[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60179208A - Heat treatment device of high molecular material - Google Patents

Heat treatment device of high molecular material

Info

Publication number
JPS60179208A
JPS60179208A JP3575084A JP3575084A JPS60179208A JP S60179208 A JPS60179208 A JP S60179208A JP 3575084 A JP3575084 A JP 3575084A JP 3575084 A JP3575084 A JP 3575084A JP S60179208 A JPS60179208 A JP S60179208A
Authority
JP
Japan
Prior art keywords
heating medium
high molecular
polymeric material
molecular material
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3575084A
Other languages
Japanese (ja)
Inventor
Hideaki Ishihara
石原 英昭
Kazuo Kurita
和夫 栗田
Tetsuo Moriguchi
哲雄 森口
Yoshifumi Minowa
美濃和 芳文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Toyobo Co Ltd
Original Assignee
Mitsubishi Electric Corp
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Toyobo Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP3575084A priority Critical patent/JPS60179208A/en
Publication of JPS60179208A publication Critical patent/JPS60179208A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/02Conditioning or physical treatment of the material to be shaped by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/08Conditioning or physical treatment of the material to be shaped by using wave energy or particle radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To enable heating speed to be heightened without applying mechanical stress to high molecular material by a method in which the heating medium gasified by preheating is caused to be in contact with high molecular material and is condensed, and then it is heated by microwave induction heating. CONSTITUTION:A heating medium is heated by a heater 8 and becomes gaseous heating medium 7b, and then is blown to high molecular material 2 through a blowing nozzle 9 by way of a gas flowing device 11. Because the temperature of the high molecular material 2 adjacent to the inlet of a preheater 6 is low, when the gaseous heating medium 7b is in contact with the high molecular material 2, said medium 7b is condensed, and heightens the temperature of the high molecular material 2, giving its condensation heat to said material 2. The preheated high molecular material is moved to a microwave heater 12 at the state where the condensed heating medium 7c has adhered to its surface, and is heated to the temperature of heat treating operation. Simultaneously, the heating medium 7 adhering to its surface is removed by evaporation. Because the value (epsilonrtandelta) of the high molecular material 2 is sufficiently large by preheating, it is effectively heated in short time by microwave.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は繊維状もしくはフィルム状の高分子材料をマイ
クロ波誘電加熱により加熱熱処理する高分子材料の熱処
理装置に係り、とくにマイクロ波加熱の前段で予熱する
予熱器の構成に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a heat treatment apparatus for a polymer material that heat-treats a fibrous or film-like polymer material by microwave dielectric heating. The present invention relates to the configuration of a preheater for preheating.

〔従来技術〕[Prior art]

従来繊維状高分子材料、例えばポリアミド、ポリエステ
ル、ポリオレフィン等の延伸、熱セット等における加熱
、熱処理の主な手段としては加熱ローラによる方式、熱
風方式、マイクロ波誘電加熱による方式などがあった。
Conventionally, the main means for heating and heat treating fibrous polymeric materials, such as polyamide, polyester, polyolefin, etc. during stretching, heat setting, etc., include methods using heated rollers, hot air methods, and microwave dielectric heating methods.

前二者の方式は外部からの間接加熱となるため熱の伝達
率が小さく、高速加熱ができないこと、加熱が不均一で
あるため、綜維断面内の配向度分布が不均一となり、強
度特性が低下するなどの欠点を有していた。
The first two methods require indirect heating from the outside, so the heat transfer rate is low, and high-speed heating is not possible.As the heating is uneven, the orientation distribution within the cross section of the heddle fibers becomes uneven, resulting in poor strength properties. It had drawbacks such as a decrease in

この点、後者の方式、すなわちマイクロ波による誘電加
熱は誘電体が電波を吸収して発熱するものであり、外部
からの間接加熱方式とは異なり、誘電体の内外が均一に
加熱されるため、内外の温度差が発生しない利点がある
。マイクロ波誘電加熱によって誘電体が吸収する熱量(
0は次式で与えられる。
In this respect, in the latter method, dielectric heating using microwaves, the dielectric absorbs radio waves and generates heat, and unlike indirect heating from the outside, the inside and outside of the dielectric are heated uniformly. This has the advantage that there is no temperature difference between inside and outside. The amount of heat absorbed by the dielectric by microwave dielectric heating (
0 is given by the following equation.

ε0=真空中の誘電率 εr:誘電体の比誘電率 一δ:誘電体損失角 E:電界の強さ ふ:誘電体の体積 しかるに、上式の(εrta+1δ)は誘電体損失で物
質に固有の値であり、温度に依存した値を示す。第1図
の曲線(1)はこの−例としてのナイロン6の(εr−
δ)一温度の関係を示したものである。一般に高分子材
料は低温領域でこの値は小さく、高温領域では大きな値
を示す。したがって吸収する熱AQは低温領域では小さ
いため加熱に長時間を要する欠点があった。
ε0 = Dielectric constant in vacuum εr: Relative permittivity of dielectric - δ: Dielectric loss angle E: Electric field strength: Volume of dielectric However, (εrta+1δ) in the above equation is dielectric loss, which is specific to the material. , and shows a temperature-dependent value. Curve (1) in FIG.
δ) This shows the relationship for one temperature. Generally, for polymeric materials, this value is small in the low temperature range, and large in the high temperature range. Therefore, since the absorbed heat AQ is small in the low temperature region, there is a drawback that heating takes a long time.

〔発明の概要〕[Summary of the invention]

この発明はこのような従来のものの欠点を解消するため
1こなされたもので、予め加熱してガス状とした所定の
熱媒を高分子材料に接触凝縮せしめしかる後マイクロ波
誘電加熱を行うことにより、上記高分子材料に機械的ス
トレスを加えることなく加熱速度の向上を1(ることか
できる高分子材料の熱処理装置を提供することを目的と
するものである。
This invention has been made to overcome the drawbacks of the conventional methods, and involves contacting and condensing a predetermined heat medium, which has been heated in advance into a gaseous state, on a polymeric material, and then subjecting it to microwave dielectric heating. The object of the present invention is to provide a heat treatment apparatus for a polymeric material that can improve the heating rate by 1 (1) without applying mechanical stress to the polymeric material.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例における高分子材料 ”の熱
処理装置を因面について説明する。第2図はこの熱処理
装置の全体を示す構成図である。図において、(2)は
lamもしくはフィルム状のポリアミド、ポリエステル
、ポリオレフィン等の高分子材−料で、矢印(3)の方
向に走行しローラ(4)を経て巻取ロール(5)に巻き
取られる。(6)は高分子材料(2)が内部を走行する
過程でその予熱を行なう予熱器で、底部に熱媒(7)を
加熱する加熱器(8)を内蔵し、加熱器(8)は液状の
熱媒(7a)を気化蒸発せしめてガス状の熱媒(7b)
を発生させる。ここで、熱媒(7)は高分子材料(2)
の融点以下でかつ高分子材料(2)の熱処理操作温度(
例えば延伸の場合は延伸温度、熱セットの場合は熱セツ
ト温度)に近接したところに沸点をもつ物質、例えば2
00°Cで熱処理操作を行う場合には200°C付近に
沸点をもつ鉱油やエチレングリコール等が選択される。
Hereinafter, a heat treatment apparatus for polymeric materials according to an embodiment of the present invention will be explained in detail. FIG. 2 is a block diagram showing the entire structure of this heat treatment apparatus. (6) is a polymeric material such as polyamide, polyester, polyolefin, etc., which travels in the direction of the arrow (3), passes through a roller (4), and is wound onto a take-up roll (5). ) is a preheater that preheats the heat medium (7a) as it travels inside, and has a built-in heater (8) at the bottom that heats the heat medium (7), and the heater (8) vaporizes the liquid heat medium (7a). Evaporated gaseous heat medium (7b)
to occur. Here, the heat medium (7) is a polymer material (2)
and below the melting point of the polymer material (2) and the heat treatment operation temperature (
For example, a substance with a boiling point close to the drawing temperature in the case of stretching or the heat setting temperature in the case of heat setting, for example,
When heat treatment is performed at 00°C, mineral oil, ethylene glycol, or the like having a boiling point around 200°C is selected.

(9)は予熱器(6)のと部に配設され高分子材料(2
)に向って斜め下方に開口する吹込ノズル、C11は予
熱器(6)の下方に存在するガス状の熱媒(7b)を吹
込ノズル(9目こ圧送循環せしめるガス圧送装置である
。そして、吹込ノズル(9)とガス圧送装置(10とに
よりガス流装置α力を構成し、ガス状の熱媒(7b)を
高分子材料(2)の走行速度とほぼ同一の速度で高分子
材料(2)に接触させその凝縮により高分子材料(2)
を予熱せしめる。(2)は予熱され熱媒(7)が付着し
た高分子材料(2)をマイクロ波誘電加熱するマイクロ
波加熱器、θ葎はマイクロ波加熱により蒸発した熱媒(
7)を予熱器(6)へ回収する配管である。(1→は予
熱器(6)の入[」及びマイクロ波加熱器(2)の出口
に取り付けられたガス遮断装置で、ガス状の熱媒(7b
)の漏洩を防止している。
(9) is disposed at the end of the preheater (6) and is made of polymeric material (2).
The blowing nozzle C11 opens obliquely downward toward the blowing nozzle (9) and is a gas pressure feeding device that circulates the gaseous heat medium (7b) present below the preheater (6) under pressure through the blowing nozzle (9). The blowing nozzle (9) and the gas pressure feeding device (10) constitute a gas flow device α, and the gaseous heating medium (7b) is fed into the polymeric material (2) at almost the same speed as the traveling speed of the polymeric material (2). 2) and its condensation causes polymer material (2)
Let it preheat. (2) is a microwave heater that dielectrically heats the polymer material (2) that has been preheated and has a heating medium (7) attached to it, and θ 葎 is a heating medium (
7) to the preheater (6). (1→ is a gas cutoff device installed at the inlet of the preheater (6) and at the outlet of the microwave heater (2).
) is prevented from leaking.

次に、以上のように構成されたこの発明の一実施例とし
ての高分子材料の熱処理装置の動作を第2図について説
明する。熱媒(7)は加熱器(8)により加熱されガス
状の熱媒(7b)となってガス流装置aυにより吹込ノ
ズル(9)から高分子材料(2)に向って吹き込まれる
。この場合、吹込ノズル(9)から吹き込まれるガス状
の熱媒(7b)は高分子材料(2)が走行する矢印(3
)と同じ方向でかつ問分子材料(2)の走行速度とほぼ
同一の速度になるように調整されている。
Next, the operation of the heat treatment apparatus for polymeric materials as an embodiment of the present invention constructed as described above will be explained with reference to FIG. The heating medium (7) is heated by the heater (8) and becomes a gaseous heating medium (7b), which is blown into the polymeric material (2) from the blowing nozzle (9) by the gas flow device aυ. In this case, the gaseous heat medium (7b) blown from the blowing nozzle (9) is directed towards the arrow (3) along which the polymeric material (2) runs.
) and at almost the same speed as the traveling speed of the molecular material (2).

そして、予熱器(6)の入口付近の高分子材料(2)の
温度は低温であるため、ガス状の熱g (7b)は高分
子材料(2)と接触した時点で凝縮し凝縮熱を高分子材
料(2)に与えて昇温させる。一般に、凝縮するときの
熱伝達率は500〜5000kcal/m2h’c で
、熱風による場合の熱伝達率数10kcal/m2h’
Cと比較してZo。
Since the temperature of the polymer material (2) near the entrance of the preheater (6) is low, the gaseous heat g (7b) condenses when it comes into contact with the polymer material (2) and releases the heat of condensation. It is applied to the polymer material (2) and raised in temperature. Generally, the heat transfer coefficient when condensing is 500 to 5000 kcal/m2h'c, and the heat transfer coefficient when using hot air is several 10 kcal/m2h'c.
Zo compared to C.

倍程度大きいために短時間でかつ均一に加熱することが
できる。更に、ガス状の熱媒(7b)は高分子材料(2
)との相対速度がほぼ零の状態になるように吹き込まれ
るため、その凝縮の過程において高分子材料(2)に有
害な機械的ストレスを加えることがない。即ち、仮にガ
ス状の熱媒(7b)が静止した状態で同様の凝縮を行わ
しめると、凝縮した熱媒(7c)が高分子材料(2)の
走行速度になるように高分子材料(2)から力を受け、
逆に高分子材料(2)にはその反力により引張力が働く
。このため、註分子材料(2)はその延伸もしくは熱処
理過程で規定された以外の機械的ストレスを受けること
になり、品質が著しく劣化したりもしくは切断されるこ
とになる。そして、凝縮した熱媒(7c)は、ローラ(
4)によって高分子材料(2)の走行方向が変化すると
き遠心力を受けて矢印−のようにその一部が予熱器(6
)の底部に振り落され、加熱器(8)により再度ガス化
され、未凝縮のガス状の熱媒(7b)と共にガス圧送装
kf (10の作用によって再び吹込ノズル(9)に送
り込まれる循環をくり返す。
Since it is about twice as large, it can be heated uniformly in a short time. Further, the gaseous heating medium (7b) is made of a polymeric material (2
), the polymer material (2) is blown at a relative velocity of almost zero, so no harmful mechanical stress is applied to the polymer material (2) during the condensation process. That is, if similar condensation is performed while the gaseous heating medium (7b) is stationary, the polymeric material (2) is moved so that the condensed heating medium (7c) reaches the traveling speed of the polymeric material (2). ) receives power from
Conversely, a tensile force acts on the polymer material (2) due to the reaction force. For this reason, the molecular material (2) will be subjected to mechanical stresses other than those specified during the stretching or heat treatment process, resulting in significant quality deterioration or cutting. Then, the condensed heat medium (7c) is transferred to the roller (
4) When the running direction of the polymer material (2) changes, a part of it receives centrifugal force and moves into the preheater (6) as shown by the arrow.
), it is gasified again by the heater (8), and is sent to the blowing nozzle (9) again by the action of the gas pumping device kf (10) together with the uncondensed gaseous heating medium (7b). Repeat.

次に、予熱モ買6)内で予熱された高分子材料(2)は
その表面に凝縮した熱媒(7c)を付着させた状態でマ
イクロ波加熱器(2)に移動し、熱処理操作温度まで加
熱されると共に表面に付着した熱!I¥(7)は蒸発除
去される。蒸発した熱媒(7)は配管α免によって予熱
器(6)に回収される。この場合、高分子材料(2)は
予熱によりその(εr―δ)が十分大ぎい値になってい
るためマイクロ波に誹って短時間に効率よく加熱される
。そして、マイクロ波加熱器(イ)で規定の温度まで加
熱され、熱処理された高分子材料(2)は巻取ロール(
5)によって巻き取られる。
Next, the polymeric material (2) preheated in the preheating machine 6) is transferred to the microwave heater (2) with the condensed heating medium (7c) attached to its surface, and is heated to a heat treatment operating temperature. The heat that adheres to the surface as it is heated up to! I¥(7) is removed by evaporation. The evaporated heat medium (7) is recovered to the preheater (6) through the pipe α-men. In this case, since the polymer material (2) has a sufficiently large value (εr-δ) due to preheating, it can be efficiently heated in a short time by the microwaves. Then, the heat-treated polymer material (2) is heated to a specified temperature with a microwave heater (A) and then rolled into a take-up roll (
5) is wound up.

なお、上記一実施例においては、ガス状のλJt媒(7
b)の流動は吹込ノズル(9)とガス圧送装置(,1と
によって行われるが、他の方法、例えば予熱器(6)内
に循溝用ブロアーを配設して行うようにしてもよい。
In the above embodiment, the gaseous λJt medium (7
The flow in b) is carried out by the blowing nozzle (9) and the gas pressure feeding device (, 1), but it may also be carried out by other methods, for example by disposing a circulation groove blower in the preheater (6). .

〔発明の効果〕〔Effect of the invention〕

この発明は以上説−明したように、予め、加熱してガス
状とした所定の熱媒を高分子材料の走行速度とほぼ同一
の速度で流動せしめて上記高分子材料に接触凝縮せしめ
、しかる後マイクロ波誘電加熱を行う拘成としたので、
上記高分子材料に機械的ストレスを加えることなく加熱
速度の向上を図ることができるという効果がある。
As explained above, in this invention, a predetermined heating medium that has been heated in advance and made into a gaseous state is made to flow at almost the same speed as the traveling speed of the polymeric material, and is brought into contact with and condensed on the polymeric material. Since we were constrained to perform microwave dielectric heating afterward,
This has the effect that the heating rate can be improved without applying mechanical stress to the polymer material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高分子材料の一例としてのナイロン6の(cr
tanδ)と温度との関係を示す特性図、第2図はこの
発明の一実施例における高分子材料の熱処理装部の全体
を示す構成図である。図において、(2)は高分子材料
、(6)は予熱器、(7)は熱媒、Oυはガス流装量、
(6)はマイクロ波加熱器である。 代理人 大岩増雄 第1図 51す轟−ノL (?と:)
Figure 1 shows nylon 6 (cr) as an example of a polymer material.
FIG. 2 is a diagram showing the entire structure of a heat treatment equipment for polymeric materials in an embodiment of the present invention. In the figure, (2) is the polymer material, (6) is the preheater, (7) is the heating medium, Oυ is the gas flow rate,
(6) is a microwave heater. Agent Masuo Oiwa Figure 1 51 Sudoro-no L (? and :)

Claims (3)

【特許請求の範囲】[Claims] (1)所定の走行速度で走行操作される高分子材料の融
点以下でかつ熱処理操作温度に近接した沸点を有する熱
媒を加熱してガス状となしこのガス状の熱媒を上記高分
子材料に接触凝縮せしめて上記高分子材料を予熱する予
熱器と、上記熱媒が接触凝縮した高分子材料をマイクロ
波誘電加熱により加熱し、上記接触凝縮した熱媒を蒸発
除去するマイクロ波加熱器とを備えたものにおいて、上
記ガス状の熱媒が上記走行速度と同一方向かつほぼ同一
の速度で上記高分子材料と接触するように上記ガス状の
熱媒を流動せしめるガス流装置を設けたことを特徴とす
る高分子材料の熱処理装置。
(1) A heating medium having a boiling point below the melting point of the polymeric material to be operated at a predetermined running speed and close to the heat treatment operating temperature is heated to a gaseous state, and this gaseous heating medium is transferred to the polymeric material mentioned above. a preheater that preheats the polymeric material by contact condensation with the heating medium, and a microwave heater that heats the polymeric material on which the heating medium has been catalytically condensed by microwave dielectric heating and evaporates and removes the catalytically condensed heating medium. A gas flow device is provided for causing the gaseous heating medium to flow so that the gaseous heating medium comes into contact with the polymeric material in the same direction and at substantially the same speed as the traveling speed. A heat treatment device for polymeric materials featuring:
(2) ガス流装置は純分子材料が送入される予熱器の
入口部近傍に配設され上記高分子材料に向って開口する
吹込ノズルと、この吹込ノズルにガス状の熱媒を圧送循
凛せしめるガス圧送装置とからなる特許請求の範囲第1
項記載の高分子材料の熱処理装置。
(2) The gas flow device includes a blowing nozzle that is disposed near the inlet of the preheater into which the pure molecular material is fed and opens toward the polymeric material, and a gaseous heat medium is pumped and circulated through the blowing nozzle. Claim 1 consisting of a gas pressure feeding device that makes you feel dignified.
A heat treatment apparatus for polymeric materials as described in 2.
(3)高分子材料はポリアミド、ポリエステル。 ポリオレフィン等の熱可塑性高分子からなる繊維または
フィルムである特許請求の範囲第1項または第2項記載
の高分子材料の熱処理装置。
(3) Polymer materials are polyamide and polyester. 3. A heat treatment apparatus for a polymeric material according to claim 1 or 2, which is a fiber or film made of a thermoplastic polymer such as polyolefin.
JP3575084A 1984-02-27 1984-02-27 Heat treatment device of high molecular material Pending JPS60179208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3575084A JPS60179208A (en) 1984-02-27 1984-02-27 Heat treatment device of high molecular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3575084A JPS60179208A (en) 1984-02-27 1984-02-27 Heat treatment device of high molecular material

Publications (1)

Publication Number Publication Date
JPS60179208A true JPS60179208A (en) 1985-09-13

Family

ID=12450496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3575084A Pending JPS60179208A (en) 1984-02-27 1984-02-27 Heat treatment device of high molecular material

Country Status (1)

Country Link
JP (1) JPS60179208A (en)

Similar Documents

Publication Publication Date Title
JP2755758B2 (en) How to add gloss to a sheet web
CA1236354A (en) Process and installation for drying a web impregnated with hardenable synthetic resin
CA2040655C (en) Method of, and apparatus for, heat treating a material web provided with a liquid or paste-like preparation
HU183352B (en) Method and apparatus for heat treating impregnated materials
US3630660A (en) Process for removal of moisture and/or solvents from textile materials
KR960043010A (en) Plasma processing apparatus and method for processing plasma
EP0368289B1 (en) Process for drying coated web
JPS60179208A (en) Heat treatment device of high molecular material
US2443443A (en) Apparatus for producing films
US3576664A (en) Method for coating metal strips
KR950032764A (en) Synthetic heating method and apparatus for performing the same
CA1075871A (en) Continuous curing device for longitudinally extended products
US5755931A (en) Method and apapratus for preserving a press roll jacket
IE41985B1 (en) Heat treatment of a web containing fibres of thermoplastic material
JPS60179209A (en) Heat treatment process of high molecular material
US5913997A (en) Process for thermomechanically treating a fleece web made of thermoplastic synthetic resin and an apparatus for carrying out the process
JPS5624131A (en) Manufacture of thermosetting resin film
JPS60145823A (en) Apparatus for heat-treating macromolecular material
KR840001151B1 (en) Apparatus for the thermal treatment of impreg nated material webs
CA1038458A (en) Microwave paint dryer
USRE27995E (en) Process for removal of moisture and/ok solvents from textile material
FR2744040B1 (en) METHOD AND DEVICE FOR IMPROVING THE IMPREGNATION OF THREADS FOR COMPOSITE MATERIAL
KR890005584Y1 (en) Apparatus for hardening with ultraviolet rays
KR20220014123A (en) Apparatus for fine denier of wool sliver
JPS63287907A (en) Production of plastic optical fiber