[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60177554A - Catalyst for phosphoric acid type fuel cell - Google Patents

Catalyst for phosphoric acid type fuel cell

Info

Publication number
JPS60177554A
JPS60177554A JP59032891A JP3289184A JPS60177554A JP S60177554 A JPS60177554 A JP S60177554A JP 59032891 A JP59032891 A JP 59032891A JP 3289184 A JP3289184 A JP 3289184A JP S60177554 A JPS60177554 A JP S60177554A
Authority
JP
Japan
Prior art keywords
catalyst
phosphoric acid
fuel cell
alloy
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59032891A
Other languages
Japanese (ja)
Other versions
JPH0552032B2 (en
Inventor
Takeshi Takeuchi
健 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP59032891A priority Critical patent/JPS60177554A/en
Publication of JPS60177554A publication Critical patent/JPS60177554A/en
Publication of JPH0552032B2 publication Critical patent/JPH0552032B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0008Phosphoric acid-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To obtain a catalyst having high catalytic activity, high gas-permeability, and good discharge performance by alloying a specified amount of Pt with Pd. CONSTITUTION:A Pd-Pt alloy prepared by alloying 5-15wt% Pt with Pd. For example, Pd-Pt alloy powder prepared by adding 10wt% Pt with Pd is baked on a carbon electrode to form a catalyst layer. This catalyst has high catalitic activity since Pt is uniformly dispersed in molecular state, high gas-permeability since it mainly consists of Pd, and good discharge performance. Moreover, since the catalyst is not expensive, it can replace traditional Pt catalyst or Pt alloy catalyst.

Description

【発明の詳細な説明】 本発明は、リン酸型燃料電池用触媒の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in catalysts for phosphoric acid fuel cells.

燃料電池の基本原理は、水の電気分解とは逆の反応を利
用して、H2と02を電気化学的に反応させて水を生成
し直接起電するもので、このH2と02の電気化学的反
応に於いては触媒を必要とする。
The basic principle of a fuel cell is to electrochemically react H2 and 02 using a reaction opposite to the electrolysis of water to generate water and directly generate electricity. A catalyst is required for this reaction.

燃料電池本体は、多孔質のカーボン電極の間に、電解質
マトリックスを挟んだもので、両側のカーボン電極には
一般にpt系合金の触媒が坦持されている。そしてこの
燃料電池本体の両電極の側に02とI(zが夫々溜めら
れるような構造の素子が配されている。
The fuel cell main body has an electrolyte matrix sandwiched between porous carbon electrodes, and a PT alloy catalyst is generally supported on both carbon electrodes. Elements having a structure such that 02 and I(z are stored respectively) are arranged on both electrode sides of the fuel cell main body.

前記電解質マトリックスに封入される電解液の種類によ
り、燃料電池はアルカリ型、リン酸型。
Depending on the type of electrolyte sealed in the electrolyte matrix, fuel cells are either alkaline type or phosphoric acid type.

溶融炭酸塩型、固体電解質型等があるが、特にリン酸型
燃料電池では、電極反応での活性化分極が大きいので、
これを低減させる為に活性な電極触媒の使用が必須であ
り、触媒としてptを欠かすことができない。
There are molten carbonate type, solid electrolyte type, etc., but especially in phosphoric acid type fuel cells, the activation polarization in electrode reaction is large, so
In order to reduce this, it is essential to use an active electrode catalyst, and PT is indispensable as a catalyst.

ところでptは触媒活性が高いが、H2の吸蔵が体積の
100倍程度で放電特性が十分満足できるものとは云え
ないものである。放電特性を上げるにはptの触媒量を
増やせば良いが、ptは高価であるので、その触媒量を
減らず為に種々の電極材料についての研究がなされてい
る。
Incidentally, although PT has a high catalytic activity, the storage of H2 is approximately 100 times its volume, and its discharge characteristics cannot be said to be fully satisfactory. In order to improve the discharge characteristics, it is sufficient to increase the amount of PT catalyst, but since PT is expensive, research is being conducted on various electrode materials in order to avoid reducing the amount of catalyst.

本発明は斯かる実情に鑑みて、触媒活性が高く、しかも
ガス透過性が高く且つ放電特性に優れたリン酸型燃料電
池用触媒を開発すべく鋭意攻究の結果、大概満足できる
触媒を見い出した。
In view of these circumstances, the present invention has conducted intensive research to develop a catalyst for phosphoric acid fuel cells that has high catalytic activity, high gas permeability, and excellent discharge characteristics, and as a result has found a catalyst that is generally satisfactory. Ta.

本発明のリン酸型燃料電池用触媒は、Pdにptを5〜
15%1t%添加して合金化したPd−Pt合金より成
るものである。
The phosphoric acid fuel cell catalyst of the present invention contains 5 to 5 pt of Pd.
It is made of a Pd-Pt alloy alloyed by adding 15% and 1t%.

本発明のリン酸燃料電池用触媒に於いて、Pdを主成分
とした理由は、触媒活性がptよりも低いが、[12の
吸蔵が体積の800程度でガス透過性が高く、且つ放電
特性が極めて優れていて、しかもptよりも安価である
からである。またptをPdに5〜15wt%添加して
合金化した理由は、触媒活性に優れたl) lを効率良
く作用させるべく分子の状態で分散する為で、5wt%
未満では触媒作用が不十分で、15wt%を超えるとガ
ス透過性が低くなり、且つ放電特性が不十分となるもの
である。
The reason why Pd is used as a main component in the catalyst for phosphoric acid fuel cells of the present invention is that although the catalytic activity is lower than that of PT, the gas permeability is high because the occlusion of [12] is about 800% of the volume, and the discharge characteristics This is because it is extremely superior and moreover, it is cheaper than PT. Also, the reason why 5 to 15 wt% of pt was added to Pd to form an alloy was to disperse L, which has excellent catalytic activity, in a molecular state to make it work efficiently.
If it is less than 15 wt%, the catalytic action will be insufficient, and if it exceeds 15 wt%, the gas permeability will be low and the discharge characteristics will be insufficient.

次に本発明のリン酸型燃料電池用触媒の具体的な実施例
と従来例について説明する。
Next, specific examples and conventional examples of the phosphoric acid fuel cell catalyst of the present invention will be described.

〔実施例1〕 Pdにl) jを10ivt%添加して合金化したPd
−pt金合金わ)末をカーボン電極(0,50鶴厚)上
に焼付塗装して100μm厚の触媒層を形成した。
[Example 1] Pd alloyed by adding 10 ivt% of l)j to Pd
-PT gold alloy powder was baked onto a carbon electrode (0.50 mm thick) to form a 100 μm thick catalyst layer.

(実施例2〕 Pdにptを511t%添加して合金化したPd−pt
金合金カーボン電極(0,50wm厚)上にめっきして
lOμm厚の触媒層を形成した。
(Example 2) Pd-pt alloyed by adding 511t% of pt to Pd
A catalyst layer with a thickness of 10 μm was formed by plating on a gold alloy carbon electrode (0.50 wm thick).

〔実施例3〕 Pdにptを8wt%添加して合金化したI) d −
pt金合金り成る150μmの箔をカーボン電極(0,
50■■厚)上に接合して触媒層を形成した。
[Example 3] Alloyed by adding 8 wt% of pt to Pd I) d −
A 150 μm foil made of PT gold alloy was connected to a carbon electrode (0,
50mm thick) to form a catalyst layer.

〔実施例4〕 pdにl)tを10wt%添加して合金化したpd−p
t金合金塩の溶液をカーボン電極に含浸させ、還元して
Pd−Pt合金の触媒を担持した。
[Example 4] pd-p alloyed by adding 10 wt% of l)t to pd
A carbon electrode was impregnated with a solution of a gold alloy salt and reduced to support a Pd-Pt alloy catalyst.

〔従来例1〕 ptの粉末をカーボン電極(0,50mm厚)上に焼付
塗装して100μm厚の触媒層を形成した。
[Conventional Example 1] PT powder was baked onto a carbon electrode (0.50 mm thick) to form a 100 μm thick catalyst layer.

〔従来例2〕 ptをカーボン電極(0,50mm厚)上にめっきして
lOμm厚の触媒層を形成した。
[Conventional Example 2] PT was plated on a carbon electrode (0.50 mm thick) to form a catalyst layer with a thickness of 10 μm.

〔従来例3〕 ptより成る150μmの箔をカーボン電極(0,50
龍厚)上に接合して触媒層を形成した。
[Conventional Example 3] A 150 μm foil made of PT was connected to a carbon electrode (0.50μm).
A catalyst layer was formed by bonding the catalyst layer to the top of the catalyst (Ryu Atsushi).

〔従来例4〕 ptの塩の溶液をカーボン電極に含浸させ、還元してp
tの触媒をtU持した。
[Conventional Example 4] A carbon electrode is impregnated with a solution of pt salt and reduced to pt.
t catalyst was used for tU.

然してこれら実施例1〜4及び従来例1〜4の電極触媒
をリン酸型燃料電池の負極に用い、正極にPt−R)i
5wt%合金の粉末をカーボン電極(0,50龍厚)上
に焼付塗装して100μm厚の触媒層を形成した電極触
媒を用いて起電した処、第1図のグラフに示すような発
電−i性が見られた。この第り図のグラフで明らかなよ
うに実施例1〜4の電極触媒を負極に用いたリン酸型燃
料電池は従来例1〜4の電極触媒を負極に用いたリン酸
型燃料電池に比べ発電特性に優れていることが判る。
However, the electrode catalysts of Examples 1 to 4 and Conventional Examples 1 to 4 were used as the negative electrode of a phosphoric acid fuel cell, and Pt-R)i was used as the positive electrode.
When electricity was generated using an electrode catalyst in which 5wt% alloy powder was baked onto a carbon electrode (0.50mm thick) to form a 100μm thick catalyst layer, electricity was generated as shown in the graph of Figure 1. i-sexuality was observed. As is clear from the graph of this diagram, the phosphoric acid fuel cells using the electrode catalysts of Examples 1 to 4 as the negative electrodes are compared with the phosphoric acid fuel cells using the conventional examples 1 to 4 electrode catalysts as the negative electrodes. It can be seen that it has excellent power generation characteristics.

これはひとえに負極に用いた実施例1〜4の電極触媒が
、触媒活性に優れ、ガス透過性が高く且つ放電特性が極
めて優れているからに他ならない。
This is simply because the electrode catalysts of Examples 1 to 4 used for the negative electrode have excellent catalytic activity, high gas permeability, and extremely excellent discharge characteristics.

以上詳記した通り本発明のリン酸型燃料電池用触媒は、
ptが分子の状態でPd中に均一に分散していて触媒活
性が高く、またPdが主成分である為ガス透過性が高く
且つ放電特性が極めて優れていて、その上安価であるの
で、従来のpt或い。
As detailed above, the phosphoric acid fuel cell catalyst of the present invention is
Since pt is uniformly dispersed in Pd in molecular form, it has high catalytic activity, and since Pd is the main component, it has high gas permeability and extremely excellent discharge characteristics, and is inexpensive. PT or.

はpt金合金触媒にとって代わることのできる画期的な
ものと言える。
can be said to be an epoch-making product that can replace the PT gold alloy catalyst.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のPd−Pt合金触媒を用いたリン酸型
燃料電池と従来のpt触媒を用いたリン酸型燃料電池と
の発電特性を示すグラフである。 出願人 田中貴金属工業株式会社
FIG. 1 is a graph showing power generation characteristics of a phosphoric acid fuel cell using the Pd-Pt alloy catalyst of the present invention and a phosphoric acid fuel cell using a conventional PT catalyst. Applicant Tanaka Kikinzoku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] Pdにptを5〜15wt%添加して合金化したPd−
pt金合金り成るリン酸型燃料電池用触媒。
Pd- alloyed by adding 5 to 15 wt% of pt to Pd
A phosphoric acid fuel cell catalyst made of a PT gold alloy.
JP59032891A 1984-02-23 1984-02-23 Catalyst for phosphoric acid type fuel cell Granted JPS60177554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59032891A JPS60177554A (en) 1984-02-23 1984-02-23 Catalyst for phosphoric acid type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59032891A JPS60177554A (en) 1984-02-23 1984-02-23 Catalyst for phosphoric acid type fuel cell

Publications (2)

Publication Number Publication Date
JPS60177554A true JPS60177554A (en) 1985-09-11
JPH0552032B2 JPH0552032B2 (en) 1993-08-04

Family

ID=12371504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59032891A Granted JPS60177554A (en) 1984-02-23 1984-02-23 Catalyst for phosphoric acid type fuel cell

Country Status (1)

Country Link
JP (1) JPS60177554A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001041A (en) * 1986-01-27 1991-03-19 Fuji Photo Film Co., Ltd. Method for processing silver halide color photographic material for prints
JP2020013722A (en) * 2018-07-19 2020-01-23 株式会社グラヴィトン Solid polymer fuel cell and electrode manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001041A (en) * 1986-01-27 1991-03-19 Fuji Photo Film Co., Ltd. Method for processing silver halide color photographic material for prints
JP2020013722A (en) * 2018-07-19 2020-01-23 株式会社グラヴィトン Solid polymer fuel cell and electrode manufacturing method

Also Published As

Publication number Publication date
JPH0552032B2 (en) 1993-08-04

Similar Documents

Publication Publication Date Title
KR0124985B1 (en) Akaline fuel cell
US7014953B2 (en) Regenerative bipolar fuel cell
CA1306284C (en) Metal and metal oxide catalyzed electrodes for electrochemical cells, and methods of making same
Williams et al. Low temperature fuel cells: Interactions between catalysts and engineering design
JP2007509480A (en) Electrode, its manufacturing method, metal / air fuel cell and metal hydride cell
KR20020087078A (en) Novel alkaline fuel cell
US7220501B2 (en) Integrated hybrid electrochemical device
KR102607597B1 (en) Oxygen electrode comprising a dual plating catalyst, water electrolysis device, regenerative fuel cell including the same and method for preparing the oxygen electrode
EP0101423A3 (en) Fuel cell anode
JP2002100374A (en) Electrode for fuel cell and its manufacturing method
JPH07282860A (en) Manufacture of alkaline secondary battery and catalytic electrode body
RU2230400C1 (en) Air-spirit fuel cell
JPS60177554A (en) Catalyst for phosphoric acid type fuel cell
US20040248005A1 (en) Negative electrodes including highly active, high surface area hydrogen storage material for use in electrochemical cells
JPS60746B2 (en) gas electrode
US3306780A (en) Sintered nickel-carbon gas diffusion electrode for fuel cells
US3382103A (en) Method of supplying aqueous hydrazine to a vapor diffusion fuel cell electrode
JP4937527B2 (en) Platinum catalyst for fuel cell and fuel cell including the same
EP1930103A1 (en) Noble metal microparticle and method for production thereof
US3635763A (en) Fuel cell electrode
US3709834A (en) Method of making a uranium containing catalyst for a metal electrode
US3437526A (en) Sintered nickel boride electrode and fuel cell therewith
RU2392698C1 (en) Method of manufacturing of membrane-electrode unit with bifunctional electrocatalytic layers
US4461812A (en) Lightweight storage battery
JPS60225363A (en) Fuel cell