JPS60172331A - Recovering method of mechanical power - Google Patents
Recovering method of mechanical powerInfo
- Publication number
- JPS60172331A JPS60172331A JP59030025A JP3002584A JPS60172331A JP S60172331 A JPS60172331 A JP S60172331A JP 59030025 A JP59030025 A JP 59030025A JP 3002584 A JP3002584 A JP 3002584A JP S60172331 A JPS60172331 A JP S60172331A
- Authority
- JP
- Japan
- Prior art keywords
- carbon dioxide
- mechanical power
- gas
- turbine
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Gas Separation By Absorption (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、新規な炭酸ガス吸収プロセスの省エネに関す
るものであり、詳細には、炭酸ガス吸収溶液を用いるガ
ス中の炭酸ガス吸収プロセスにおいて、該炭酸ガス吸収
溶液の再生塔頂から出る炭酸ガス/水蒸気混合ガスを予
熱するかもしくはそのまま膨張タービンに導入し動力を
発生させた後、冷却して水分分離するか、又は水分分離
した後、該降圧炭酸ガス/水蒸気混合ガスを前記の発生
動力の一部をもちいて再び圧縮し、所望により冷却し水
分分離する如くしてなる動力の回収方法である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to energy saving in a novel carbon dioxide absorption process, and in particular, in a process of absorbing carbon dioxide in gas using a carbon dioxide absorption solution, the present invention relates to the regeneration of the carbon dioxide absorption solution. The carbon dioxide/steam mixture gas coming out of the top of the tower is either preheated or directly introduced into an expansion turbine to generate power, and then cooled and water is separated, or after the water is separated, the reduced pressure carbon dioxide/steam mixture gas is produced. This is a power recovery method in which a part of the generated power is used to recompress the fuel, and if desired, it is cooled and water is separated.
従来、天然ガス、ナフサなどを改質して得た組成の改質
ガスを例えばアンモニアの合成原料にするなどの場合に
は、合成上の不都合から、或いは副生成分の有効利用の
側面より、炭酸ガスは、通常、炭酸ガスの吸収溶液を使
用する方法により吸収除去・回収される。Conventionally, when reformed gas with a composition obtained by reforming natural gas, naphtha, etc. is used as a raw material for ammonia synthesis, for example, due to inconveniences in synthesis or from the aspect of effective use of by-products, Carbon dioxide gas is usually absorbed and removed and recovered by a method using a carbon dioxide absorption solution.
従来の炭酸カリ溶液等の吸収液をもちいたガス中の炭酸
ガス吸収プロセスにおける該溶液の再生は、再生率、そ
の後に続く冷却等の点から大気圧近傍、約100℃程度
の温度で行われ、再生塔から出る炭酸ガス/水蒸気は冷
却され同伴水分は分離後、系外へと送られる。In the conventional process of absorbing carbon dioxide in gas using an absorption liquid such as a potassium carbonate solution, regeneration of the solution is carried out near atmospheric pressure and at a temperature of about 100°C from the viewpoint of regeneration rate and subsequent cooling. The carbon dioxide/steam coming out of the regeneration tower is cooled, and the entrained water is separated and sent out of the system.
本発明者らは、上記のプロセスの改良について検針し、
再生塔から出る炭酸ガス/水蒸気の混合ガス中の水分に
着目した結果、該混合ガスは冷却水骨分Mu11t、再
生塔から出た直後のモル数の数分の−になることに着目
し、本発明を完成さ−Uるに至った。The present inventors conducted a meter reading regarding the improvement of the above process,
As a result of focusing on the moisture in the mixed gas of carbon dioxide gas / water vapor coming out of the regeneration tower, it was noticed that the mixed gas has a cooling water content Mu11t, which is a fraction of the number of moles immediately after leaving the regeneration tower, The present invention has now been completed.
以下、本発明を説明する。The present invention will be explained below.
本発明においては、まず、前記の再生塔から出る炭酸ガ
ス/水蒸気の混合ガスは、膨張タービンに導入され、こ
こで一旦大気圧或いは大気圧以下まで膨張され、動力を
発生する。In the present invention, first, the carbon dioxide/steam mixture gas discharged from the regeneration tower is introduced into an expansion turbine, where it is once expanded to atmospheric pressure or below atmospheric pressure to generate power.
ついで、該混合ガスは冷却され、水分分離される。The mixed gas is then cooled and water separated.
水分分離後の炭酸ガスを主成分上する該ガスは、前記膨
張タービンにおける膨張後の圧力、および、該ガスの使
用方法(廃棄もしくは再生使用)にもよるが、再び必要
圧力まで、前記の発生動力の一部を用いて昇圧(大気圧
もしくは原料ガス導入部の入り自圧力)する。The gas, which is mainly composed of carbon dioxide gas after water separation, is heated to the generated gas again up to the required pressure, depending on the pressure after expansion in the expansion turbine and the method of using the gas (disposal or reuse). Part of the power is used to increase the pressure (atmospheric pressure or natural pressure at the raw material gas introduction part).
以下に、図面を用いて、具体例を説明する。A specific example will be described below with reference to the drawings.
第1図は、本発明の動力回収方法を示したフロー図であ
り、第2図は、第1図の方法の改良であり、圧縮機と冷
却・水分骨M器を更に設けたものである。Fig. 1 is a flowchart showing the power recovery method of the present invention, and Fig. 2 is an improvement on the method shown in Fig. 1, which further includes a compressor and a cooling/moisture-recovering device. .
第3図は、従来法を示す。FIG. 3 shows the conventional method.
第3図に於いて、リフA−マー等で改質された改質ガス
を、必要に応じて再生塔Rの底等で熱回収し冷却・水分
分離したのちに、管21より吸収塔Aに導入される。吸
収塔Aで炭酸ガスを吸収された改質ガスは管22より、
アンモニアその他の製造プラントの原料ガスとして系外
に送られる。吸収塔Aよりの炭酸ガスを吸収した吸収液
は、ハイドリンクタービンHを経て、再生塔Rに導入さ
れ、ここでフラッシュ等して炭酸ガスを排出し再生され
、ポンプPを経て、吸収塔Aに循環される。不足となる
水分基は再生塔Rの塔頂等から補給される。In Fig. 3, the reformed gas reformed in the ref A-mer etc. is recovered as necessary at the bottom of the regeneration tower R, cooled and water separated, and then transferred to the absorption tower A through the pipe 21. will be introduced in The reformed gas from which carbon dioxide has been absorbed in the absorption tower A is passed through the pipe 22.
It is sent outside the system as raw material gas for ammonia and other manufacturing plants. The absorption liquid that has absorbed carbon dioxide gas from absorption tower A is introduced into regeneration tower R through hydration turbine H, where it is flushed, etc., to discharge carbon dioxide gas, and is regenerated. is circulated. The insufficient water groups are replenished from the top of the regeneration tower R, etc.
再生塔Rよりの炭酸ガス/水蒸気の混合ガスは管3を経
て、冷却器CLで冷却し、分離器りで水を分離したのち
管5より、系外に排出され、廃棄若しくは回収利用され
る。The mixed gas of carbon dioxide/steam from the regeneration tower R passes through a pipe 3, is cooled by a cooler CL, and after separating water in a separator, is discharged from the system through a pipe 5, and is disposed of or recycled. .
このように、従来法においては、再生塔よりのガスから
の動力の回収等は通常行われていない。As described above, in the conventional method, recovery of power from the gas from the regeneration tower is not normally performed.
これに対して、第1図の場合、再生塔Rよりの炭酸ガス
/水蒸気の混合ガスは、タービンTに導入され、ここで
動力を発生したのち、冷却器CLIで冷却さし、分離器
D1で水を分離したのら管6より、系外に排出され、廃
棄若しくは回収利用される。また、第2図の場合には、
管6よりの炭酸ガス/水蒸気の混合ガスは、タービンT
の動力の一部により駆動される圧縮機Cに導入され、圧
縮された後、再び、冷却器CL2で冷却さし、分離器D
2で水を分離したのち管6より、系外に排出され、廃棄
若しくは回収利用される。On the other hand, in the case of Fig. 1, the carbon dioxide gas/steam mixture gas from the regeneration tower R is introduced into the turbine T, where it generates power, and then cooled with the cooler CLI, and then into the separator D1. After the water is separated, it is discharged from the system through a tube 6 and is disposed of or recycled. Also, in the case of Figure 2,
The mixed gas of carbon dioxide/steam from the pipe 6 is sent to the turbine T.
After being introduced into the compressor C driven by a part of the power of the
After the water is separated in step 2, it is discharged from the system through pipe 6 and is disposed of or recycled.
以上、本発明の方法をフロー図を用いて説明したが、本
発明の方法はこの図に限定されるものでは無く、例えば
、安価な熱源がある場合、それをタービンに入る前の炭
酸ガス/水蒸気の混合ガスを予熱することなど可能であ
る。Although the method of the present invention has been explained above using a flow diagram, the method of the present invention is not limited to this diagram. It is possible to preheat a mixed gas of water vapor.
以上の如くである本発明の方法は、従来動力回収されな
かった系に於いて、動力の回収が可能となるもので省エ
ネ効果の高いものである。The method of the present invention as described above makes it possible to recover power in a system in which power was not recovered conventionally, and is highly effective in saving energy.
検討例
本発明の方法を第2図に示したフローに従って、再生塔
よりの炭酸ガス/水蒸気の混合ガス中の炭酸ガス成分が
16.250 N n(/ Hの場合について検討した
結果を第1表に示した。Example of Study The method of the present invention was carried out according to the flow shown in Fig. 2, and the results of the study on the case where the carbon dioxide component in the mixed gas of carbon dioxide/steam from the regeneration tower was 16.250 N n (/H) were as follows. Shown in the table.
又、比較のため、再生塔よりの炭酸ガス/水蒸気の混合
ガス量等が同一の場合の従来法(第3図の場合)の熱及
び物質収支を第2表に示した。For comparison, Table 2 shows the heat and material balance of the conventional method (the case shown in FIG. 3) when the amount of carbon dioxide gas/steam mixture gas etc. from the regeneration tower is the same.
第1表、第2表の結果を比較すると、系外に排気される
炭酸ガス/水蒸気の混合ガスの圧力及び温度が同一の場
合に於いて、回収動力が約750に−となることがわか
る。Comparing the results in Tables 1 and 2, it can be seen that when the pressure and temperature of the carbon dioxide/steam mixture gas exhausted to the outside of the system are the same, the recovered power is approximately 750 -. .
一例として、天然ガスやナフサ等からのアンモニア製造
能力1000T/ Dの製造装置の場合、通常、発生炭
酸ガスは約28.00ONnr / I+で、回収動力
は約1 、300に讐となる。As an example, in the case of a production equipment with a production capacity of 1000 T/D for ammonia from natural gas, naphtha, etc., the generated carbon dioxide gas is usually about 28.00 ONnr/I+, and the recovery power is about 1.300 T/D.
尚、タービンおよび圧縮機の効率は0.8、エンタルピ
ー(■])及びエントロピー(S)は、0℃、Iata
(+120は液体)を基準とした。The efficiency of the turbine and compressor is 0.8, the enthalpy (■) and entropy (S) are 0°C, Iata
(+120 is liquid) was used as the standard.
第1表
第2表
11EO6,1EO4,1EO3その他は(x+oI′
+ x+o’、 x+n etcを意味する。Table 1 Table 2 11EO6, 1EO4, 1EO3 Others are (x+oI'
+x+o', x+n etc.
第1図及び第2図は本発明のフローを示すフロー図であ
り、第3図は従来法のフローを示すフロー回出ある。図
中の符号はそれぞれ、A:吸収塔 R:再生塔 P:ボ
ンプ
H:ハイドリックタービン M:駆動機T:タービン
C:圧縮器 L:負荷
CLSCLI 、Cl3 :冷却器
り、Di、D2:分離器 1〜12.21.22:管を
示す。
特許出願人 三菱瓦斯化学株式会社
代表者 長野 和書
葬、1図
幕3凹1 and 2 are flow diagrams showing the flow of the present invention, and FIG. 3 is a flow diagram showing the flow of the conventional method. The symbols in the diagram are respectively: A: Absorption tower R: Regeneration tower P: Bomb H: Hydraulic turbine M: Drive machine T: Turbine
C: Compressor L: Load CLSCLI, Cl3: Cooler, Di, D2: Separator 1-12.21.22: Shows the tube. Patent applicant Mitsubishi Gas Chemical Co., Ltd. Representative Nagano Japanese calligraphy funeral, 1 curtain, 3 incasses
Claims (1)
スにおいて、該炭酸ガス吸収溶液の再生塔頂から出る炭
酸ガス/水蒸気混合ガスを予熱するかもしくはそのまま
膨張タービンに導、。 入し動力を発生させた後、冷却して水分分離するか、又
は水分分離した後、該降圧炭酸ガス/水蒸気混合ガスを
前記の発生動力の一部をもちいて再び圧縮し、所望によ
り冷却し水分分離する如くしてなる動力の回収方法[Scope of Claims] In a process for absorbing carbon dioxide in gas using a carbon dioxide absorption solution, the carbon dioxide/steam mixture gas discharged from the top of the regeneration tower of the carbon dioxide absorption solution is preheated or directly guided to an expansion turbine. After the input power is generated, the water is separated by cooling, or after the water is separated, the reduced pressure carbon dioxide/steam mixture gas is compressed again using a part of the generated power and cooled if desired. Method for recovering power by separating water
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59030025A JPS60172331A (en) | 1984-02-20 | 1984-02-20 | Recovering method of mechanical power |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59030025A JPS60172331A (en) | 1984-02-20 | 1984-02-20 | Recovering method of mechanical power |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60172331A true JPS60172331A (en) | 1985-09-05 |
JPH047247B2 JPH047247B2 (en) | 1992-02-10 |
Family
ID=12292285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59030025A Granted JPS60172331A (en) | 1984-02-20 | 1984-02-20 | Recovering method of mechanical power |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60172331A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013505823A (en) * | 2009-09-24 | 2013-02-21 | アルストム テクノロジー リミテッド | Method and system for capturing and utilizing energy generated in a flue gas flow treatment system |
JP2016538130A (en) * | 2013-10-28 | 2016-12-08 | エナジー リカバリー,インコーポレイティド | System and method for utilizing a turbine system in a gas processing system |
-
1984
- 1984-02-20 JP JP59030025A patent/JPS60172331A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013505823A (en) * | 2009-09-24 | 2013-02-21 | アルストム テクノロジー リミテッド | Method and system for capturing and utilizing energy generated in a flue gas flow treatment system |
JP2016538130A (en) * | 2013-10-28 | 2016-12-08 | エナジー リカバリー,インコーポレイティド | System and method for utilizing a turbine system in a gas processing system |
Also Published As
Publication number | Publication date |
---|---|
JPH047247B2 (en) | 1992-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3823222A (en) | Separation of co2 and h2s from gas mixtures | |
US4751151A (en) | Recovery of carbon dioxide from fuel cell exhaust | |
US2886405A (en) | Method for separating co2 and h2s from gas mixtures | |
US4566267A (en) | Power generating plant with an integrated coal gasification plant | |
US3659401A (en) | Gas purification process | |
US4797141A (en) | Method for obtaining CO2 and N2 from internal combustion engine or turbine generated gases | |
US4146569A (en) | Process for removing gaseous impurities from a gaseous mixture containing the same | |
WO2019232626A1 (en) | Post-combustion co2 capture with heat recovery and integration | |
JPS61138515A (en) | Method of removing co2 and/or h2s from gas | |
US4690812A (en) | Integrated production of ammonia and urea | |
US3155722A (en) | Recovery of residual ammonia and carbon dioxide in the synthesis of urea | |
EP0270040A2 (en) | Process for removing carbon dioxide from a gas | |
GB2062597A (en) | Decarbonation of gases | |
RU2283832C2 (en) | Method for simultaneous production of ammonia and urea | |
US4529417A (en) | Process for the isothermal absorption of ethylene oxide using film absorbers | |
JP3322923B2 (en) | Method for producing carbon monoxide and hydrogen | |
JPS60172331A (en) | Recovering method of mechanical power | |
JPS60165063A (en) | Fuel cell power generation system | |
JPS59128202A (en) | Method for reforming methanol while recycling purge gas | |
US3666807A (en) | Process for producing urea | |
US3567381A (en) | Method of hydrogen manufacture | |
JPS6092280A (en) | Ethylene oxide concentration and device | |
US3107149A (en) | Method of separating ammonia from carbon dioxide | |
JPS6058744B2 (en) | Method for producing urea solution from NH↓3 and CO↓2 | |
JPS585190B2 (en) | Separation and recovery method of unreacted substances in urea synthesis |