JPS6017211A - Thermosyphon type generator - Google Patents
Thermosyphon type generatorInfo
- Publication number
- JPS6017211A JPS6017211A JP12330983A JP12330983A JPS6017211A JP S6017211 A JPS6017211 A JP S6017211A JP 12330983 A JP12330983 A JP 12330983A JP 12330983 A JP12330983 A JP 12330983A JP S6017211 A JPS6017211 A JP S6017211A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- medium
- turbine
- boiling point
- generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K9/00—Plants characterised by condensers arranged or modified to co-operate with the engines
- F01K9/02—Arrangements or modifications of condensate or air pumps
- F01K9/026—Returning condensate by capillarity
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、サイフオン式発電機に係シ、特に、異なる二
媒体の作動液を封入した重力型ヒートパイプ構造の内部
にジェットポンプを複数設置し、二媒体の接触の際の攪
拌・混合を促進し、また外部に、タービンと発電機を設
置して熱変換器の小型化及び簡単化を図り、しかも高効
率の性能を得るのに好適な熱サイフオン式発電機に関す
る。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a siphon-type generator, and in particular, to a siphon-type generator, in which a plurality of jet pumps are installed inside a gravity-type heat pipe structure filled with two different working fluids. , promotes stirring and mixing when two media come into contact, and also installs a turbine and generator externally to make the heat converter smaller and simpler, and is suitable for obtaining high efficiency performance. Concerning thermosiphon generators.
従来の重力型ヒートパイプについて第1図によシ説明す
る。重力型ヒートパイプは、パイプ1とパイプl内を真
空引きした後封入された作動液2だけの簡単な組み合わ
せから成り、先ず加熱部1aで作動液2が沸騰し、発生
蒸気は放熱部ICで凝縮後、重力の作用で再び加熱部に
戻る。以上 ・のような作動液2の循環の繰、り返しに
よって、大量の熱を有効且つ連続的に伝えることができ
るが、熱サイフオン式の場合、この循環を維持するため
加熱部1aが下方になるよう姿勢上の制約を受ける。ま
た、循環作用を促進する目的でパイプ内に毛管作用を与
えるクイックを形成することがあるが、本構造の場合に
はクイックの有無による影響は小さい。そして、本装置
の熱サイフオン式ヒートパイプの場合、工業機器を対象
とした空気−空気の排熱回収用熱交換器として用いられ
、作動液2の相変化を利用した熱移動装置としてのみ使
用されている。さらに、外部加熱量として工場廃熱等を
利用する際、温度変動が大きいので作動液2が沸騰する
場合の不安定流動を生ずる可能性がある。A conventional gravity type heat pipe will be explained with reference to FIG. The gravity heat pipe consists of a simple combination of a pipe 1 and a working fluid 2 that is sealed after the inside of the pipe is evacuated.First, the working fluid 2 is boiled in the heating section 1a, and the generated steam is sent to the heat dissipation section IC. After condensing, it returns to the heating section under the action of gravity. By repeating the circulation of the working fluid 2 as described above, a large amount of heat can be transferred effectively and continuously. However, in the case of the thermosiphon type, the heating part 1a is moved downward in order to maintain this circulation. Postural constraints are imposed to ensure that Furthermore, in order to promote circulation, quicks that provide capillary action may be formed within the pipe, but in the case of this structure, the presence or absence of quicks has little effect. In the case of the thermosiphon type heat pipe of this device, it is used as an air-air exhaust heat recovery heat exchanger for industrial equipment, and is used only as a heat transfer device that utilizes the phase change of the working fluid 2. ing. Furthermore, when factory waste heat or the like is used as the amount of external heating, there is a possibility that unstable flow may occur when the working fluid 2 boils due to large temperature fluctuations.
また、単成分によるヒートパイプ式熱機関を第2図によ
り説明する。ヒートパイプ全構成する容器4の内面全ウ
ィック5により覆うと共に、下端部を蒸発部4aに、ま
た、上喘部を凝縮部4Cに形成する。そして容器4内に
、液相・気相間で状態変化する動作物質を収容する。さ
らに蒸発部4aと凝縮部4C間の断熱部4bの断熱流路
6の中間部6a内と、タービン7を設け、その回転軸8
を軸受9を介して出力取出用伝動機構lOに連絡する。Further, a single-component heat pipe type heat engine will be explained with reference to FIG. The entire inner surface of the container 4 constituting the heat pipe is covered with the wick 5, and the lower end is formed into the evaporating section 4a, and the upper end section is formed into the condensing section 4C. A working substance whose state changes between a liquid phase and a gas phase is contained in the container 4. Furthermore, a turbine 7 is provided in the middle part 6a of the heat insulating flow path 6 of the heat insulating part 4b between the evaporating part 4a and the condensing part 4C, and its rotating shaft 8
is connected to the output extraction transmission mechanism IO via the bearing 9.
蒸発部4aに熱Affi加えると、ウィック5内部の物
質が蒸発して断熱流路6を矢印方向に流れ、中間部6a
を通る時にそのエネルギーによりタービン7を回転させ
、回転軸8が回転し、伝動機構lOによシ外部に取出さ
れる。本装置の特徴は、ヒートパイプ容器4内の動作物
質の移動経路にタービン7を設置し、動作物質の保有エ
ネルギーを取出すようにして、ヒートパイプに熱機関の
機能をもたせたものでちる。しかし、本構造はヒートパ
イプの断熱部4b内にタービン7を設置したため、加熱
部4aと凝縮部4Cから断熱部4blオフ・セットする
ことによシ、ヒートパイプ製作の点から通常のパイプの
使用が不可能となり、構造の単純化に関して難点がある
。まだ、ヒートバイブ内にタービン7を内蔵するため、
パイプと回転軸8とのシールが難しく、さらに動作物質
の蒸発・凝縮を行う熱交換部と出力を取出すタービン7
部の構成要素を独立に製作することが不可能である。こ
れらの影響により、ヒートパイプ単体として考えると、
伝熱面積及び断熱部の寸法が大きくなり、全体寸法は拡
大されるという欠点がある。また、本方式ヒートパイプ
の場合、重力の作用に支配されクイック5の効果はそれ
ほど期待できない。When heat Affi is applied to the evaporation section 4a, the substance inside the wick 5 evaporates and flows through the adiabatic channel 6 in the direction of the arrow, and the intermediate section 6a
When passing through, the turbine 7 is rotated by the energy, the rotating shaft 8 is rotated, and the energy is taken out to the outside by the transmission mechanism IO. The feature of this device is that a turbine 7 is installed in the movement path of the working substance in the heat pipe container 4, and the energy retained in the working substance is extracted, giving the heat pipe the function of a heat engine. However, in this structure, since the turbine 7 is installed inside the heat insulating part 4b of the heat pipe, by offsetting the insulating part 4bl from the heating part 4a and the condensing part 4C, it is possible to use a normal pipe from the viewpoint of manufacturing the heat pipe. This makes it impossible, and there are difficulties in simplifying the structure. Since the turbine 7 is still built into the heat vibrator,
It is difficult to seal the pipe and the rotating shaft 8, and there is also a heat exchange section that evaporates and condenses the operating substance and a turbine 7 that extracts the output.
It is not possible to manufacture the components of the section independently. Due to these effects, when considering the heat pipe as a single unit,
There is a disadvantage that the heat transfer area and the dimensions of the heat insulating part are increased, and the overall dimensions are enlarged. In addition, in the case of the heat pipe of this method, the effect of Quick 5 cannot be expected to be so great because it is dominated by the action of gravity.
また、自然循環式の中低温度差利用発電プラントについ
て第3図により説明する。本発電プラントは従来の火力
発電用のランキンサイクルを構成しておシ、作動媒体と
して中間熱媒体と低沸点媒体を互いに溶解して混合媒体
を形成している。まず外部加熱Aにより、予熱器21内
の低沸点媒体を予熱した後、自然循環用ボイラの気液分
離器23ヘフラツシユし、外部加熱Δによる蒸発器23
の上昇管と下降管を介して、封入した混合媒体が自然循
環流を形成する。一方、発生した低沸点媒体蒸気はター
ビン7内へ送られ、ここで断熱膨張してタービン7を回
転し、伝動機構8fI:介して発電機18が出力を発生
する。その後膨張した低沸点媒体蒸気は凝縮器24内で
凝縮液化し、ポンプ25により再び予熱器21へ低沸点
媒体液を圧縮液として送る。本発電プラントの構成要素
は、予熱器21.蒸発器22及び凝縮器24から成る熱
交換器がシェルチューブ型熱交換器や複数の蒸発上昇管
等からなシ、伝熱管として上昇管やチューブの長さや数
が多くなるため、犬[]ノに熱交換器が大型になる欠点
がある。しかも、作動媒体として、溶解性の中間熱媒体
と低沸点媒体を用いているので、蒸発上昇管内では管内
沸騰熱伝達率が悪い。その上、蒸気発生のための蒸発器
22の構造は自然循環用ボイラであるが、凝縮後の低沸
点媒体を循環させるためにポイズ25を用いてい−るの
で、加熱A源である送風のだめのプロワ、凝縮器24内
で熱交換する際の冷却流体用ポンプ等を含めると、所内
勤力率が約30チにもな勺、発電プ、ラントの性能が低
下する原因となる。Further, a natural circulation type power generation plant that utilizes the difference between medium and low temperatures will be explained with reference to FIG. This power generation plant has a conventional Rankine cycle for thermal power generation, and uses an intermediate heat medium and a low boiling point medium as working media to form a mixed medium by dissolving them into each other. First, the low boiling point medium in the preheater 21 is preheated by external heating A, and then flashed to the gas-liquid separator 23 of the natural circulation boiler, and then flushed to the evaporator 23 by external heating Δ.
The enclosed mixed medium forms a natural circulation flow through the riser and downcomer pipes. On the other hand, the generated low-boiling medium steam is sent into the turbine 7, where it undergoes adiabatic expansion to rotate the turbine 7, and the generator 18 generates an output via the transmission mechanism 8fI. Thereafter, the expanded low-boiling medium vapor is condensed and liquefied in the condenser 24, and the low-boiling medium liquid is sent to the preheater 21 again as a compressed liquid by the pump 25. The components of this power plant are preheater 21. If the heat exchanger consisting of the evaporator 22 and condenser 24 is not a shell tube heat exchanger or multiple evaporative riser tubes, the length and number of riser tubes and tubes will increase as heat transfer tubes. The disadvantage is that the heat exchanger is large. Moreover, since a soluble intermediate heat medium and a low boiling point medium are used as the working medium, the boiling heat transfer coefficient within the tube is poor in the evaporative riser tube. Furthermore, the structure of the evaporator 22 for generating steam is a natural circulation boiler, but since the poise 25 is used to circulate the low boiling point medium after condensation, the evaporator 22, which is the heating source A, is Including the blower, the pump for cooling fluid when exchanging heat in the condenser 24, etc., the in-house labor rate is about 30 inches, which causes a decline in the performance of the power plant, power plant, and runt.
本発明の目的は、発電システムにおいて所内勤力率の低
減と熱交換器の小型化及び性能向上のために、下部で蒸
発し、上部で凝縮し、消費電力の小さなジェットポンプ
の吸引による強制循環を利用した熱サイフオン構造を用
いて発電する中小容量用高効率熱サイフオン式発電機を
提供することにおる。The purpose of the present invention is to reduce the in-house labor rate, downsize the heat exchanger, and improve performance in a power generation system by evaporating in the lower part and condensing in the upper part, and forcing circulation by suction using a jet pump with low power consumption. The purpose of the present invention is to provide a high-efficiency thermosiphon generator for small to medium capacity that generates electricity using a thermosiphon structure using a thermosiphon structure.
本発明は熱サイフオン式ヒートパイプ構造で従来分割さ
れていた予熱器、蒸発器、凝縮器等の熱交換器を一体化
し、1本のチューブとして熱交換器を構成することによ
勺、熱交換器の小型化を図る。また、作動媒体を従来の
溶解性の二媒体に代わり、非溶解性の中間熱媒体と低沸
点媒体を用いることによシ、ヒートパイプ下部の蒸発部
において、ジェットポンプのノズル先端から低沸点媒体
液が微細液滴として熱媒体中に分散することにより、二
媒体の攪拌中混合によシ接触伝熱面積が拡大され、しか
も壁のない直接接触沸騰熱伝達によシ蒸気が発生するの
で蒸発部の伝熱面積が小さい上に、伝熱性能が向上する
。虜た、ヒートパイプ上部の凝縮器において、タービン
から出た低沸点媒体蒸気は、同一成分の冷却媒体液中へ
噴出し、ここでも壁の無い直接接触凝縮熱伝達により、
凝縮液化するので凝縮部の伝熱面積が小さい北伝熱性能
が向上する。The present invention integrates heat exchangers such as a preheater, evaporator, and condenser, which were conventionally separated, with a thermosiphon type heat pipe structure, and configures the heat exchanger as a single tube. Try to make the container smaller. In addition, by using a non-soluble intermediate heat medium and a low boiling point medium as the working medium instead of the conventional two soluble media, the low boiling point medium is passed from the jet pump nozzle tip to the evaporation section at the bottom of the heat pipe. By dispersing the liquid in the heating medium as fine droplets, the contact heat transfer area is expanded during mixing of the two media during stirring, and direct contact boiling heat transfer without walls generates steam, resulting in evaporation. The heat transfer area of the part is small and the heat transfer performance is improved. In the condenser at the top of the heat pipe, the low-boiling medium vapor from the turbine is ejected into the cooling medium liquid of the same composition, and here again, by direct contact condensation heat transfer without walls,
Since it is condensed and liquefied, heat transfer performance is improved due to the small heat transfer area of the condensing part.
したがって、蒸発部、凝縮部ともにヒートパイプ管内で
直接接触熱伝達により、管内の熱伝達率が向上するので
、加熱源、放熱源が従来と同一の場合、管外の熱伝達率
が同一でも、総括的な熱貫流率は両者ともに高くなる。Therefore, the heat transfer coefficient inside the heat pipe improves due to direct contact heat transfer in both the evaporation section and the condensation section, so if the heating source and heat radiation source are the same as before, even if the heat transfer coefficient outside the tube is the same, The overall heat transfer coefficient becomes high in both cases.
それ故、従来の発電プラントと同じ出力を出す場合、熱
交換性能が向上した分だけ、伝熱面積が小さくなる。Therefore, when producing the same output as a conventional power plant, the heat transfer area becomes smaller due to the improved heat exchange performance.
また、所内勤力率低減のため、発電プラント内の蒸発部
内に消費電力の小さなジェットポンプを設置し、重力効
果による水頭差圧を利用して凝縮熱循環力のみで作動媒
体の安定循環流を形成することが出来る。Additionally, in order to reduce the labor rate within the plant, a jet pump with low power consumption was installed in the evaporation section of the power generation plant, and a stable circulation flow of the working medium was achieved using only the condensing heat circulation force by utilizing the head differential pressure caused by the gravitational effect. can be formed.
以下、本発明の一実施例を第4図により説明する。本発
明の発電方式を達成するだめの熱サイフオン式発電機の
基本構造は、1本のヒートパイプ管内4を3部分に分け
、下部を蒸発部4a、中間部を断熱部4b、上部ft凝
縮部4Cとし、容器4上部に小型のラジアル・タービン
7と伝達機構8を介した発電機18t−設置したもので
ある。An embodiment of the present invention will be described below with reference to FIG. The basic structure of the thermosiphon generator that achieves the power generation method of the present invention is that the inside of one heat pipe 4 is divided into three parts: the lower part is the evaporator part 4a, the middle part is the heat insulating part 4b, and the upper part is the condensing part. 4C, with a small radial turbine 7 and a generator 18t installed via a transmission mechanism 8 above the container 4.
そこで、本発電システムの動作原理は、蒸発部4aを加
熱Aすると、容器内に封入した作動媒体が沸騰−蒸発し
て蒸気上昇流Cを発生し、断熱材28で覆われた断熱都
4b内を上方へ上昇し、作動媒体蒸気はタービン7内で
断熱膨張して発電機18を回し出力する。その後、蒸気
は凝縮部4Cで放熱Bにより凝縮液化して下降流D’t
l−形成し、再び同じ作用をする。Therefore, the operating principle of this power generation system is that when the evaporator 4a is heated A, the working medium sealed in the container boils and evaporates to generate an upward steam flow C, which causes the inside of the heat insulating cap 4b covered with the heat insulating material 28 to rise. The working medium steam expands adiabatically within the turbine 7, rotates the generator 18, and outputs an output. After that, the steam is condensed and liquefied by heat radiation B in the condensing section 4C and flows downward D't
l-form and do the same thing again.
ここで、従来の発電プラントの大型化のJ東回となる熱
交換器が1本のパイプで形成されることにより極めて小
型にでき、中小容量の発電プラントとして適時設置され
、必要に応じて本発電プラントを多数量産することによ
り、仕様に応じた大容量発電プラントに拡大することも
可能である。Here, the heat exchanger, which is an improvement on the enlargement of conventional power generation plants, can be made extremely small by being formed with a single pipe, and can be installed at the appropriate time as a small to medium capacity power generation plant. By mass-producing a large number of power plants, it is also possible to expand to large-capacity power plants according to specifications.
次に、容器4内に封入する作動媒体の循環機構を第5図
により説明する。まず、封入する作動媒体として、外部
熱源変動による蒸気爆発・不安定流動を防止するため、
中間熱媒体と低沸点媒体を用いる。これら二媒体は溶解
性・あるいは非溶解性の両者とも可能である。下部の蒸
発部における自由液面上の圧力は、低沸点媒体と中間熱
媒体の飽和蒸気圧Pvと自由液面までの水頭圧γmLh
の和で表わされる。Next, a circulation mechanism for the working medium sealed in the container 4 will be explained with reference to FIG. First, as a working medium to be sealed, in order to prevent steam explosion and unstable flow due to external heat source fluctuations,
Use intermediate heat medium and low boiling point medium. These two media can be both soluble and non-soluble. The pressure above the free liquid level in the lower evaporation section is determined by the saturated vapor pressure Pv of the low boiling point medium and intermediate heat medium and the water head pressure γmLh up to the free liquid level.
It is expressed as the sum of
PP8=Pv+rmLh
但し、rmf′i二媒体二相状態での比重量である、ま
た、上部の凝縮部における凝縮液面上の圧力は、飽和凝
縮圧力Pfと自由液面までの水頭圧rfLfの和で表わ
される。PP8=Pv+rmLh However, rmf′i is the specific weight in a two-medium two-phase state, and the pressure above the condensed liquid level in the upper condensing section is the sum of the saturated condensation pressure Pf and the water head pressure up to the free liquid level rfLf. It is expressed as
Pc=Pf+γfL1 但し、γfは凝縮液の比重量である。Pc=Pf+γfL1 However, γf is the specific weight of the condensate.
以上の圧力バランスが、次式の関係にあれば、ジェット
ポンプのノズルから、低沸点媒体が噴出する際、熱媒体
が吸上げられ、二媒体の強制循環が安定に行われ発電す
る。If the above pressure balance satisfies the following equation, when the low boiling point medium is ejected from the nozzle of the jet pump, the heat medium is sucked up, stable forced circulation of the two mediums is performed, and electricity is generated.
Pc>P+e
したがって、以上の原理を工業的に達成するためには、
容器内部の圧力室、即ちタービンの前後における高圧用
と低圧用の室を設け、特に発生蒸気流Cと凝縮液流りと
の間で熱交換を行なわないように、可能な断熱構造を要
する。そのために、本発電フリントの内部構造に関し、
その−例を第6図により説明する。Pc>P+e Therefore, in order to achieve the above principle industrially,
The pressure chambers inside the vessel, i.e. the high-pressure and low-pressure chambers before and after the turbine, are provided and require a possible insulation structure, in particular to avoid heat exchange between the generated steam stream C and the condensate stream. For this purpose, regarding the internal structure of this power generation flint,
An example thereof will be explained with reference to FIG.
本発明の発電方式を達成するだめの熱サイフオン式発電
機の内部構造は、蒸発部4a、断熱部4b及び凝縮部4
Cから成る容器4内に互いに溶は合わない熱媒体11と
低沸点媒体液12を封入し、当該容器4の上部に発電機
構としてタービン7、回転軸8及び発電機18f:設置
したものである。なお容器4の内部構造は熱媒体11と
低沸点媒体液12を仕切るために、まず蒸発部4a内で
はジェットポンプ14cを設置した蒸発上昇管14と低
沸点媒体用下降管13aを内蔵し、断熱材19で保温さ
れた断熱部4b内には更に内部を断熱、r@ i 3
bでおおった低沸点媒体蒸気上昇管16aと低沸点媒体
蒸気高圧側容器16b’i設置している。また凝縮部4
C内には断熱@16eでおおわれた低沸点媒体蒸気のタ
ービン流入管16cと低沸点媒体蒸気のタービン排気管
16d及び低沸点媒体蒸気噴出孔17aを多数取付けだ
低沸点媒体蒸気低圧側容器17が内蔵されている。そし
て、本容器4の設置を考えて、蒸発部4aと断熱部4b
の間に蒸発部数付継手4 ”ir 、凝縮部4Cと断熱
部4bの間に凝縮部取付継手4e′f:接続して外部ダ
クトへの設置を容易にしている。The internal structure of the thermosiphon generator that achieves the power generation method of the present invention includes an evaporating section 4a, a heat insulating section 4b, and a condensing section 4.
A heat medium 11 and a low-boiling point medium liquid 12 that do not melt into each other are sealed in a container 4 made of C, and a turbine 7, a rotating shaft 8, and a generator 18f are installed as a power generation mechanism on the top of the container 4. . In order to partition the heat medium 11 and the low boiling point medium liquid 12, the internal structure of the container 4 includes an evaporation rising pipe 14 equipped with a jet pump 14c and a low boiling point medium down pipe 13a in the evaporation section 4a, and is heat-insulated. The inside of the heat insulating part 4b kept warm by the material 19 is further insulated, r@i 3
A low-boiling point medium vapor riser pipe 16a and a low-boiling point medium vapor high-pressure side vessel 16b'i covered with a gas pipe are installed. Also, the condensing section 4
Inside C, a low-boiling point medium vapor low-pressure side vessel 17 is provided with a turbine inlet pipe 16c for low-boiling point medium vapor covered with insulation @16e, a turbine exhaust pipe 16d for low-boiling point medium vapor, and a large number of low-boiling point medium vapor jet holes 17a. Built-in. Considering the installation of the main container 4, the evaporating section 4a and the heat insulating section 4b are
A joint with an evaporator section 4"ir is connected between the condensing section 4C and a heat insulating section 4b, and a condensing section mounting joint 4e'f is connected between the condensing section 4C and the heat insulating section 4b to facilitate installation in an external duct.
本基本構造をもとに、熱サイフオン式発電機の動作につ
いて説明する。容器4下部の蒸発部4aを中低温度の熱
流ダクト内へ納めて蒸発部数付継手4dを接続して加熱
Aすると蒸発部4a全通して熱量が内部へ伝達され、ジ
ェットポンプ14Cで熱媒体吸込管14dを通して吸引
された熱媒体11は蒸発上昇管14内で加熱される。蒸
発上昇管14内の熱媒体11は外部から加えられる熱量
の温度変動を緩和し、装置が作動中において蓄熱効果を
持つことを特徴としている。そして、外部から加熱Aさ
れた蒸発上昇管14内の熱媒体ii中ヘジエットポンプ
14c内のノズル151から噴射された低沸点媒体液1
2は予熱された熱媒体11と直接接触沸騰熱伝達によ)
沸騰して蒸気化され、蒸発上昇管14内を熱媒体と低沸
点媒体蒸気の二相状態上昇流Eとなって上昇し、気泡ポ
ンプ効果を生ずる。そして、蒸発上昇管14出口で熱媒
体11と低沸点媒体蒸気12bは気液分離を行い、発生
した蒸気12bは上部へ、また蒸交換後の熱媒体11は
蒸発上昇管14と低沸点媒体用下降管13aの間を下降
する。この際、外部からの熱量不足で未沸騰分の低沸点
媒体液12が熱媒体下降流Fに含まれても本質的な循環
流には影響を及はさない。したがって、一度外部から容
器4が加熱Aされると、蒸発部4aではジェットポンプ
14cと蒸発上昇管14内の気泡ポンプにより安定した
循環流が形成される。The operation of the thermosiphon generator will be explained based on this basic structure. When the evaporator section 4a at the lower part of the container 4 is placed in a heat flow duct at a medium to low temperature and the evaporator section joint 4d is connected and heated A, the amount of heat is transferred to the inside through the entire evaporator section 4a, and the jet pump 14C sucks the heat medium. The heat medium 11 sucked through the tube 14d is heated within the evaporation riser tube 14. The heat medium 11 in the evaporative riser pipe 14 is characterized in that it alleviates temperature fluctuations in the amount of heat applied from the outside and has a heat storage effect while the device is in operation. Then, the low boiling point medium liquid 1 is injected from the nozzle 151 in the heget pump 14c in the heat medium ii in the evaporation riser pipe 14 which is heated A from the outside.
2 is by direct contact boiling heat transfer with the preheated heat medium 11)
It is boiled and vaporized, and rises in the evaporation riser pipe 14 as a two-phase upward flow E of heat medium and low boiling point medium vapor, producing a bubble pump effect. Then, the heat medium 11 and the low boiling point medium vapor 12b undergo gas-liquid separation at the exit of the evaporation riser pipe 14, and the generated vapor 12b is sent to the upper part, and the heat medium 11 after evaporation exchange is used for the evaporation riser pipe 14 and the low boiling point medium. It descends between the downcomers 13a. At this time, even if the unboiled portion of the low-boiling medium liquid 12 is included in the heat medium downward flow F due to insufficient heat from the outside, it does not affect the essential circulating flow. Therefore, once the container 4 is heated A from the outside, a stable circulating flow is formed in the evaporator 4a by the jet pump 14c and the bubble pump in the evaporator riser pipe 14.
一方、発生した低沸点媒体蒸気12bは断熱材19で覆
われた断熱部4b内部の低沸点媒体蒸気上昇管16a内
を上昇し、一旦低沸点媒体蒸気高圧側容器16b内に蓄
られ、タービン流入管16cを通してタービン7に導入
され、ここで断熱膨張してタービン7を回転し、回転軸
8を通じて発電機工8で発電する。ここでタービン7は
軸流タービンよ、りもラジアルOインフロー・タービン
ヲ用いた方が効率が良い。On the other hand, the generated low boiling point medium steam 12b rises in the low boiling point medium steam riser pipe 16a inside the heat insulating part 4b covered with the heat insulating material 19, is temporarily stored in the low boiling point medium steam high pressure side container 16b, and flows into the turbine. It is introduced into the turbine 7 through the pipe 16c, where it undergoes adiabatic expansion, rotates the turbine 7, and generates electricity in the generator 8 through the rotating shaft 8. Here, it is more efficient to use a radial O inflow turbine for the turbine 7 than an axial flow turbine.
他方、断熱膨張した低沸点媒体蒸気12bはタービン排
気管16d’に通して低沸点媒体蒸気低圧側容器17に
蓄えられ、低沸点媒体蒸気噴出孔17aから低沸点媒体
液12中へ蒸気泡12aとして噴出し、凝縮部4Cの外
部を放熱口することにより、管内凝縮した低沸点媒体液
12中で同一成分同志の直接接触凝縮を行う。On the other hand, the adiabatically expanded low boiling point medium vapor 12b passes through the turbine exhaust pipe 16d' and is stored in the low boiling point medium vapor low pressure side container 17, and flows into the low boiling point medium liquid 12 from the low boiling point medium vapor jet hole 17a as steam bubbles 12a. Direct contact condensation of the same components is performed in the low boiling point medium liquid 12 condensed in the tube by ejecting and using the outside of the condensing section 4C as a heat dissipation port.
その結果、凝縮液化した低沸点媒体液12の水頭差及び
飽和凝縮圧力によシ、再び低沸点媒体液12はノズル1
5aから噴出して同じ作用を繰)返す。したがって、本
容器4の蒸発部4a’!r外部から加熱Aし、またジェ
ットポンプ14cのノズル15aから低沸点媒体液12
が蒸発上昇管14内へ噴射され、微細化された低沸点媒
体液滴は予熱された熱媒体11と直接接触することによ
り沸騰気化し気泡ポンプ効果によシ熱媒体11流は増速
される。また発生した蒸気12bでタービン7を回転し
て発電した後、本容器4の凝縮部40を外部から放熱口
すると低沸点媒体蒸気12bは凝縮液化するという方式
の二成分系熱ザイフオンと発電機金一体化させた発′覗
方式である。したがって、従来の熱交換器即ち予熱器、
蒸発器及び凝縮器等の大型化を防止できる上、はぼ球形
の低沸点媒体液滴らるいは蒸気泡が噴出されるので伝熱
面積が大きくなシ、シかも常に新しい伝熱面が形成され
るので高効率の伝熱性能が得られる。ゆえに、本装置を
用いることによシ、一般の発電システムにおける熱交換
器、すなわち蒸気発生器と凝縮器が小型化され、構造的
にも簡略化される。また据付・配管等も簡素化されてシ
ステムの一体化が可能になり、中小容量の発電に最適な
発電システムとなる。さらに昇圧用に消費電力の小さな
ジェットポンプ全適用している北、自然循環力の気泡ポ
ンプ金円いているので二媒体の混合し攪拌効果により、
伝熱性能が向上し、またポンプ等の所内勤力率は約6チ
畝ど軽減されるなどの効果がある。As a result, due to the water head difference and saturated condensation pressure of the condensed and liquefied low boiling point medium liquid 12, the low boiling point medium liquid 12 is again transferred to the nozzle 1.
It ejects from 5a and repeats the same action. Therefore, the evaporation section 4a' of the main container 4! r Heating A from the outside, and low boiling point medium liquid 12 from the nozzle 15a of the jet pump 14c.
is injected into the evaporation riser pipe 14, and the micronized low-boiling medium droplets come into direct contact with the preheated heating medium 11, boiling and vaporizing, and the flow of the heating medium 11 is accelerated by the bubble pump effect. . In addition, after generating electricity by rotating the turbine 7 with the generated steam 12b, the low-boiling point medium steam 12b is condensed and liquefied when the condensing part 40 of the main container 4 is opened from the outside to radiate heat. It is an integrated emission system. Therefore, a conventional heat exchanger or preheater,
In addition to preventing the evaporator and condenser from becoming larger, spherical low-boiling medium droplets or vapor bubbles are ejected, so the heat transfer area is large, and new heat transfer surfaces are always formed. As a result, highly efficient heat transfer performance can be obtained. Therefore, by using this device, the heat exchanger, that is, the steam generator and condenser, in a general power generation system can be downsized and simplified in structure. Additionally, installation, piping, etc. are simplified, making it possible to integrate the system, making it an optimal power generation system for small to medium capacity power generation. In addition, jet pumps with low power consumption are used for boosting pressure, and bubble pumps with natural circulation force are used to mix two media and have a stirring effect.
It has the effect of improving heat transfer performance and reducing the labor rate of pumps, etc. by about 6 inches.
次に本装置に用いたジェットポンプ14Cの原理につい
て第7図を用いて説明する。まずノズル15 a出口1
ztO基準にとって考えると、第5図で示す圧力バラン
スTI C> P hの条件下にあれば冷媒水頭Lf、
流量Gfなる圧力液がノズル15aよ、り噴射すればノ
ズル15a先端は低圧となり、流jtl G Ilなる
熱媒体11を吸い上げ両媒体はスロート部において混合
し、ティフユーザ14bにおいて減速増圧して吐出水頭
I−1dを得るものである。Next, the principle of the jet pump 14C used in this apparatus will be explained using FIG. 7. First, nozzle 15 a outlet 1
Considering the ztO standard, if the pressure balance shown in Fig. 5 is TI C > P h, the refrigerant head Lf,
When a pressure liquid with a flow rate Gf is injected from the nozzle 15a, the pressure at the tip of the nozzle 15a becomes low, and the heat medium 11 with a flow rate of JtlGIl is sucked up, both media are mixed at the throat, and the pressure is decelerated and increased in the tiff user 14b to increase the discharge water head. I-1d is obtained.
ここで、ジェットポンプの効率ηjは次式によシ概略制
算できる。Here, the efficiency ηj of the jet pump can be roughly calculated using the following equation.
この際、熱媒体11の吸上高さとスロート部を通過する
全流量(Gf+Gh )の速度水頭による圧力低下、ま
たはノズル15a出口断面付近の圧力低下によるキャビ
テーションの発生を防止するようくしなければならない
。At this time, care must be taken to prevent cavitation from occurring due to a pressure drop due to the suction height of the heat medium 11 and the velocity head of the total flow rate (Gf+Gh) passing through the throat portion, or a pressure drop near the exit cross section of the nozzle 15a.
次に本装置の蒸発上昇管14の配列状態を第8図(a)
を用いて説明する。第8図(a)は第3図のA −へ横
断面図を示す。蒸発上昇管14の配列は第8図(a)の
ように容器4管内周辺に沿って均一に配列、あるいは第
8図(I))のように更に内部に多数設置することによ
り、外部加熱A量を良く伝えるように、蒸発上昇管14
の間に良熱伝導剤20を埋め込み、発生蒸気#を増加さ
せる効果がある。Next, the arrangement state of the evaporation riser pipe 14 of this device is shown in Fig. 8(a).
Explain using. FIG. 8(a) shows a cross-sectional view taken along A- in FIG. The evaporation riser tubes 14 can be arranged uniformly along the periphery of the inside of the container 4 as shown in FIG. 8(a), or by installing a large number of them inside as shown in FIG. The evaporation riser pipe 14 is used to convey the amount well.
A good heat conductive agent 20 is embedded between the two, which has the effect of increasing the number of generated steam.
以上の観点から、1本の蒸発上昇管14の伝熱性能を調
べた結果を第9図を用いて説明する。試料としては、熱
媒体11に水を、低沸点媒体12にフレオンatiSを
用いて、各々の流量iGw。From the above viewpoint, the results of examining the heat transfer performance of one evaporative riser tube 14 will be explained using FIG. 9. As a sample, water was used as the heat medium 11, Freon atiS was used as the low boiling point medium 12, and the respective flow rates were iGw.
Gfとし、両媒体流量比G’ = Gw/Gfに対する
伝熱性能を第9同市)に示す。ここで、伝熱性能として
平均体積熱貫流率KVを次のように定義する。Gf, and the heat transfer performance for both medium flow rate ratio G' = Gw/Gf is shown in No. 9). Here, the average volumetric heat transmission coefficient KV is defined as the heat transfer performance as follows.
但し、Qは二媒体の交換熱量、■は熱交換に寄与シタ体
ff (=、a ”H)、ΔTtvは二媒体の対数平均
温度差を示す。これによると、低沸点媒体は上昇管から
流出するまでに完全に100%沸騰するとすれば、重量
流量比G′の増加とともに流出するので、その分だけ潜
熱移動が小さくなり、平均体積熱貫流率Kvも除りに減
少するであろう。However, Q is the amount of heat exchanged between the two media, ■ is the body that contributes to heat exchange ff (=, a "H), and ΔTtv is the logarithmic average temperature difference between the two media. According to this, the low boiling point medium is transferred from the riser pipe. If it boils completely to 100% before it flows out, it will flow out as the weight flow rate ratio G' increases, so the latent heat transfer will decrease accordingly, and the average volumetric heat transfer coefficient Kv will also decrease.
捷だ、この場合に自然循環流の考えから算定した熱媒体
11と低沸点媒体12の熱流束q8に対する蒸発上昇管
14人口での流入速度W。と蒸気体積率FSの関係を高
さHをパラメータとした場合について第1O図により説
明する。この結果から、管壁のバーンアラン防止のため
に蒸気体積率Fsヲ0.4〜0.7となるようにするた
めには、流入速度w、かやや小さくなるが適正熱流束Q
mは5〜25 KW/mtとなることがわかる。In this case, the inflow velocity W in the evaporation riser 14 with respect to the heat flux q8 of the heat medium 11 and the low boiling point medium 12 calculated from the idea of natural circulation flow. The relationship between the height H and the steam volume fraction FS will be explained with reference to FIG. 1O when the height H is used as a parameter. From this result, in order to keep the steam volume ratio Fs from 0.4 to 0.7 in order to prevent burn-out of the tube wall, the inflow velocity w is slightly smaller, but the appropriate heat flux Q is required.
It can be seen that m is 5 to 25 KW/mt.
次に、本発明のようにジェットポンプを用いた場合、強
制循環流を形成することにより、攪拌書混合が激しくな
る。その際、第11図に示すように強制対流熱伝達の伝
熱の性能を表わす無次元数dα
のヌツセルト数Nu(=T)は固体球まわりの強制対流
熱伝達に比べて約1.6倍の値を示す。但し、以上の値
は液滴外部の熱伝達率についてのみ取扱っている。Next, when a jet pump is used as in the present invention, a forced circulation flow is formed, which intensifies stirring and mixing. In this case, as shown in Fig. 11, the Nutsselt number Nu (=T) of the dimensionless number dα, which represents the heat transfer performance of forced convection heat transfer, is approximately 1.6 times that of forced convection heat transfer around a solid sphere. indicates the value of However, the above values only deal with the heat transfer coefficient outside the droplet.
以上の構造をもとに、循環流量Gと実効出力りの関係を
第12図に示す。循環流量Gを増加させれば、蒸発上昇
管内での二媒体の混合・攪拌が促進されて、発生蒸気量
Gv、即ち断熱熱落差Δhが一定であれば理論熱効率η
が増加するが、それに伴なってポンプの消費電力Lp
が高まるので、最終的に取力出せる実効出力は第12図
に示すようなジェットポンプの場合が最も大きい。Based on the above structure, the relationship between the circulating flow rate G and the effective output is shown in FIG. If the circulation flow rate G is increased, the mixing and agitation of the two media in the evaporator riser will be promoted, and if the amount of generated steam Gv, that is, the adiabatic heat drop Δh is constant, the theoretical thermal efficiency η
increases, but the power consumption Lp of the pump increases accordingly.
As a result, the final effective output is the highest in the case of a jet pump as shown in FIG. 12.
次に他の実症例を第13図によル説明する。本7ステム
は第6図における断熱部を取し除き、上部へ凝縮器23
、下部へ蒸発上昇管14、低沸点媒体用下降管13a、
熱媒体容器22から成る蒸発電を設け、その中間−\タ
ービン7及び発電機18を設置したもので、作動原理は
第6図と同じである。Next, another actual case will be explained with reference to FIG. This 7th stem removes the heat insulation part in Fig. 6 and connects the condenser 23 to the top.
, evaporation riser pipe 14 to the lower part, downcomer pipe 13a for low boiling point medium,
An evaporator consisting of a heat medium container 22 is provided, and a turbine 7 and a generator 18 are installed in the middle thereof, and the operating principle is the same as that in FIG. 6.
以上、中小容量発電機を複数設置すれば、総合的に大容
量46 ’i[に拡大することができる。第14図(a
)のように加熱ダクト24内に同一性能の発電機を三角
配列したり、あるいは第14図中)に示すように加熱源
が大きな場合は、加熱ダクト24人口に近い方の温度レ
ベルが高い所へ大容量の口径の大きな発電機を設置し、
加熱流流に下方へ向かって温度レベルが降下するので、
それとともに発電量の小さなものを設置する方法もある
。As described above, if a plurality of small and medium capacity generators are installed, the total capacity can be increased to 46'i[. Figure 14 (a
) If generators of the same performance are arranged in a triangular arrangement in the heating duct 24, or if the heating source is large as shown in Fig. Install a large-capacity, large-diameter generator to
As the temperature level decreases downward in the heating flow,
Another option is to install one that generates a small amount of electricity.
また、熱サイフオン式ヒートパイプを熱交換器として考
えれば、容器4の外管は蒸発部4a及び凝縮部4Cとと
もに加熱A及び放熱B用い流体が汚れを伴ったものが用
いられる。例えば加熱側として工場廃熱や地熱水があり
、また放熱側として工業用水や冷却空気等がある。した
がって、円筒容器4の外部における管外熱伝達率を向上
させるだめには容器4外部を微細構造にしたものは汚れ
による熱抵抗が大きくなるので、第15図(a)のよう
なハイフィン管4a−bを用いたものや第15図中)の
ような円板フィン4acを用いたもので伝熱面積を増大
させれば蒸発@4aJ?凝縮部4Cのパイプ長さ?最小
限に設定できる。さらに、凝縮部4C内面は管内凝縮熱
伝達率を増加させるために第16図(a)のような鋭角
フィン4fや第16図(1))のような内面溝付管4g
を用いることが可能である。Furthermore, if a thermosiphon type heat pipe is considered as a heat exchanger, the outer tube of the container 4, as well as the evaporating section 4a and the condensing section 4C, are used in which the fluids used for heating A and heat dissipation B are contaminated. For example, the heating side includes factory waste heat and geothermal water, and the heat radiation side includes industrial water and cooling air. Therefore, in order to improve the extra-tubular heat transfer coefficient on the outside of the cylindrical container 4, if the outside of the container 4 has a fine structure, the thermal resistance due to dirt will increase, so a high-fin tube 4a as shown in FIG. If the heat transfer area is increased by using a disk fin 4ac like the one using the fin 4ac or the one using the disk fin 4ac (in Fig. 15), evaporation@4aJ? Pipe length of condensing section 4C? Can be set to a minimum. Furthermore, the inner surface of the condensing part 4C has acute-angled fins 4f as shown in FIG. 16(a) and an inner grooved pipe 4g as shown in FIG.
It is possible to use
そこで、本熱サイフオン式発電機は1本当りの発電量が
小さいので、1417図に示すように1システムを多数
横方向へ設置し、容器4下部の蒸発部4aを加熱源であ
る廃熱ダクト24内へ設置し、容器上部の凝縮部4Cを
冷却流体用ダクト26内へ設置し、これら多数のタービ
ン7を連結することにより総合的に発電量を大きくする
ことができる。第18図は加熱源として、地熱等金利用
した場合である。Therefore, since the power generation amount per unit of this thermal siphon type generator is small, multiple systems are installed horizontally as shown in Fig. 1417, and the evaporation part 4a at the bottom of the container 4 is connected to the waste heat duct which is the heating source. 24, and the condensing section 4C at the top of the container is installed in the cooling fluid duct 26, and by connecting a large number of these turbines 7, it is possible to increase the total power generation amount. Figure 18 shows a case where geothermal heat or other metal is used as a heating source.
以上の説明から明らかなように、本発明によれば、内部
の圧力室と蒸気上昇管及び凝縮液流下降管等の断熱仕切
を設けた熱サイフオン式ヒートパイプとラジアルタービ
ンを用いた発電プラントにおいて、蒸発器と凝縮器を一
体化して伝熱面積が約1/2に縮少でき、また凝縮部を
蒸発部の上部へ設置し、水頭圧を利用して低沸点媒体を
強制循環させるため、消費電力の小さなジェットポンプ
を用いるとポンプの所内勤力率が約6チはど低減でき、
更に容器内部に非溶解性の中間熱媒体と低沸点媒体を封
入することにより、蒸発部及び凝縮部内で二媒体の直接
接触沸騰及び凝縮熱伝達による管内熱伝達率が約1.5
倍に向上し、両者の伝熱性能を表わす熱貫流率はともに
向上する。以上1本の発電容量はパイグロ径、高さ及び
タービン容器等を変えて組み合わせることにより、仕様
にもとすく最終発電端出力のプラントが達成できる。As is clear from the above description, according to the present invention, a power generation plant using a thermosiphon heat pipe and a radial turbine provided with an internal pressure chamber, a steam riser pipe, a condensate flow downcomer, etc., and an insulating partition, etc. The heat transfer area can be reduced to approximately 1/2 by integrating the evaporator and condenser, and the condensing section is installed above the evaporating section to forcefully circulate the low-boiling point medium using water head pressure. By using a jet pump with low power consumption, the pump labor rate can be reduced by approximately 6 cm.
Furthermore, by sealing an insoluble intermediate heat medium and a low boiling point medium inside the container, the heat transfer coefficient within the tube due to direct contact boiling and condensation heat transfer between the two media in the evaporation section and the condensation section is approximately 1.5.
The heat transfer coefficient, which represents the heat transfer performance of both, is improved. By changing the power generation capacity of one of the above-mentioned pygros diameters, heights, turbine containers, etc. and combining them, a plant with a final power generation output can be easily achieved in accordance with the specifications.
第1図は従来の重力型ヒートパイプの縦断面図、第2図
は従来のヒートパイプ式熱機関の縦断面図、第3図は従
来の自然循環用発電プラントのシステム概略図、第4図
は本発明の熱サイフオン式発電機の縦断面図、第5図は
本発明の熱サイフオン式発電機の圧力バランスの説明図
、第6図は本発明の熱サイフオン式ヒートパイプの内部
構造の縦断面図、第7図は本発明に用いたジェットポン
プの原理図、第8図(a)は第3図の蒸発部におけるA
−A横断面図、第8図(b)は他の実施例の横断面図、
第9図(a)は蒸発上昇管1本の縦断面図、第9図中)
は1本の蒸発上昇管内での低沸点媒体と熱媒体の重量流
量比G′に対する平均体積熱貫流率Kvのグラフ、第1
O図は蒸発部での加熱流束q、に対する上昇管流入速度
W0と蒸気体積率Fsのグラフ、ixi図はレイノルズ
数に対するヌツセルト数の関係図、第12図は循環流量
Gに対する実効出力りとポンプ消費電力Lpの関係図、
第13図は他の実施例として蒸発部と凝縮部を切、!7
離した縦断面図、第14図(a)は同一口径の発電機を
多数配列した場合の横断面図、第14図(b)は異口径
の発電機を多数配列した場合の横断面図、第15図(a
)は蒸発部及び凝縮部外管にハイフォン管を用いた場合
の部分縦断面図、第15図(b)は蒸発部及び凝縮部外
管に円板フィンを用いた場合の部分縦断面図、第16図
(a)は凝縮部内面に鋭角フィンを用いた場合の縦断面
図、第16図の)は凝縮部内面に内面溝付き管を用いた
場合の縦断面図、第17図は本発明の装置を売気ダクト
及び冷却流体ダクト内に多数設置した場合のシステムの
縦断面図、第18図は他の実施例として本発明装置を地
熱中へ埋設し冷却流体ダクト内に多数設置した場合のシ
ステムの縦j析面図である。
1・・・パイプ、Ia・・・加熱部、lb・・・断熱部
、Ic・・・牧熱部、4d・・・蒸発部数付継手、4e
・・・凝縮部取付継手、4f・・・鋭角フィン機構、4
g・・・内面溝付管、5・・・ウィック、6・・・断熱
流路、6a・・・断熱流路中間部、7・・・タービン、
8・・・回転軸、9・・・軸受、10・・・伝動機構、
11・・・熱媒体、12・・・低沸点媒体液、18・・
・発電i、+9・・・断熱材、20・・・良熱伝導剤、
21・・・低沸点媒体蒸気噴出機構、26・・・冷却流
体用ダク)、26a・・・冷却流体流入口、26b・・
・冷却流体排出口、27・・・冷却流体、第4−図 も
5図
鶴q図
も11図
噺120
′l自徨7Fit量Q
載屯万同X
垢15図
((lL)(b)
噌1G図
(α)(b)
弔1”7図Figure 1 is a vertical cross-sectional view of a conventional gravity heat pipe, Figure 2 is a vertical cross-sectional view of a conventional heat pipe type heat engine, Figure 3 is a system schematic diagram of a conventional natural circulation power generation plant, and Figure 4 is a vertical cross-sectional view of a conventional gravity heat pipe. is a longitudinal cross-sectional view of the thermosiphon-type generator of the present invention, FIG. 5 is an explanatory diagram of the pressure balance of the thermosiphon-type generator of the present invention, and FIG. 6 is a longitudinal cross-section of the internal structure of the thermosiphon-type heat pipe of the present invention. A top view, FIG. 7 is a principle diagram of the jet pump used in the present invention, and FIG.
- A cross-sectional view, FIG. 8(b) is a cross-sectional view of another embodiment,
Figure 9(a) is a vertical cross-sectional view of one evaporative riser pipe (in Figure 9)
is a graph of the average volumetric heat transfer coefficient Kv against the weight flow rate ratio G' of the low boiling point medium and the heat medium in one evaporative riser pipe, the first
The O diagram is a graph of the riser inflow velocity W0 and the vapor volume fraction Fs with respect to the heating flux q in the evaporation section, the ixi diagram is a diagram of the relationship between the Nutsselt number and the Reynolds number, and Figure 12 is a graph of the effective output with respect to the circulating flow rate G. Relationship diagram of pump power consumption Lp,
Figure 13 shows another embodiment in which the evaporation section and the condensation section are disconnected! 7
14(a) is a cross-sectional view when a large number of generators of the same diameter are arranged, and FIG. 14(b) is a cross-sectional view when a large number of generators of different diameters are arranged. Figure 15 (a
) is a partial vertical sectional view when Haiphong tubes are used for the evaporating section and condensing section outer tube, and FIG. 15(b) is a partial vertical sectional view when disc fins are used for the evaporating section and condensing section outer tube. Fig. 16(a) is a longitudinal cross-sectional view when acute-angled fins are used on the inner surface of the condensing section, Fig. 16 (a) is a longitudinal cross-sectional view when an internally grooved tube is used on the inner surface of the condensing section, and Fig. 17 is a longitudinal cross-sectional view when an acute-angled fin is used on the inner surface of the condensing section. FIG. 18 is a longitudinal cross-sectional view of a system in which a large number of the devices of the invention are installed in an air supply duct and a cooling fluid duct, as another embodiment, the devices of the invention are buried in geothermal heat and installed in large numbers in a cooling fluid duct. FIG. 1...Pipe, Ia...Heating part, lb...Insulating part, Ic...Maki-netsu part, 4d...Joint with evaporation part, 4e
...Condensing part mounting joint, 4f...Acute angle fin mechanism, 4
g...Inner grooved pipe, 5...Wick, 6...Insulated flow path, 6a...Insulated flow path middle section, 7...Turbine,
8... Rotating shaft, 9... Bearing, 10... Transmission mechanism,
11... Heat medium, 12... Low boiling point medium liquid, 18...
・Power generation i, +9...insulating material, 20...good thermal conductive agent,
21...Low boiling point medium vapor ejection mechanism, 26...Cooling fluid duct), 26a...Cooling fluid inlet, 26b...
・Cooling fluid outlet, 27...Cooling fluid, Figure 4-Figure 5 Tsuru q Figure 11 Figure 120 'l Self-determination 7 Fit amount Q Loading rate X Figure 15 ((lL) (b) Diagram 1G (α) (b) Diagram 1”7
Claims (1)
し、上部を凝縮器、中央部を断熱部、下部を蒸発部とし
、蒸発部内に循環用ジェットポンプを数台設置し、嶺該
容器外部にタービンと発電機を設置したことを特徴とす
る熱サイフオン式発電機。1. The working medium is sealed in a vertical thermosiphon type airtight container, the upper part is a condenser, the middle part is a heat insulating part, the lower part is an evaporator part, several jet pumps for circulation are installed in the evaporator part, and the container is heated. A thermosiphon generator characterized by having a turbine and generator installed externally.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12330983A JPS6017211A (en) | 1983-07-08 | 1983-07-08 | Thermosyphon type generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12330983A JPS6017211A (en) | 1983-07-08 | 1983-07-08 | Thermosyphon type generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6017211A true JPS6017211A (en) | 1985-01-29 |
Family
ID=14857345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12330983A Pending JPS6017211A (en) | 1983-07-08 | 1983-07-08 | Thermosyphon type generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6017211A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022537644A (en) * | 2019-05-30 | 2022-08-29 | 浙江省化工研究院有限公司 | Environment-friendly heat pipe working material |
-
1983
- 1983-07-08 JP JP12330983A patent/JPS6017211A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022537644A (en) * | 2019-05-30 | 2022-08-29 | 浙江省化工研究院有限公司 | Environment-friendly heat pipe working material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111642103B (en) | High heat flux porous heat sink flow cooling device | |
US6484503B1 (en) | Compression and condensation of turbine exhaust steam | |
US4546608A (en) | Thermo-siphon type generator apparatus | |
EP1286121B1 (en) | Generator for use in an absorption chiller-heater | |
US4742682A (en) | Energy-saving, direct-contact, parallel-flow heat exchanger | |
US20150308750A1 (en) | Slug Pump Heat Pipe | |
JPS6017211A (en) | Thermosyphon type generator | |
JP2001221015A (en) | Mixed medium power generation system | |
CN205825084U (en) | A kind of My heat recovery | |
US3898867A (en) | Condenser for condensing a refrigerant | |
JP2003269114A (en) | Power and cold heat supply combined system and its operating method | |
JPS6062611A (en) | Heat-siphon type power generating equipment | |
US4476694A (en) | Absorption cooling and heating system | |
CN207456250U (en) | Module combined type pulsating heat pipe | |
US4622820A (en) | Absorption power generator | |
CN111380381B (en) | Supersaturated surface evaporation heat exchange device and application | |
Riffat et al. | Recent developments in heat pipe technology and applications: a review | |
JPS637248B2 (en) | ||
JPS59113218A (en) | Thermo-siphon type generator | |
CN200975844Y (en) | Evaporative cooler | |
CN110701932A (en) | High-energy-efficiency-ratio environmental-grade heat exchanger for closed space | |
CN211953818U (en) | High-energy-efficiency-ratio environmental-grade heat exchanger for closed space | |
JP4519744B2 (en) | High temperature regenerator and absorption refrigerator | |
JPH0330772Y2 (en) | ||
JP4843281B2 (en) | High temperature regenerator and absorption refrigerator |