JPS60179811A - Power generating set using solar light - Google Patents
Power generating set using solar lightInfo
- Publication number
- JPS60179811A JPS60179811A JP59036559A JP3655984A JPS60179811A JP S60179811 A JPS60179811 A JP S60179811A JP 59036559 A JP59036559 A JP 59036559A JP 3655984 A JP3655984 A JP 3655984A JP S60179811 A JPS60179811 A JP S60179811A
- Authority
- JP
- Japan
- Prior art keywords
- sun
- floating body
- solar
- light
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D3/00—Control of position or direction
- G05D3/12—Control of position or direction using feedback
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S30/00—Arrangements for moving or orienting solar heat collector modules
- F24S30/40—Arrangements for moving or orienting solar heat collector modules for rotary movement
- F24S30/48—Arrangements for moving or orienting solar heat collector modules for rotary movement with three or more rotation axes or with multiple degrees of freedom
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S50/00—Arrangements for controlling solar heat collectors
- F24S50/20—Arrangements for controlling solar heat collectors for tracking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/47—Mountings or tracking
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Control Of Position Or Direction (AREA)
- Control Of Voltage And Current In General (AREA)
- Control Of Electrical Variables (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、洋上や電力供給設備のない孤立した離島など
で用いて好適な太陽光発電装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar power generation device suitable for use on the ocean or on isolated remote islands without power supply facilities.
洋上や電力供給設備のない孤立1−た離島、海浜地域な
どで、海洋探査や海気象観測など種々の目的から電力が
必要となることがある。そのような場合、例えばソーラ
セルな洋上に浮かべ、これによルミ力を得ることが考え
られる。ところが、単にソーラセルをブイの上に固定し
て取シ付け、トこれを洋上に浮かべたのでは、太陽の位
置が刻々と変わることから、受光量を充分に取ることが
できず、効率が悪いという不具合がある。BACKGROUND OF THE INVENTION Electric power may be required for various purposes such as ocean exploration and marine weather observation on the ocean, on isolated remote islands and coastal areas without power supply facilities. In such a case, it is conceivable to float a solar cell on the ocean and obtain luminous power. However, simply attaching a solar cell to a buoy and floating it on the ocean would not be able to receive a sufficient amount of light because the position of the sun changes every moment, resulting in inefficiency. There is a problem.
本発明は、上記事情に鑑みてなされたもので、ソーラセ
ルを備えた浮体に姿勢制御手段を付設し、この姿勢制御
手段によシソーラセルの受光面を常時太陽に向は得るよ
うに構成して、効率を一段と高めた太陽光発電装置を提
供することを目的とする。以下、本発明を図面に基づい
て詳細に説明する。The present invention has been made in view of the above-mentioned circumstances, and includes attaching an attitude control means to a floating body equipped with a solar cell, and configuring the attitude control means so that the light-receiving surface of the thesora cell is always oriented toward the sun. The purpose is to provide a solar power generation device with even higher efficiency. Hereinafter, the present invention will be explained in detail based on the drawings.
第7図ないし第3図は本発明の太陽光発電装置の一実施
例を示すもので、図中1は海面Wに浮かべられる浮体で
ある。この浮体1は金属材料やガラス繊維などによシ形
成された略中窒半球状のもので、充分な浮力を有する水
密構造となっており、その円状をなす平面部には、太陽
光りを受けて電流を発生する複数のソーラセル2が、そ
の略全体に亘って設けられている。これら複数のソーラ
セル2の内、所定のソーラセル2の電極には、一対の出
力@3が接続され、この出力線3は途中で分岐されて、
浮体1の内部に設けられたパンテリー4と後記する姿勢
制御手段5にそれぞれ連絡されている。そして、ソーラ
セル2で得られた電力は、そのまま利用されるか、もし
くは、バッテリー4に一旦蓄えられてから利用されるよ
うになっておシ、またその一部は姿勢制御手段5の作動
用に用いられるように構成されている。またさらに、上
記ソーラセル2の出力@3は途中で分岐さnて、その陰
極が上記浮体1などの金属部6に、また陽極が、海中に
沈められる陽極棒7にそれぞれ接続されており、これに
よシ金属部6には常時電気防食が施されるようになって
いる。7 to 3 show an embodiment of the solar power generation device of the present invention, in which numeral 1 represents a floating body floating on the sea surface W. FIG. This floating body 1 is made of metal material, glass fiber, etc. and has a substantially semi-spherical shape, and has a watertight structure with sufficient buoyancy.The circular plane part is protected from sunlight. A plurality of solar cells 2 that receive electric current and generate current are provided over almost the entire area. A pair of outputs @3 are connected to the electrodes of a predetermined solar cell 2 among these plurality of solar cells 2, and this output line 3 is branched in the middle,
They are respectively connected to a pantry 4 provided inside the floating body 1 and an attitude control means 5 to be described later. The electric power obtained by the solar cell 2 is used as it is, or is stored in the battery 4 and then used, and a part of it is used for operating the attitude control means 5. configured to be used. Furthermore, the output @3 of the solar cell 2 is branched in the middle, and its cathode is connected to a metal part 6 such as the floating body 1, and its anode is connected to an anode rod 7 that is submerged in the sea. The metal portion 6 is always subjected to cathodic protection.
一方、上記浮体1には、太陽の位置を検出し、その検出
信号に基づいて浮体1の姿勢を制御して上記ソーラセル
2の受光面を太陽に向ける姿勢制御手段5が付設されて
いる。すなわち、上記浮体lの球面状をなす外面部分に
は、3組の水中ウィンチ8a、8b、8cの各ワイ’I
’9 jL 、 9 b、9cの一端が、互いに等間隔
をあけて接続され、かつ、これら水中ウィンチ8+L、
8b、8cは、海中に沈められる略三角形状のアンカー
10の各頂角部分にそれぞれ取シ付けられている。また
、浮体1の内部には、太陽の位置を検出する検出装置1
1と、この検出装置11で得られた信号に基づき上記3
組の水中ウィンチ8a、8b、8cを相互に連係させて
制御し、浮体1の姿勢を最適に調整する制御装置12と
が配設されている。そして、検出装置11で検出された
太陽の位置に応じて、制御装置1−2が、3組の水中ウ
ィンチ8 a + 8 b +8cの一部または全部を
作動してそれぞれのワイヤ9a、9b、9eを巻き上げ
たシ巻き戻したシするようになっておシ、これによシ浮
体1の姿勢が制御さnl ソーラセル2の受光面が常に
太陽に向けられるように構成されている。On the other hand, the floating body 1 is attached with attitude control means 5 that detects the position of the sun, controls the attitude of the floating body 1 based on the detection signal, and directs the light-receiving surface of the solar cell 2 toward the sun. That is, each of the three sets of underwater winches 8a, 8b, and 8c has a spherical outer surface of the floating body l.
'9jL, 9b, 9c are connected at equal intervals, and these underwater winches 8+L,
8b and 8c are attached to each apex portion of a substantially triangular anchor 10 that is sunk into the sea. Also, inside the floating body 1, a detection device 1 for detecting the position of the sun is installed.
1, and the above 3 based on the signal obtained by this detection device 11.
A control device 12 is provided that controls the underwater winches 8a, 8b, 8c in coordination with each other and optimally adjusts the attitude of the floating body 1. Then, according to the position of the sun detected by the detection device 11, the control device 1-2 operates some or all of the three sets of underwater winches 8a + 8b + 8c to connect the respective wires 9a, 9b, 9e is wound up and unwound, thereby controlling the attitude of the floating body 1. The light receiving surface of the solar cell 2 is always directed toward the sun.
ここで、上記検出装置11としては、例えば、第3図に
示すように、受光面積の同じ3組のセンサー13a、1
3b、13cを仕切板14で区分けして上記ソーラセル
2と同一面に配設し、これら3組のセンサー13 a
* 13 b 、 13 cによシ発生される各電圧を
比較器15によシ相互に比較して、太陽光りの入射方向
すなわち太陽の位置を検出するように構成したものを用
いることができる。なお、第5図において、符号16で
示すものは検出装置11の検出信号が波などの外乱によ
り変動するのを防止する回路であり、RC回路あるいは
タイマなどによ多構成することができる。Here, as the detection device 11, for example, as shown in FIG.
3b and 13c are separated by a partition plate 14 and arranged on the same surface as the solar cell 2, and these three sets of sensors 13a
*It is possible to use a device configured to compare each voltage generated by 13 b and 13 c with each other by a comparator 15 to detect the direction of incidence of sunlight, that is, the position of the sun. In FIG. 5, the reference numeral 16 is a circuit that prevents the detection signal of the detection device 11 from fluctuating due to disturbances such as waves, and can be configured with an RC circuit or a timer.
まな、第7図において、符号17で示すものは、上記ソ
ーラセル2で得られた電力を使用する作業機や計測器な
どの機器である。In FIG. 7, the reference numeral 17 indicates equipment such as working machines and measuring instruments that use the power obtained from the solar cell 2.
次に、上記のように構成された本発明の太陽光発電装置
の作用について説明する。Next, the operation of the solar power generation device of the present invention configured as described above will be explained.
本発明の太陽光発電装置を使用する場合は、第2図に示
すように、装置全体を海面Wに浮かべる。When using the solar power generation device of the present invention, the entire device is floated on the sea surface W, as shown in FIG.
すると、日照時には、太陽光りがソーラセル2に照射す
る。ソーラセル2は、この太陽光りをその受光面で受け
てそのエネルギを電気エネルギに変換し、電流を発生す
る。この電流は、直接出力線3から取シ出されて各種用
途に利用さ九るか、あるいはバッテリー4に一旦蓄えて
利用される。Then, during sunshine, sunlight irradiates the solar cell 2. The solar cell 2 receives this sunlight on its light-receiving surface, converts the energy into electrical energy, and generates a current. This current is either directly taken out from the output line 3 and used for various purposes, or it is temporarily stored in the battery 4 and used.
また、太陽は東より昇り西に沈むが、本発明の太陽光発
電装置では、との太陽の位置に合わせて、姿勢制御手段
5によシ浮体1の姿勢が制御され、ソーラセル2の受光
面が常時太陽に向けられる。Furthermore, although the sun rises in the east and sets in the west, in the solar power generation device of the present invention, the attitude of the floating body 1 is controlled by the attitude control means 5 in accordance with the position of the sun, and the light-receiving surface of the solar cell 2 is is always directed toward the sun.
すなわち、今、第6図(a)に示すように、装置が、例
えば水中ウィンチ8aを東に向けた状態で海面WVc浮
かべられているものとし、また、ソーラセル2には、東
から昇った太陽の光りが該ソーラセル2の受光面に対し
て直角に照射しているものとする。このとき、検出装置
11の各センサー13a、13b、13cに入射する光
量はそれぞれ略同−である。この状態から太陽がさらに
昇ると、太陽光りがソーラセル2の受光面に対して斜め
に照射するようになり、また、検出装置11の各センサ
ー13a、13b、13cに対しても斜めに照射するよ
うになるが、各センサー13&、13b。That is, as shown in FIG. 6(a), it is assumed that the device is floating on the sea surface WVc with the underwater winch 8a facing east, and the solar cell 2 has the sun rising in the east. It is assumed that the light is irradiating the light-receiving surface of the solar cell 2 at right angles. At this time, the amount of light incident on each sensor 13a, 13b, 13c of the detection device 11 is approximately the same. When the sun rises further from this state, the sunlight will irradiate the light-receiving surface of the solar cell 2 obliquely, and also obliquely irradiate each sensor 13a, 13b, 13c of the detection device 11. However, each sensor 13&, 13b.
13c間には仕切板14が設けられているため、各セン
サー13a、13b、13cに入射する光量がまちまち
となる。これが電圧差として比較器15により検出され
て太陽光りの照射方向が感知され、太陽の位置が検出さ
れる。そして、この検比信号が制御装置12に入ると、
制御装置」2は、3組の水中ウィンチ8a、8b、8c
を作動して一方のワイヤ9aを緩めると同時に他のワイ
ヤ9b、9cを巻き上げ、これによシ浮体1の姿勢を制
御して、太陽光りがソーラセル2の受光面に対して直角
に照射するようにする。このようにして、太陽の移動に
応じて浮体1の姿勢が連続的に制御され、ソーラセル2
の受光面は常に太陽に向けら几る。第6図(′b)は太
陽が浮体1の略真上に位置したときの浮体1の姿勢を、
また、第6図(C)は太陽が西に移動したときの浮体1
の姿勢をそれぞれ示す。Since the partition plate 14 is provided between the sensors 13c, the amount of light incident on each sensor 13a, 13b, and 13c varies. This is detected as a voltage difference by the comparator 15, the direction of sunlight irradiation is sensed, and the position of the sun is detected. Then, when this comparison signal enters the control device 12,
The control device 2 includes three sets of underwater winches 8a, 8b, 8c.
is activated to loosen one wire 9a and at the same time wind up the other wires 9b and 9c, thereby controlling the attitude of the floating body 1 so that sunlight irradiates at right angles to the light receiving surface of the solar cell 2. Make it. In this way, the attitude of the floating body 1 is continuously controlled according to the movement of the sun, and the solar cell 2
The light-receiving surface always faces the sun. Figure 6('b) shows the attitude of floating body 1 when the sun is located almost directly above floating body 1.
In addition, Figure 6 (C) shows floating body 1 when the sun moves to the west.
The postures are shown respectively.
このように、上記太陽光発電装置では、ソーラセル2の
受光面が常圧太陽に向けられるため、太陽光りを最大限
に受光でき、したがって、装置効率は極めて高い。In this way, in the solar power generation device described above, since the light-receiving surface of the solar cell 2 faces the normal-pressure sun, sunlight can be received to the maximum extent, and therefore, the device efficiency is extremely high.
さらに、浮体1などの金属部6に対して、ソーラセル2
によ力発生された電流の一部を利用して常時電気防食を
施しておくことができ、金属部6における錆の発生など
を防止することができるから、装置の耐久性が高い。ま
た、ソーラセル2で発生された電流は直接取シ出して利
用できるし、一旦バッテリー4に蓄えて利用することも
できる。Furthermore, the solar cell 2
A portion of the current generated by the force can be used to provide constant electrolytic protection, and the occurrence of rust on the metal parts 6 can be prevented, resulting in high durability of the device. Further, the current generated by the solar cell 2 can be directly extracted and used, or can be temporarily stored in the battery 4 and used.
ではなく、また、制御装置12などを適宜に保護した上
で、その内部に比重の軽い材料を充填していってもよい
。また、浮体1へのソーラセル2の取り付は方法は任意
であシ、ソーラセル2を取り付けた後、透明プラスチッ
ク等でこれを被覆保護してもよい。さらに、検出装置1
1Fi、J組のセンーサ゛、13a、13b、13cを
用いて構成1−たが、μ組以上の七−ンレサ・=を用い
て精度を高めてもよいし、他の形式の検出装置を使用し
てもよい。検出装置11を用いずに、あらかじめ〆記憶
させた太陽の軌道に倣って浮体1の姿勢制御がなされる
ようにすることもできる。Alternatively, after the control device 12 and the like are appropriately protected, a material with a light specific gravity may be filled inside the control device 12 and the like. Further, the method for attaching the solar cell 2 to the floating body 1 is arbitrary; after the solar cell 2 is attached, it may be covered and protected with transparent plastic or the like. Furthermore, the detection device 1
Although configuration 1-1 uses 1Fi and J sets of sensors, 13a, 13b, and 13c, accuracy may be increased by using 7-sensors of μ or more sets, or other types of detection devices may be used. You can. It is also possible to control the attitude of the floating body 1 without using the detection device 11, following a previously memorized orbit of the sun.
さらに、上記においては、浮体1の姿勢の調整は、3組
の水中ウィンチ8a、8b、8cを作動インチを使用し
て制御効率を高めてもよい。また、例えば浮体1の内面
に軌条を形成するとともに、この軌条に沿ってウェイト
が転動するようにし、このウェイトの位置を制御装置1
2により制御して浮体1の姿勢を調整するように構成し
てもよい。Furthermore, in the above, the attitude of the floating body 1 may be adjusted by using the three sets of underwater winches 8a, 8b, and 8c in operating inches to improve control efficiency. Further, for example, a rail is formed on the inner surface of the floating body 1, and a weight is made to roll along this rail, and the position of the weight is controlled by the control device 1.
2 may be used to adjust the attitude of the floating body 1.
加えて、上記のように、浮体1の姿勢を制御してソーラ
セル2の受光面を太陽に向けるのではなくて、ソーラセ
ル2自体の姿勢を直接制御するようにしてもよい。In addition, as described above, instead of controlling the attitude of the floating body 1 to direct the light-receiving surface of the solar cell 2 toward the sun, the attitude of the solar cell 2 itself may be directly controlled.
以上説明したように、本発明の太陽光発電装置にあって
は、浮体に姿勢制御手段が付設されているから、ソーラ
セルの受光面を常に太陽に向けておくことができ、太陽
光を最大限に取如込むことができる。したがって、装置
の効率は極めて高い。As explained above, in the solar power generation device of the present invention, since the floating body is provided with an attitude control means, the light receiving surface of the solar cell can always be directed toward the sun, and sunlight can be maximized. can be taken into account. Therefore, the efficiency of the device is extremely high.
また、ソーラセルを用いるものであるから、燃料の補給
や定期的な保守が不要で半永久的な寿命を有するなどの
効果を奏することは熱論である。Furthermore, since it uses solar cells, it is a hot topic that it has the advantage of not requiring refueling or regular maintenance, and has a semi-permanent lifespan.
第1図ないし第3図は本発明の一実施例を示すもので、
第7図は正面図、第一図は第7図のn −■矢視図、第
3図は回路略図、第参図はブロック図、第3図は検出装
置の回路略図である。また、第6図(a)ないしくc)
は浮体の姿勢制御の状態を示す側面図である。
1・・・・・・浮体、2・・・・・・ソーラセル、5・
・・・・・姿勢制御手段。
第1図
し
第2図
8c 8b
第3図1 to 3 show an embodiment of the present invention,
7 is a front view, FIG. 1 is a view taken along the arrow n--■ in FIG. 7, FIG. 3 is a schematic circuit diagram, FIG. 3 is a block diagram, and FIG. 3 is a schematic circuit diagram of the detection device. Also, Figure 6 (a) to c)
FIG. 3 is a side view showing the state of attitude control of the floating body. 1...Floating body, 2...Solar cell, 5.
... Attitude control means. Figure 1 Figure 2 8c 8b Figure 3
Claims (1)
、との浮体には、浮体もしくはソーラセルの姿勢を制御
してソーラセルの受光面を太陽に向ける姿勢制御手段が
付設されて成ることを特徴とする太19光発電装置。A solar cell is provided on a floating body floating on the water surface, and the floating body is provided with attitude control means for controlling the attitude of the floating body or the solar cell to direct the light-receiving surface of the solar cell toward the sun. Tai 19 photovoltaic device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59036559A JPH0693214B2 (en) | 1984-02-28 | 1984-02-28 | Solar power generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59036559A JPH0693214B2 (en) | 1984-02-28 | 1984-02-28 | Solar power generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60179811A true JPS60179811A (en) | 1985-09-13 |
JPH0693214B2 JPH0693214B2 (en) | 1994-11-16 |
Family
ID=12473109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59036559A Expired - Lifetime JPH0693214B2 (en) | 1984-02-28 | 1984-02-28 | Solar power generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0693214B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61223909A (en) * | 1985-03-29 | 1986-10-04 | Kyocera Corp | Solar light tracking device |
WO1987000312A1 (en) * | 1985-07-11 | 1987-01-15 | Allan Russell Jones | Electronic control circuit |
JP2007000797A (en) * | 2005-06-24 | 2007-01-11 | Nakajima Kogyo:Kk | Floating water purification apparatus |
ITVR20080097A1 (en) * | 2008-09-01 | 2010-03-02 | Marco Gonella | MODULAR DEVICE FOR SUPPORTING SOLAR PANELS AND ITS SYSTEM |
CN103914084A (en) * | 2014-04-03 | 2014-07-09 | 苏州工业职业技术学院 | Automatic light tracing device and light tracing method thereof |
CN106292734A (en) * | 2016-08-16 | 2017-01-04 | 江苏大学 | A kind of sunlight location tracking system |
CN106959707A (en) * | 2017-03-16 | 2017-07-18 | 浙江大学 | A kind of solar radiation quantity for photovoltaic generation monitors method of adjustment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55117288A (en) * | 1979-03-02 | 1980-09-09 | Sharp Corp | Solar battery device installed on water |
-
1984
- 1984-02-28 JP JP59036559A patent/JPH0693214B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55117288A (en) * | 1979-03-02 | 1980-09-09 | Sharp Corp | Solar battery device installed on water |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61223909A (en) * | 1985-03-29 | 1986-10-04 | Kyocera Corp | Solar light tracking device |
WO1987000312A1 (en) * | 1985-07-11 | 1987-01-15 | Allan Russell Jones | Electronic control circuit |
JP2007000797A (en) * | 2005-06-24 | 2007-01-11 | Nakajima Kogyo:Kk | Floating water purification apparatus |
JP4687961B2 (en) * | 2005-06-24 | 2011-05-25 | 有限会社中島工業 | Floating water purification system |
ITVR20080097A1 (en) * | 2008-09-01 | 2010-03-02 | Marco Gonella | MODULAR DEVICE FOR SUPPORTING SOLAR PANELS AND ITS SYSTEM |
CN103914084A (en) * | 2014-04-03 | 2014-07-09 | 苏州工业职业技术学院 | Automatic light tracing device and light tracing method thereof |
CN106292734A (en) * | 2016-08-16 | 2017-01-04 | 江苏大学 | A kind of sunlight location tracking system |
CN106959707A (en) * | 2017-03-16 | 2017-07-18 | 浙江大学 | A kind of solar radiation quantity for photovoltaic generation monitors method of adjustment |
Also Published As
Publication number | Publication date |
---|---|
JPH0693214B2 (en) | 1994-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11401010B2 (en) | Underwater data capture and transmission system having a variable buoy | |
KR101318791B1 (en) | Variable rope supporting type floating solar power plant | |
JP2007118925A (en) | Floating power generator | |
CN103346697A (en) | Overwater solar photovoltaic power generation system | |
KR101946214B1 (en) | Solar power generating system | |
CN206288200U (en) | A kind of oceanographic buoy based on improved wind TRT | |
KR20130015079A (en) | Solar and wind power water pension yacht | |
KR20100117183A (en) | A device for solar generation of electric power on water supporting by a weight | |
CN109178214A (en) | A kind of intelligence underwater observation platform | |
KR101194783B1 (en) | Float type construction | |
JPS60179811A (en) | Power generating set using solar light | |
KR101232314B1 (en) | Water surface floating type solar photovoltaic power generator | |
KR101298633B1 (en) | Water Float Type Solar Power Generator | |
JP7538111B2 (en) | Solar power plant and installation method for solar power plant | |
CN216385777U (en) | Over-and-under type ocean information acquisition flotation device | |
KR101201716B1 (en) | Weight balanced Solar tracking system for photovoltaic power generating system | |
JPS61223909A (en) | Solar light tracking device | |
JPS60160387A (en) | Solar light power generator | |
JP2002320345A (en) | Floating unit and energy absorbing system using the same | |
CN210592332U (en) | Control measurement identification device of marine unmanned aerial vehicle | |
CN113623121B (en) | Wave current coupling underwater power generation device for marine lamp buoy | |
CN210555440U (en) | Marine environment monitoring buoy | |
JP2000246287A (en) | Method for preventing eutrophication of lakes and marshes having electric power generating function | |
KR20150117223A (en) | Mooring devices for a floating photovoltaic power plant | |
TWI721703B (en) | Floating solar tracking system applied to shallow waters |