化げい累を工業的に有利に製造する方法について
−特に、上記提業法の技術的欠陥に関し、多くの要因を
追求した。その結果、金属けい累の窒化反応1%にα型
窒化けい素の形成は。
Under these circumstances, the present inventors investigated many factors regarding the industrially advantageous method of manufacturing α-type nitride with higher purity, particularly regarding the technical deficiencies of the above-mentioned method. . As a result, α-type silicon nitride was formed in 1% of the nitriding reaction of metal silicon.

微量の酸素の存在によっても極めて大きな悪影響を受け
一前記の特開昭58−88107号公報に開示された方
法では1反応領域におけるN2雰囲気中のO濃度を充分
低下させることができないま ため1反応生成物中のα型窒化けい累の含有率は可成り
低いものであることがわかった。本発明者らは1反応系
に存在させるN 雰囲気における0 量に着目し、O分
圧とα型窒化げい累生成2 率との関係について研究を重ねた結果、0! 分圧を1
(1”’atm 以下にすることにより9(1以上のα
型窒化げい素を容易に得ることを見出し1本発明に到っ
た。
Even the presence of a trace amount of oxygen has a very large negative effect.The method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 58-88107 cannot sufficiently reduce the O concentration in the N2 atmosphere in one reaction region. It was found that the content of α-type nitride silicate in the product was quite low. The present inventors focused on the amount of 0 in the N atmosphere present in the reaction system, and as a result of repeated research on the relationship between O partial pressure and the rate of α-type nitride formation, we found that 0! partial pressure 1
(1"'atm or less, 9 (1 or more α
The inventors have discovered that type silicon nitride can be easily obtained and have arrived at the present invention.

すなわち1本発明は、粉末状金属けい素を合板に載置し
てトンネル炉に送入し、窒素雰囲気下に1000〜15
00−4℃の温度範囲で窒化反応させる窒化けい素の製
造方法において、トンネル炉の入口及び出口にそれぞれ
真壁置換室を設けたプッシャ一式トンネル炉を用い、該
粉末状金属叶い累を炉の入口に隣接する真空置換室を通
して炉の入口から順次送入し、炉内の酸素ガス分圧を1
0 1010at下の条件下で窒化反応させ、得られた反応
生成物を炉の出口から、それに隣接する真空置換室を経
て連続的に取出す実用性の優れたα型窒化げい累の連続
的製造方法を提供する。
That is, in the present invention, powdered metal silicon is placed on a plywood board, fed into a tunnel furnace, and heated to 1,000 to 15
In a method for producing silicon nitride in which a nitriding reaction is carried out in the temperature range of 00-4°C, a pusher-equipped tunnel furnace with solid wall displacement chambers provided at the entrance and exit of the tunnel furnace is used, and the powdered metal pile is placed at the entrance and exit of the furnace. Oxygen gas is introduced sequentially from the entrance of the furnace through the vacuum displacement chamber adjacent to the
Continuous production of highly practical α-type nitriding products, in which the nitriding reaction is carried out under conditions of 0.1010 at, and the resulting reaction product is continuously taken out from the outlet of the furnace through the vacuum replacement chamber adjacent to it. provide a method.

本発明の方法に用いる粉末状金属けい素原料は。The powdered metal silicon raw material used in the method of the present invention is as follows.

可及的に微粉砕されたものが望ましく、実用的には32
5メツシユ下に調整されたものが好都合に使用できる。
It is desirable that it be as finely pulverized as possible, and practically 32
One adjusted below 5 meshes can be conveniently used.

また1合板に載置される微粉状金屑げい累は、粉末のま
\でもよいし1反応温度において容易に分解あるいは揮
散しつる適当なバインダーを用いて、均一反応が得られ
る粒状あるいは板状などに成形して反応に供することも
できる。
In addition, the fine powder metal scraps placed on the plywood may be in the form of powder, or they may be in the form of granules or plates that allow a uniform reaction by using an appropriate binder that easily decomposes or volatilizes at the reaction temperature. It can also be formed into a shape and subjected to the reaction.

粉末粒子が粗いと窒化反応が不充分になりやすく。If the powder particles are coarse, the nitriding reaction tends to be insufficient.

またβ型の窒化けい素が形成されるので好ましくない。Furthermore, β-type silicon nitride is formed, which is not preferable.

金属けい素装置用台板は、窒化反応条件下において熱的
にも化学的にも耐性を有する安定なものであれば、どん
な材料で形成させてもよく1例えば窒化けい累などが有
利に用いられる。
The base plate for the metal silicon device may be made of any stable material that is thermally and chemically resistant under nitriding reaction conditions. For example, silicon nitride is advantageously used. It will be done.

また1本発明の方法で用いる炉は一通′縮のプッシャ一
式トンネル炉の入口及び出口にそれぞれ真空置換室を設
けた特殊なもので、各室は各日に扉を介して気密に隣接
して成るものである。真空置換室は、炉の内部と外気を
遮断する位置にあって。
In addition, the furnace used in the method of the present invention is a special type in which vacuum displacement chambers are provided at the inlet and outlet of a one-way pusher tunnel furnace. It is what it is. The vacuum displacement chamber is located in a position that isolates the inside of the furnace from outside air.

炉入口側扉と外気に通ずる扉を閉じるとき気密状態が得
られ一操業中は、例えば真空ポンプによって真空条件に
保持されるから、空気、特に0 が炉内に流入すること
を実質的に完全に防止しつるものである。そして、原料
を載置した合板は、炉入口側の真空置換室中を通って炉
の入口から炉内へ運ばれ、炉出口から隣接する真空置換
室を通って外へ取出される。これらの原料を載せた合板
の移動は、プッシャー装置を利用して好都合に行なうこ
とができる。このような真空置換室を備えたプッシャ一
式トンネル炉を用いるときは、入口側の該室に入った合
板上の微粉末状金属けい素原料は、その表面あるいは粒
子間に存在する空気(酸素ガス)及び望ましくない吸付
着水分が高度に除去され、炉内に送入された場合にも、
窒素ガスあるいは非酸化性含有窒素ガスで満たされた。
When the furnace inlet side door and the door communicating with the outside air are closed, an airtight state is obtained, and during one operation, the vacuum condition is maintained, for example, by a vacuum pump, so that air, especially zero, is virtually completely prevented from flowing into the furnace. It is something that prevents it from hanging. Then, the plywood on which the raw material is placed is carried into the furnace through the vacuum exchange chamber on the furnace inlet side, and is taken out from the furnace outlet through the adjacent vacuum exchange chamber. The movement of the plywood loaded with these materials can be conveniently carried out using a pusher device. When using a pusher-equipped tunnel furnace equipped with such a vacuum displacement chamber, the fine powder metal silicon raw material on the plywood that has entered the chamber on the entrance side is exposed to air (oxygen gas) present on its surface or between particles. ) and undesirable adsorbed moisture is highly removed and fed into the furnace.
Filled with nitrogen gas or non-oxidizing containing nitrogen gas.

好ましくは原料の移動方向とは向流状に流されている炉
内の窒素雰囲気を極めて低い酸素分圧に保時することが
でき、特に運転操業中の炉内の酸素分圧を継続的に10
atm 以下に保つことが容易である。炉内の反応雰囲
気はN 単独でもよいが。
Preferably, the nitrogen atmosphere in the furnace, which is flowing countercurrently to the moving direction of the raw materials, can be maintained at an extremely low oxygen partial pressure, and in particular, the oxygen partial pressure in the furnace can be maintained continuously during operation. 10
Easy to keep below ATM. The reaction atmosphere in the furnace may be N2 alone.

例えば還元能を有するNH,Hあるいは002 などの非酸化性ガスの一定少量を混用することは実用上
望ましい。また、炉内拌囲気ガスはトンネル炉の出口部
から入口部に向けて原料移動方向と向流状に継続的に流
すことがよい。
For example, it is practically desirable to mix a certain amount of a non-oxidizing gas such as NH, H or 002 having reducing ability. Further, it is preferable that the in-furnace stirring surrounding gas continuously flows from the outlet to the inlet of the tunnel furnace in a countercurrent direction to the raw material movement direction.

加熱反応温度は、α型窒化けい素の製造温度として知ら
れる1000〜1500℃が採用され。
The heating reaction temperature is 1000 to 1500°C, which is known as the production temperature of α-type silicon nitride.

またーその加熱手段としては1通常、加熱炉に用いられ
るいずれの手段も使用できる。
As the heating means, any means normally used in heating furnaces can be used.

本発明の方法は、上記のように一人口及び出口にそれぞ
れ真空置換室を備えたトンネル炉を用いることにより、
炉内の輩累ガス雰囲気の酸素ガスを10 atm以下の
低い分圧に保って加熱窒化素を得ることは実質的に困難
で1例えば特開昭58−88107号公報に開示された
方法のように、単に向流ガスを炉内に流したIJ1本発
明における真空置換室に代えて、該置換室をガスシール
室としてガス置換を行った場合には、酸素分圧はせいぜ
い10〜10atm 程度であって。
The method of the present invention uses a tunnel furnace equipped with a vacuum displacement chamber at each of the inlet and the outlet as described above.
It is virtually difficult to obtain heated nitride by maintaining the oxygen gas atmosphere in the furnace at a low partial pressure of 10 atm or less. In this case, instead of the vacuum exchange chamber in the IJ1 invention in which countercurrent gas is simply flowed into the furnace, when gas exchange is performed using the exchange chamber as a gas seal chamber, the oxygen partial pressure is at most about 10 to 10 atm. There it is.

80係以下のα型を含有する窒化けい累しか得られない
Only nitride silicate containing α-type of less than 80 coefficients can be obtained.

電化反応に要する反応時間は、炉内温度条件。The reaction time required for the electrification reaction depends on the furnace temperature conditions.

粉末状金属けい素の粒度や比表面積などによって変動す
るが0通常、数時間ないし数十時間である。
Although it varies depending on the particle size and specific surface area of the powdered silicon metal, it is usually several hours to several tens of hours.

この反応時間は−例えば炉長15mの一般面トンネル炉
の場合には、プッシャー装置による原料の炉内の移動速
度は、1〜50關/分程度、好ましくは3〜30mm/
分程度が採用される。炉内は。
This reaction time is - For example, in the case of a general surface tunnel furnace with a furnace length of 15 m, the moving speed of the raw material in the furnace by the pusher device is about 1 to 50 mm/min, preferably 3 to 30 mm/min.
Approximately 1 minute is adopted. Inside the furnace.

通常、長さ方向の中央部が1例えば1500℃の最高温
度に設定され、こ\を通る反応生成物は反応を完結しな
がら出口方向に移動し、出口部から流入する一定組成の
雰囲気ガスで冷却されて真空置換室から取出される。
Usually, the central part in the length direction is set at the maximum temperature of 1,500°C, for example, and the reaction products passing through this part move toward the outlet while completing the reaction, and the atmospheric gas of a constant composition flows in from the outlet part. It is cooled and taken out from the vacuum displacement chamber.

本発明方法によれば、α型が例えば90%以上からなる
高純度のα型窒化けい素を容易に製造することができ、
酸素分圧を10atm以下に低下させるとき、5俤以下
の未反応原料を含む95チ以上のものを得ることができ
る。また1本発明の方法は、同一の反応諸条件で長期連
続的に操業することが可能であり1合板ごとの生成物の
バラツキが極めて小さく、高品質のα型窒化けい素を安
定に得ることができる。
According to the method of the present invention, high purity α-type silicon nitride comprising, for example, 90% or more of α-type can be easily produced,
When the oxygen partial pressure is lowered to 10 atm or less, more than 95 atm containing less than 5 atm of unreacted raw material can be obtained. In addition, the method of the present invention can be operated continuously for a long period of time under the same reaction conditions, and the variation in the product from one plywood to another is extremely small, making it possible to stably obtain high quality α-type silicon nitride. I can do it.

本発明の方法で得られる窒化叶い累は、極めて高品質の
α型Si3N4 であって、従来のものに比べて、より
高い強度の安定な窒化けい素焼給体を提供しうるばかり
でなく、ニューセラミック原料として高い信頼性の要求
されるエンジンやガスタービン等の部材への利用が期待
できる極めて望ましいものであり、その他所しい分野へ
の用途も大いに期待できる。
The nitrided material obtained by the method of the present invention is an extremely high quality α-type Si3N4, which not only can provide a stable silicon nitride burner with higher strength than conventional ones, but also has a new It is extremely desirable as a ceramic raw material and can be expected to be used in parts such as engines and gas turbines that require high reliability, and it is also highly expected to be used in other desired fields.

次に、実施例により本発明を更に詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1〜7及び比較例 比表面積4.On?/gを有する工業用金属けい素粉末
200gを台形状200X200朋のアルミナ製の台板
上に載置し、全長15m、炉外形1.5m×2mの入口
及び出口に真空置換室を設はプッシャ一式トンネル炉を
開いて、炉内の最高温部を1500℃に保持し、炉内の
酸素分圧と合板の送りスピードを表中に示す一定条件に
保ちなから運11− 続窒化を行なった。この時の酸素分圧はN2゜N2.N
H3の流量比率を適当にコントロールする事によって微
調整しながら日本碍子製0P−X型02分圧計を用いて
測定した。得られた窒化げい累のα型係及び未反応金属
81%はX線回折ピークからめた。それらの結果を表1
に示す。
Examples 1 to 7 and comparative examples Specific surface area 4. On? 200g of industrial silicon metal powder having a particle size of 200g/g was placed on a trapezoidal 200x200mm alumina base plate, and vacuum displacement chambers were installed at the inlet and outlet of the furnace with a total length of 15m and a furnace outer diameter of 1.5m x 2m. A complete tunnel furnace was opened, and the highest temperature inside the furnace was maintained at 1500℃, and the oxygen partial pressure inside the furnace and the feeding speed of the plywood were maintained at the constant conditions shown in the table. . The oxygen partial pressure at this time was N2°N2. N
The measurement was carried out using a Nippon Insulator 0P-X type 02 partial pressure meter while making fine adjustments by appropriately controlling the flow rate ratio of H3. 81% of the α-type and unreacted metals in the obtained nitride deposit were determined from the X-ray diffraction peak. Table 1 shows the results.
Shown below.

なお、比較のために、同じ原料を用い、真空置換を行な
わないで、置換室をガスシールのみによって行なった場
合の結果も示した。
For comparison, the results are also shown when the same raw materials were used and the replacement chamber was only gas-sealed without vacuum replacement.

12− 上表の結果から1本発明の方法が、従来法に比べてはる
かに優れていることがわかる。
12- From the results in the table above, it can be seen that the method of the present invention is far superior to the conventional method.

特許出願人 信越化学工業株式会社 14− 一り0−Patent applicant: Shin-Etsu Chemical Co., Ltd. 14- One 0-

Claims (1)

【特許請求の範囲】[Claims] 1、粉末状金属けい素を合板に載置してトンネル炉に送
入し一窒素雰囲気下に1000〜1500℃の温度範囲
で窒化反応させる窒化けい素の製造方法において、トン
ネル炉の入口及び出口にそれぞれ真空置換室を設けたプ
ッシャ一式トンネル炉を用い、該粉末状金属けい素を炉
の入口に隣接する真空置換室を通して炉の入口から順次
送入し、炉内の酸素分圧をlロー10atm以下の条件
下で窒化反応させ、得られた反応生成物を炉の出口から
、それに隣接する真空置換室を経て連続的に取出すこと
を特徴とするアルファ型窒化けい素の連続的製造方法・
2、粉末状金属けい素が325メツシユ以下の微細粒度
に調整されたものである特許請求の範囲第1項記載の方
法。
1. In a method for producing silicon nitride, in which powdered silicon metal is placed on a plywood board and sent into a tunnel furnace to undergo a nitriding reaction in a nitrogen atmosphere at a temperature range of 1000 to 1500°C, the inlet and outlet of the tunnel furnace are Using a pusher-equipped tunnel furnace with a vacuum displacement chamber in each chamber, the powdered silicon metal is sequentially introduced from the furnace entrance through the vacuum displacement chambers adjacent to the furnace entrance, and the oxygen partial pressure in the furnace is lowered by 1 row. A method for continuous production of alpha-type silicon nitride, characterized by carrying out a nitriding reaction under conditions of 10 atm or less, and continuously taking out the obtained reaction product from the outlet of the furnace via a vacuum displacement chamber adjacent thereto.
2. The method according to claim 1, wherein the powdered silicon metal is adjusted to a fine particle size of 325 mesh or less.
JP4069184A 1984-03-03 1984-03-03 Continuous preparation of alpha type silicon nitride Granted JPS60186406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4069184A JPS60186406A (en) 1984-03-03 1984-03-03 Continuous preparation of alpha type silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4069184A JPS60186406A (en) 1984-03-03 1984-03-03 Continuous preparation of alpha type silicon nitride

Publications (2)

Publication Number Publication Date
JPS60186406A true JPS60186406A (en) 1985-09-21
JPH0218284B2 JPH0218284B2 (en) 1990-04-25

Family

ID=12587575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4069184A Granted JPS60186406A (en) 1984-03-03 1984-03-03 Continuous preparation of alpha type silicon nitride

Country Status (1)

Country Link
JP (1) JPS60186406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147807A (en) * 1986-12-11 1988-06-20 Shin Etsu Chem Co Ltd Production of silicon nitride having high content of alpha form
EP0440235A2 (en) * 1990-01-31 1991-08-07 Shin-Etsu Chemical Co., Ltd. Preparation of silicon nitride powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888107A (en) * 1981-11-16 1983-05-26 Denki Kagaku Kogyo Kk Continuous preparation of alpha-type silicon nitride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888107A (en) * 1981-11-16 1983-05-26 Denki Kagaku Kogyo Kk Continuous preparation of alpha-type silicon nitride

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147807A (en) * 1986-12-11 1988-06-20 Shin Etsu Chem Co Ltd Production of silicon nitride having high content of alpha form
JPH0463802B2 (en) * 1986-12-11 1992-10-13 Shinetsu Chem Ind Co
EP0440235A2 (en) * 1990-01-31 1991-08-07 Shin-Etsu Chemical Co., Ltd. Preparation of silicon nitride powder
US5232677A (en) * 1990-01-31 1993-08-03 Shin-Etsu Chemical Co., Ltd. Preparation of silicon nitride powder by partially nitriding in a fluidized bed and then completing nitridation in a moving bed

Also Published As

Publication number Publication date
JPH0218284B2 (en) 1990-04-25

Similar Documents

Publication Publication Date Title
US4145224A (en) Method for enhancing the crystallization rate of high purity amorphous Si3 N4 powder, powders produced thereby and products therefrom
US4499193A (en) Process for producing beta&#39;-silicon aluminum oxynitride (B&#39;-SiAlON) using discrete particles
JPS6112844B2 (en)
JPH0134925B2 (en)
JPS59107908A (en) Manufacture of silicon nitride powder with superior sinterability
JPS62210048A (en) Production of nonoxide powder
US20030121365A1 (en) Method of producing fine tungsten powder from tungsten oxides
JPS62167209A (en) Alpha-sialon powder and its production
JPS62223009A (en) Production of alpha-sialon powder
US4511666A (en) Process for producing beta&#39;-silicon aluminum oxynitride (B&#39;-SiAlON)
JPS60186406A (en) Continuous preparation of alpha type silicon nitride
EP0385096B1 (en) Process for producing sinterable crystalline aluminum nitride powder
JPS5888107A (en) Continuous preparation of alpha-type silicon nitride
JPH035310A (en) Method and continuous furnace for production of aluminium nitride
JPS5823346B2 (en) Production method of α-sialon sintered body
CA1235710A (en) PROCESS FOR PRODUCING .beta.&#39;-SILICON ALUMINUM OXYNITRIDE (.beta.&#39;-SIALON)
JPS60122706A (en) Manufacture of silicon nitride powder
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPS58176109A (en) Production of alpha-type silicon nitride
JPS63147807A (en) Production of silicon nitride having high content of alpha form
JPH0454609B2 (en)
JPS5939704A (en) Method for synthesizing silicon nitride
JPS61155209A (en) Preparation of easily sinterable aluminum nitride powder
JPH0459608A (en) Continuous production of aluminum nitride
WO1986006360A1 (en) Process for preparing high purity aluminum nitride

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term