[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60170769A - Measuring device for nearby electric field - Google Patents

Measuring device for nearby electric field

Info

Publication number
JPS60170769A
JPS60170769A JP2597584A JP2597584A JPS60170769A JP S60170769 A JPS60170769 A JP S60170769A JP 2597584 A JP2597584 A JP 2597584A JP 2597584 A JP2597584 A JP 2597584A JP S60170769 A JPS60170769 A JP S60170769A
Authority
JP
Japan
Prior art keywords
probe
electric field
error
value
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2597584A
Other languages
Japanese (ja)
Inventor
Hisao Iwasaki
久雄 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2597584A priority Critical patent/JPS60170769A/en
Publication of JPS60170769A publication Critical patent/JPS60170769A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To correct an error in received nearby electric field value due to the position error of a probe in a short time, and improve the accuracy of directivity by arranging plural measuring probes at distance less than in-use wavelength at right angles to a scanning surface. CONSTITUTION:A probe 22 is driven in an x-axis direction by a probe driving device 29 and pieces of position information on probes 22-a and 22-b detected by a probe position detector 30 are sent to a computer 27. When the position of the probe 22-a or 22-b coincides with a measurement position, the computer 27 uses a switch 24 for microwaves to receive the output of the waveguide probe 22-a or 22-b through a receiver 26 and then stores it in a device 28. Then, the function of a phase error value and an amplitude error value to a probe position error displacement value is calculated to correct a measurement result on a two- dimensional plane on which data are collected. Thus, all collected data are corrected to calculate a nearby electric field value on a desired scanning surface equivalently.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、被測定アンテナの近傍で、電界を測定する近
傍電界測定装置に係り、特に、プローブの配置方法C二
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a near electric field measuring device that measures an electric field in the vicinity of an antenna to be measured, and particularly relates to a probe arrangement method C2.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来の平面走査近傍電界測定装置は、第1図(−示すよ
うに被測定アンテナ1、被測定アンテナ1に給′化する
送信機2、被測定アンテナの電界を測定するプローブ3
このプローブを駆動する装置4、受信機5と測定データ
を蓄積処理する装置6から成り立っている。
A conventional plane scanning near-field electric field measuring device consists of an antenna under test 1, a transmitter 2 feeding the antenna under test 1, and a probe 3 measuring the electric field of the antenna under test, as shown in FIG.
It consists of a device 4 for driving this probe, a receiver 5, and a device 6 for accumulating and processing measurement data.

近傍電界測定(二おいては、特性の異なる2つのプロー
ブを用いて、まず1個のプローブのみで、2次元平面上
の各測定点C二おける近傍電界の振幅と位相を測定し、
次(=この測定を先のプローブのかイつり(二別特性を
有するプローブで行なう。
Near-field electric field measurement (in step 2, two probes with different characteristics are used to first measure the amplitude and phase of the near-field electric field at each measurement point C2 on a two-dimensional plane using only one probe,
Next (=This measurement is performed with a probe that has two different characteristics.

一般(二は、被測定アンテナエに対して、X偏波のみを
測定するプローブ3で、2次元平面上を走査し、各測定
点の振幅と位相を測定し、次に、上記グローブを90に
回転させ前記と同様な測定をX偏波について行なう。
General (Secondly, the antenna to be measured is scanned on a two-dimensional plane with a probe 3 that measures only the X polarized wave, and measures the amplitude and phase of each measurement point. Rotate and perform the same measurements as above for the X polarization.

とのx、X偏波で、測定した値を基(ニジて、前記6の
処理装置でフーリエ変換等の計算処理を行ない、被測定
アンテナ1の遠方界放射指向性や利得等をめる。
Based on the measured values for the x and

この測定法では、定められた測定サンプル点で。In this measurement method, at defined measurement sample points.

正確(二電界の振幅、位相を測定する必要がある。Accurately (need to measure the amplitude and phase of two electric fields.

し力1し、実際の測定システムでは、グローブ走査枠の
製作によるグローブの位置誤差(x−y面と走査面とi
f′1.9する方向(z軸方向))が生ずる。
In an actual measurement system, the glove position error (x-y plane, scanning plane and i
f'1.9 direction (z-axis direction)) is generated.

このために、プローブ受信信号(二誤差が含まれ、被測
定アンテナの遠方放射指向性を正確(二求められず、誤
差が発生する。
For this reason, the probe received signal (contains two errors), and the far-field radiation directivity of the antenna to be measured cannot be accurately determined, resulting in errors.

プローブ位置誤差のうち、走査面(−直焚した方向への
プローブ誤差が最も指向性上に誤差を発生させる要因で
ある。
Of the probe position errors, the probe error in the scanning plane (-direct firing direction) is the factor that causes the most directivity error.

走査枠の製作精度をあげればよいが、高精度測定のため
(二は、約λ/250(λ二波長)以下にする必要があ
り、高い周波数では、その製作精度にも限界がある。
It is possible to increase the manufacturing accuracy of the scanning frame, but for high-precision measurement (2 is about λ/250 (λ two wavelengths) or less), there is a limit to the manufacturing accuracy at high frequencies.

従来、このプローブ位置誤差を補正する方法に、測定ザ
ンプル数C′:、等しい連立方程式を解さ、所望の近傍
電界値なめる方法がある。し力)し、サンプル数が1万
点以上(大開口被測定アンテナでは2〜4万点)(二な
ると、近傍電界値をめる計算時間が数時間以上もかかる
。この方法は、アンテナ測定を行なう上で時間がかかり
すぎ非能率的である。
Conventionally, a method for correcting this probe position error is to solve simultaneous equations in which the number of measurement samples is equal to C', and to obtain a desired neighboring electric field value. If the number of samples is 10,000 or more (20,000 to 40,000 for a large-aperture antenna under test), the calculation time to calculate the nearby electric field value will take several hours or more.This method is suitable for antenna measurement. It takes too much time and is inefficient.

〔発明の目的〕[Purpose of the invention]

本発明は、以上の点に鑑みてなされたもので。 The present invention has been made in view of the above points.

被測定アンテナの近傍゛磁界を測定するプローブを、複
数個用い、かつ、前記プローブを走査面(二対し直交し
た方向(二使用波長以内の距離だけ離して配置すること
C二より、前記プローブの位置誤差による受信近傍電界
値の誤差を短時間に補正でき、被測定アンテナの遠方指
向性上(二生ずる誤差ななくし、得られる指向性の精度
の向上を図った近傍′磁界611定装置を提供すること
を目的とする。
A plurality of probes are used to measure the magnetic field in the vicinity of the antenna to be measured, and the probes are placed in a direction perpendicular to the scanning plane (2), separated by a distance within the wavelength used. Provides a near-field magnetic field 611 fixing device that can correct errors in near-receive electric field values due to position errors in a short time, eliminates errors that occur in the far-field directivity of the antenna to be measured, and improves the accuracy of the obtained directivity. The purpose is to

〔発明の概要〕[Summary of the invention]

本発明は、被測定アンテナの近傍電界を測定するプロー
ブを複数個用い、走査面を直交する方向(二おける前記
グローブの開口面間の距離を使用波長以内の距離だけ離
したシステムで、被測定アンテナの近傍電界値を測定す
る近傍電界測定装置を提供するものである。
The present invention is a system in which a plurality of probes are used to measure the electric field near the antenna under test, and the distance between the apertures of the two globes is separated by a distance within the wavelength used. The present invention provides a near electric field measurement device that measures the near electric field value of an antenna.

〔発明の効果〕〔Effect of the invention〕

疋i++yiと11′1交する方向のプローブ位置誤差
により生4″るグローブ受信信号の近傍電界値上の誤差
を短詩tillに補正でき、かつ、プローブ位置誤差(
二よる被測定アンテナの遠方界指向性上(=、生ずるj
)j向1%唄7褒をなくすことができる。
The error in the near electric field value of the globe received signal caused by the probe position error in the direction 11'1 intersecting with i++yi can be corrected in a short way, and the probe position error (
On the far-field directivity of the antenna under test due to
) J direction 1% song 7 reward can be eliminated.

よ−って、高精度は測定を要求される場合には本方式は
有効である。
Therefore, this method is effective when high precision measurement is required.

丈た。この方法な用いることで、グローブ走査枠の製作
精度を下げることもできるので、測定装置を安価にする
ことができる。
It was long. By using this method, the manufacturing accuracy of the globe scanning frame can be lowered, so the measuring device can be made cheaper.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実話例乞第2図に示す。 A real-life example of the present invention is shown in FIG.

本発明は、送信機側と被611」定アンテナ21と複数
個のグローブ22と前記グローブを2次元平面上を駆動
する走査枠器と前記グローブよりの凡F信号を切替える
切替装置24と、受信8i!届とコンピータで構成され
ている制御装置ごと受信信号を蓄える装置28と前記プ
ローブを駆動する装置四と前記グローブの位置を検出す
る装置3oで構成されている。
The present invention includes a transmitter side, a fixed antenna 21 to be received, a plurality of globes 22, a scanning frame device for driving the globes on a two-dimensional plane, a switching device 24 for switching the F signal from the globes, and a receiving device. 8i! The control device includes a control device including a receiver and a computer, a device 28 for storing received signals, a device 4 for driving the probe, and a device 3o for detecting the position of the glove.

以下、具体例を示しながら説明する。This will be explained below using specific examples.

第3図C二示した被測定アンテナ31と2個のopen
ended導波$22− a 、 22− bから成る
測定系について考える。第3図において、z軸方向(ニ
ブローブ位置誤差がない所望の走査面を朝、実際に生じ
工いるプローブ位置誤差による走査軌跡を35とする。
The antenna to be measured 31 and two open antennas shown in FIG.
Consider a measurement system consisting of ended guided waves $22-a and 22-b. In FIG. 3, 35 is the scanning locus in the z-axis direction (a desired scanning surface without any nibrobe position error) due to the probe position error that actually occurs in the morning.

そして、導波管プローブ22− a 、 22− bの
間隔dを使用周波数における波長(二等しくとる。
Then, the distance d between the waveguide probes 22-a and 22-b is set to be equal to the wavelength (two) at the operating frequency.

さらに2個のグローブのX軸方向の距xhclsを適当
に選び配置する。
Furthermore, the distance xhcls between the two gloves in the X-axis direction is appropriately selected and arranged.

ここで、被測定アンテナの近傍′電界をプローブ22−
 a 、 22− bでX軸上の同一測定点で測定ずれ
ば、プローブの2軸方向への位置誤差による受信信号の
変化が近傍電界値で比較ができる。
Here, the electric field near the antenna under test is measured by the probe 22-
If measurements are made at the same measurement point on the X axis in a and 22-b, changes in the received signal due to positional errors in the two axis directions of the probe can be compared using nearby electric field values.

このプローブ系で、第2図シー示したグローブ駆動装置
胤墓でプローブnをX軸方向(二動かし、プローブ位置
検出装置側でグローブ22−a、bの位置を検出し、そ
の情報をコンピータnに送る0プローブ22−aの位置
と測定位置が一致したとき装置ゴはマイクロ波用スイッ
チ24を用いて、導波管グローブ22−aの出力信号を
受信機(二接続し。
With this probe system, the probe n is moved in the X-axis direction (two times) at the grave of the glove drive device shown in FIG. When the position of the probe 22-a and the measurement position match, the device uses the microwave switch 24 to connect the output signal of the waveguide globe 22-a to the receiver.

22−bの出力信号を無反射終端し、プローブ22−a
の信号のみを取り込み装置28に搭える。
The output signal of 22-b is terminated without reflection, and the output signal of probe 22-a is
Only the signal of 1 is loaded into the capture device 28.

次に、グローブ22−bの位置と測定位置が一致したと
き上記とは逆の接続をし、データ収集する。
Next, when the position of the glove 22-b and the measurement position match, the connection is made in the opposite direction to that described above, and data is collected.

このような近傍電界値のデータ収集を行なうと。When collecting data on such nearby electric field values.

所望走査面を含む領域を1回で走査測定できる。An area including a desired scan plane can be scanned and measured in one go.

精度よく被測定アンテナの遠方界指向性をめるため(二
は、所望の走査面あ上を走査する必要がある。ところが
、実際の測定系では、プローブ走f伜の製作り生ずる歪
等による誤差のため発生する語で与えられる軌跡を有す
るz111i1方向のプローブ位置誤差が生じている。
In order to accurately measure the far-field directivity of the antenna to be measured (second), it is necessary to scan the desired scanning plane. A probe position error in the z111i1 direction has occurred with a trajectory given by the term generated due to the error.

よってプローブ22−a、bより得られる近傍磁界値に
は、上記に示したグローブ位置誤差3二よる受信信号誤
差が含まれ℃いる。
Therefore, the near magnetic field values obtained from the probes 22-a and 22-b include the received signal error due to the globe position error 32 described above.

そこで、上記のグローブ22−a、I)より得られた近
傍電界値(二対し、補正を行なうことにより所望の走査
面上で得たと同じ近傍電界値がめられれば、前記プロー
ブ位置誤差の影響を取りのぞける。
Therefore, if the same near electric field value obtained on the desired scanning plane can be obtained by correcting the near electric field value (2 pairs) obtained from the above-mentioned globe 22-a, I), the influence of the probe position error can be eliminated. It can be removed.

そこで、第4図において、x=Xoの点でプローブ40
を所望走査面上にプ[1−ブ41を2軸方向(二d(使
用波長)、X軸方向にdsはなしておく。そこで。
Therefore, in FIG. 4, the probe 40 at the point x=Xo
41 in two axial directions (2d (wavelength used) and ds in the X-axis direction.

X軸上のX=−X、において5水桶旧法を考える。こζ
で、走査枠の2輔方向の最大誤差d’ x = x、で
プローブ40が所望走査面よりd〃ずれている。
Consider the 5-water bucket old method at X=-X on the X-axis. Thisζ
Then, the maximum error in the two directions of the scanning frame is d' x = x, and the probe 40 is deviated from the desired scanning plane by d.

ここで、プローブ40 、41で受信した測定点の受信
信号を11】、(A、8.φl)、11】(〜、φ、)
とする。(A。
Here, the reception signals of the measurement points received by the probes 40 and 41 are 11], (A, 8.φl), 11](~, φ,)
shall be. (A.

振幅、φ位相)この受(i信号(二対して補正を行なっ
た近傍電界値をlト](A 、φ)とする。
Amplitude, φ phase) This reception (i signal (neighboring electric field value corrected for two is lt)) (A, φ).

ことで、第5図に、周波数12()t(zにおけろX 
−bandの標準ホーンの近傍10λ(二おける前記2
悄方向の位置誤差ΔZによる位相誤差量Δφと振幅誤差
量ΔNの関係を示す。
Therefore, in Fig. 5, the frequency 12()t(z)
-band standard horn neighborhood 10λ (the above 2 in 2
The relationship between the phase error amount Δφ and the amplitude error amount ΔN due to the position error ΔZ in the torsion direction is shown.

この図より、走査面と直交する方向のプローブ位置誤差
△Zが波長に比べて小さいとき、振’ILA 1位相誤
差ΔA、Δφともプローブ位置誤差変位量ΔZに対して
直線的な関数で罰化する。
From this figure, when the probe position error △Z in the direction perpendicular to the scanning plane is small compared to the wavelength, both the phase errors ΔA and Δφ are punished by linear functions with respect to the probe position error displacement ΔZ. do.

そこで上記に述べた方法で、データ収集した2次元平面
上の測定結果に対し、次の方法で、補正を行なう。グロ
ーブ40の測定振幅値AI1位相値φl。
Therefore, the following method is used to correct the measurement results on the two-dimensional plane that have been collected using the method described above. Measured amplitude value AI1 phase value φl of the globe 40.

プローブ41の測定4辰幅値At +位相値φ2をよび
出しA=A、 十−(A、−A1) /I# dNニゲローブ40と所望走査面との距離の計算を行な
う。
The measured four-axis width value At + phase value φ2 of the probe 41 is called out, and the distance between the niger lobe 40 and the desired scanning plane is calculated.

この振幅値A1位相値φを有する信号11】は、近似的
にX=X、における所望走査面上の測定点での受信信号
(二なる。
The signal 11] having the amplitude value A1 and the phase value φ is approximately the received signal (2) at the measurement point on the desired scanning plane at X=X.

このとき、走査枠の最大変位量d′と、誤差d″Xとの
関係は、HP社より市販されているレーザ光学測定装置
を用いれば、前もってめておくことが出来る。
At this time, the relationship between the maximum displacement d' of the scanning frame and the error d''X can be determined in advance by using a laser optical measuring device commercially available from HP.

また、上記の補正計算は、従来の連立方程式を解く方式
(二比べて、計算時間が、大幅に短い。
In addition, the above correction calculation requires significantly less calculation time than the conventional method of solving simultaneous equations (2).

この補正を全収集データ(二対して行なうとと【二より
等制約に所望の走査面上の近傍電界値をめることかでき
る。
If this correction is performed for all collected data (2), it is possible to set the near electric field value on the desired scanning plane to the equality constraint.

従って本方式は、従来方式である連立方程式を解いて近
傍電界値をめる方式と同等の精度が得られる。
Therefore, this method can obtain the same accuracy as the conventional method, which solves simultaneous equations and calculates the nearby electric field value.

この補正方式を用いてめた所望走査面上と等価は近傍電
界値を用いて、被測定アンブーナの遠方放射指向性をめ
れば、Z軸方向へのブローフ゛位置誤差3二より生ずる
指向性誤差をなくすこと75Eできる。
The equivalent value on the desired scanning plane determined using this correction method is the directivity error caused by the blowoff position error in the Z-axis direction, if the far-field radiation directivity of the Ambuna to be measured is calculated using the nearby electric field value. 75E can be eliminated.

また、この補正方式で、3個以上の]゛ローブを用いれ
ば、多項式近似が行なえるのでよiJ f# IlKよ
く近傍電界値をめることが出来る。
Furthermore, in this correction method, if three or more [lobes] are used, polynomial approximation can be performed, so that the nearby electric field value can be determined more accurately.

以上C二連べたよう(−1従来方式である全?ll!I
定点数に等しい連立方程式を解いて、所望′屯界イ直を
める方式に比べて本方式は、大幅(二時間が短縮できる
特徴がありアンテナの測定(=有効である。
It seems that the above two Cs are connected (-1 All of the conventional methods?ll!I
Compared to the method of solving simultaneous equations equal to the number of fixed points and determining the desired field, this method is effective because it can significantly shorten the antenna measurement time by two hours.

さらに、この補正方式を用いると測定装置の孝宵度をあ
げる必要がなくなるので、走査枠等の製作費を安価(−
することが出来る。
Furthermore, by using this correction method, there is no need to increase the fidelity of the measuring device, so the manufacturing cost of the scanning frame etc. can be reduced (-
You can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の近傍電界測定装置を示す図、第2図は
、本発明の一実施例を示す図、第3図および第4図は、
それぞれプローブ自己置図、 第5図は、グローブ位置誤差と受信信号との関係図であ
る。 1・・・被測定アンテナ 2・・・送信機3・・・グロ
ーブ 4・・・グローブを走査する装置5・・・受信機
 6・・・データ蓄積処理装置か・・・送信機 2】・
・・被測定アンテナn・・・グローブ お・・・プローブな2次元平面上を走査させる装置冴・
・・マイクロ波相ス・−ツチ 6・・・ミキサー圀・・
・受1n機 n・・・CPU 28・・・データ蓄積装置 29・・・グローブ駆動装
置刃・・・位置検出装置 代理人弁理士 則近憲佑(ばか1名) 第 1 図 第 3 図 第 4 図 第 5 図 り、Dk、 0.I O,l”r rnntAX (グ
ローブa」■勾L)
FIG. 1 is a diagram showing a conventional near-field electric field measuring device, FIG. 2 is a diagram showing an embodiment of the present invention, and FIGS. 3 and 4 are
FIG. 5 is a diagram showing the relationship between the probe position error and the received signal. 1...Antenna to be measured 2...Transmitter 3...Globe 4...Device for scanning the globe 5...Receiver 6...Data storage and processing device...Transmitter 2]
・・Antenna to be measured ・・Glove ・・Device for scanning a two-dimensional plane like a probe ・
...Microwave phase switch 6...Mixer field...
・Receiver 1n machine n...CPU 28...Data storage device 29...Glove drive device blade...Position detection device Patent attorney Kensuke Norichika (one idiot) Figure 1 Figure 3 4 Figure 5 Diagram, Dk, 0. I O, l”r rnntAX (Glove a” ■ slope L)

Claims (1)

【特許請求の範囲】 被測定アンテナと、この被測定アンテナに給電する送信
機と、この被測定アンテナの近傍電界を測定スるグロー
ブと、このグローブを駆動する装置と、前記グローブの
位置を検出する装置と、前記プローブ受信信号な取得す
る装置と、前記受信信号情報を蓄える装置から成る平面
走査近傍電界測定装置において、前記グローブを複数個
具備し。 そのプローブを走査面と直交する方向に配置し前記グロ
ーブの開口面間の距離を使用波長以内C二股けたことを
特徴とする近傍電界測定装置。
[Scope of Claims] An antenna to be measured, a transmitter for feeding power to the antenna to be measured, a globe for measuring an electric field near the antenna to be measured, a device for driving the globe, and a device for detecting the position of the globe. A plane scanning near electric field measuring device comprising a device for acquiring the probe reception signal, a device for acquiring the probe reception signal, and a device for storing the reception signal information, comprising a plurality of the gloves. A near-field electric field measuring device characterized in that the probe is arranged in a direction perpendicular to the scanning plane, and the distance between the aperture surfaces of the globe is divided into two parts within the wavelength used.
JP2597584A 1984-02-16 1984-02-16 Measuring device for nearby electric field Pending JPS60170769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2597584A JPS60170769A (en) 1984-02-16 1984-02-16 Measuring device for nearby electric field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2597584A JPS60170769A (en) 1984-02-16 1984-02-16 Measuring device for nearby electric field

Publications (1)

Publication Number Publication Date
JPS60170769A true JPS60170769A (en) 1985-09-04

Family

ID=12180726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2597584A Pending JPS60170769A (en) 1984-02-16 1984-02-16 Measuring device for nearby electric field

Country Status (1)

Country Link
JP (1) JPS60170769A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165975A (en) * 1999-12-10 2001-06-22 Mitsubishi Electric Corp Apparatus and method for measuring antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165975A (en) * 1999-12-10 2001-06-22 Mitsubishi Electric Corp Apparatus and method for measuring antenna

Similar Documents

Publication Publication Date Title
Newell et al. Accurate measurement of antenna gain and polarization at reduced distances by an extrapolation technique
US5485158A (en) Linear near field test facility and process
CN110703218A (en) One-transmitting-multi-receiving combined rotary table rotating double-station scattering measurement system and method
Smith et al. Calibration techniques for free space reflection coefficient measurements
RU130089U1 (en) MIDDLE-HIGH-FREQUENCY CALIBRATION DEVICE FOR THE MIDDLE ZONE ANTENNA MEASURING COMPLEX
JPH0130112B2 (en)
JPS60170769A (en) Measuring device for nearby electric field
KR100594192B1 (en) Phased Array Antenna Measurement System and Method of The Same
Hecht Improved error-correction technique for large-signal load-pull measurements (short paper)
RU2744320C1 (en) Method and system for testing of antenna with multiple radiation elements
CN114371348B (en) Super-surface testing device, testing method and PB phase testing method
US7089047B2 (en) Fat depth sensor
CN115524541A (en) Arbitrary polarization line antenna array directional diagram measuring method based on quasi-far-field mode filtering
JPS59180374A (en) Measuring device for nearby electric field
CN116087856A (en) Chip antenna measurement calibration device and far-field measurement method
Liu et al. An automatic antenna near-field measurement system for narrow beam array antennas
Kaslis et al. Revising the Theory and Practice of Electrical Alignment Procedures for Spherical Antenna Measurement Facilities
JPS6061664A (en) Nearby electric field measuring apparatus
JPH06242163A (en) Antenna measuring device
Newell et al. The effect of measurement geometry on alignment errors in spherical near-field measurements
JP3672239B2 (en) Radar cross-sectional area measuring method, measuring apparatus therefor, and storage medium recording control program therefor
RU2162232C1 (en) Process of measurement of bearing errors of antenna-fairing system
Corona et al. A new technique for free-space permittivity measurements of lossy dielectrics
SU1241161A1 (en) Method of determining directional pattern of antenna
RU2237253C1 (en) Method for determining directional pattern of slot array on the basis of measurements in the nearest fresnel zone