JPS60177128A - Production of 50-kg/cm2 class steel having excellent resistance to corrosion fatigue for oceanic structure - Google Patents
Production of 50-kg/cm2 class steel having excellent resistance to corrosion fatigue for oceanic structureInfo
- Publication number
- JPS60177128A JPS60177128A JP3263784A JP3263784A JPS60177128A JP S60177128 A JPS60177128 A JP S60177128A JP 3263784 A JP3263784 A JP 3263784A JP 3263784 A JP3263784 A JP 3263784A JP S60177128 A JPS60177128 A JP S60177128A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- rolling
- less
- corrosion
- temp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は耐腐食疲労特性の優れた海洋構造物用50キロ
級鋼の製造法に係り、従来の焼ならしによる50キロ級
鋼に代わる耐腐食疲労性に優れた海洋構造物用50キロ
級鋼材を経済的に製造することのできる方法を提供しよ
うとするものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing 50 kg class steel for marine structures with excellent corrosion and fatigue resistance, and is an alternative to conventional normalized 50 kg steel with excellent corrosion and fatigue resistance. The present invention aims to provide a method that can economically produce 50 kg class steel materials for offshore structures.
近年における海洋エネルギー資源開発を目的とした各種
リグ、プラットフォーム、ノイゾラインなどの海洋構造
物に関する建造が盛んとなり、その建造場所も極地や深
海に拡がり、より苛酷な条件下で使用されるようになっ
ている。In recent years, the construction of marine structures such as various rigs, platforms, and noise lines for the purpose of developing marine energy resources has become active, and the construction sites have expanded to polar regions and deep seas, and they are being used under increasingly harsh conditions. There is.
ところがこの海洋構造物は海水腐食環境下において潮流
や波浪、風などによる外力の繰返しを受けるのでその使
用鋼材については腐食疲労に対する考慮が必袂であり、
大気中の疲労においてはそれ以下ではどれだけ応力を繰
返して負荷せしめても破壊しないという疲労限が存する
が、海水中における疲労強度は大気中と比較して著しく
低下し又明瞭な疲労限は存在しない。然して今日におい
てはこの海洋構造物に50キロ級の高張力鋼が使用され
る傾向が強くなって来ていて・主として焼ならしによる
低炭素鋼゛を用いるのカ一般的であり、この鋼はフェラ
イト・パーライトの組織を呈し、海水中ではパーライト
中のセメンタイトがフェライトよりも電気化学的に貴で
あるためにパーライト中のフェライト或いは周囲のフェ
ライト素地との間に局部電池を形成する。斯うしてパー
ライト中或いはその周囲のフェライトが溶解するために
/4’−ライトが核となって腐食ピットが形成され、又
鋼中におけるSは介在物MnSを形成し、この−8も海
水中で地組織(フェライト)よりも電気化学的に責であ
るためにやはりカソードとなって局部電池を形成し、腐
食ピット生成の核となる。而して繰返し応力下において
、この腐食ピットがある限界寸法に成長したとき、ピッ
トの底から疲労亀裂が発生し、無数の腐食ピットから発
生した微小な分布亀裂は成長と合体を繰返し破断に到る
こととなる。このように腐食ピットから発生した分布亀
裂が腐食環境下における疲労強度の著しい低下を招いて
いる原因であるが、従来の前記したような炭素鋼におい
ては、Cr。However, since these marine structures are subject to repeated external forces such as tides, waves, and wind in a corrosive seawater environment, it is essential to consider corrosion fatigue when selecting the steel materials used.
In the case of fatigue in the atmosphere, there is a fatigue limit below which no matter how much stress is applied repeatedly, it will not break, but the fatigue strength in seawater is significantly lower than in the atmosphere, and there is no clear fatigue limit. do not. However, today there is a growing tendency to use 50 kg class high tensile strength steel for offshore structures, and it is common to use low carbon steel that has been mainly normalized. It exhibits a ferrite-pearlite structure, and in seawater, cementite in pearlite is electrochemically nobler than ferrite, so a local battery is formed between the ferrite in pearlite or the surrounding ferrite matrix. As the ferrite in or around the pearlite dissolves, /4'-lite becomes the core and corrosion pits are formed, and the S in the steel forms inclusions MnS, and this -8 also dissolves in seawater. Since it is more electrochemically sensitive than the ground structure (ferrite), it also becomes a cathode and forms a local battery, which becomes the core of corrosion pit formation. Under repeated stress, when this corrosion pit grows to a certain critical dimension, fatigue cracks occur from the bottom of the pit, and the minute distributed cracks generated from the countless corrosion pits grow and coalesce repeatedly until they reach rupture. The Rukoto. Distributed cracks generated from corrosion pits are the cause of a significant decrease in fatigue strength in a corrosive environment, but in conventional carbon steels as described above, Cr.
N1、Cu などの耐食性を改善する合金元素を多量に
添加しない限り腐食ピットの抑制ができず、その腐食疲
労特性は向上しない。然してこの合金元素に耐食性をめ
る方法は経済性の面で劣り、このような銅の製造は事実
上冥用化されていないのが現状であって、一方海洋構造
物に対するニーズは高まりの一途をみせており、このよ
うな需要に即応し難い。Unless large amounts of alloying elements that improve corrosion resistance, such as N1 and Cu, are added, corrosion pits cannot be suppressed and the corrosion fatigue properties will not improve. However, the method of imparting corrosion resistance to this alloy element is uneconomical, and the production of such copper is currently not commercially available.On the other hand, the need for offshore structures continues to increase. It is difficult to respond to such demand immediately.
本発明は上記したような実情に録み検討を重ねて創案さ
れたものであって、vt4(以下単に優という)で、C
:0.121以下、St: 0.5 %以下、Mn :
0.5〜1.6 俤、P:0.021以下、8:0.
0041以下を含有し、更に必要に応じてCu:0.1
〜0.51i、 Ni: 0.5 %以下、cr:0.
5係以下の倒れが1種又は2種以上を含有し、一部が鉄
および不可避的不純物からなる鋼片を熱間圧延するに際
し該鋼片加熱温度を1200C以下とし、オーステナイ
ト再結晶域での累積圧下率t−204以上、未再結晶温
度域(即ち950C−Ars 変態点での累積圧下率を
C0係以上とし、且つ仕上り温度を700〜8o。The present invention was created based on the above-mentioned actual circumstances and after repeated studies, and is based on VT4 (hereinafter simply referred to as "excellent").
: 0.121 or less, St: 0.5% or less, Mn:
0.5 to 1.6, P: 0.021 or less, 8:0.
0041 or less, and further contains Cu: 0.1 as necessary.
~0.51i, Ni: 0.5% or less, cr: 0.
When hot rolling a steel billet containing one or more types of collapse of coefficient 5 or less and partly consisting of iron and unavoidable impurities, the billet heating temperature is set to 1200C or less and The cumulative reduction rate is t-204 or more, the cumulative reduction rate at the non-recrystallization temperature range (i.e. 950C-Ars transformation point is C0 coefficient or more, and the finishing temperature is 700-8o).
Cとする圧延を行い、次いでこの圧延後直ちに5〜25
C/ see (7)平均冷却速度で60o〜so。5 to 25 immediately after rolling.
C/see (7) 60o~so at average cooling rate.
C1で冷却し、以後放冷することを提案するものである
。It is proposed to cool at C1 and then leave to cool.
即ちこのような本発明について説明すると、既述した腐
食疲労の機構より考察すると、腐食疲労強度向上のポイ
ントは先ず第1に、疲労亀裂の発生を抑えるために腐食
ピットの大きさを制限すること、第2に分布亀裂の合体
する機会を少くするためにピットの数を抑えることであ
り、そのためにはミクロ組織の微細化、特にパーライト
の微細分散化を図り、また鋼中のS量を低減することに
よって腐食ピット生成の核を少くし、しかも小さくする
ことが重要である。That is, to explain the present invention as described above, considering the mechanism of corrosion fatigue described above, the key to improving corrosion fatigue strength is first to limit the size of corrosion pits in order to suppress the occurrence of fatigue cracks. The second step is to reduce the number of pits in order to reduce the chances of distributed cracks coalescing, and to achieve this, the microstructure must be made finer, especially the pearlite finely dispersed, and the amount of S in the steel must be reduced. It is important to reduce the number of corrosion pit formation nuclei and to make them smaller.
本発明においてはこのため上記のような方法を提案する
ものであって、先ずその調成限定理由について説明する
と以下の如くである。Therefore, the present invention proposes the above-mentioned method, and the reason for the limitation on the preparation will be explained below.
Cは、強度を顕著に増大させる元素であるが、Cf#が
多くなると腐食ピット生成の核となるパーライトの量が
増大する。またC量の増加は靭性、溶接性を著しく損う
ためにその上限’io、12憾とした。C is an element that significantly increases strength, but as Cf# increases, the amount of pearlite that becomes the core of corrosion pit formation increases. Furthermore, since an increase in the amount of C significantly impairs toughness and weldability, the upper limit was set at 12.
&は、強度の上昇と脱酸のために添加するが、o、 s
o sを超える含有では靭性、溶接性が劣化するので
これを上限とする。& is added to increase strength and deoxidize, but o, s
If the content exceeds os, the toughness and weldability will deteriorate, so this is set as the upper limit.
Mnは、靭性の増加と脱酸剤として必要であって、0.
501未満では十分な靭性が得られないのでこれを下限
とするが、又1.60 %を超えると炭化物のバンド組
織が顕ゎれて靭性を害するので、これを上限とする。Mn is necessary for increasing toughness and as a deoxidizing agent, and is necessary for increasing toughness and as a deoxidizing agent.
If it is less than 501, sufficient toughness cannot be obtained, so this is set as the lower limit, but if it exceeds 1.60%, a carbide band structure appears and the toughness is impaired, so this is set as the upper limit.
Pは、靭性を害するので0.021以下とすることが必
要である。Since P impairs toughness, it is necessary to keep it at 0.021 or less.
Sは、非金属介在物MMSとなって上述したような腐食
ピット生成の核となるので0.0041以下とすること
が必要である。このSは工業的にはo、ooosstで
の低減が可能である。Since S becomes non-metallic inclusions MMS and becomes the core of the formation of corrosion pits as described above, it is necessary to set it to 0.0041 or less. This S can be industrially reduced to o, oosst.
本発明による対象鋼は、その鋼材に要求される特性およ
び使用条件に応じて上記した外に更にCu s N i
−Cr の1種又は2種以上を含有せしめることがで
きる。即ちこれらについて説明すると次の通りである。In addition to the above, the target steel according to the present invention may further contain Cu s Ni
One or more types of -Cr can be contained. That is, these will be explained as follows.
Cu は、鋼材の強度を上昇させるに有効な元素である
が、0.11未満ではその効果が乏しく、また0、5%
超になると溶接性が劣化するだけでなく、Cu 脆化に
より鋼板表面性状を害う。そこで0.2−0.5 %と
する必要がある。Cu is an effective element for increasing the strength of steel materials, but if it is less than 0.11%, the effect is poor, and if it is less than 0.5%
If it exceeds Cu, not only will weldability deteriorate, but the surface quality of the steel sheet will be damaged due to Cu embrittlement. Therefore, it is necessary to set it at 0.2-0.5%.
Ni は、鋼板の強度ならびに靭性を向上させるが、経
済性を考慮して上限を0.5%とした。Although Ni improves the strength and toughness of the steel sheet, the upper limit was set at 0.5% in consideration of economic efficiency.
Cr は、鋼板に強度ならびに耐食性を賦与するが、経
済性を考慮して0.51を上限とした。Cr imparts strength and corrosion resistance to the steel plate, but the upper limit was set at 0.51 in consideration of economic efficiency.
次に本発明では上記成分によって50キロ級鋼としての
所定の強度と靭性を得ると同時に耐腐食疲労性を向上さ
せるため以下に述べる圧延条件を組み合わせ1組織の徹
底した微細化を図る◎即ちこの圧延条件については、先
ずスラブ加熱については圧延前のオーステナイト細粒化
を図るために12ooc以下で行う必要がある。Next, in the present invention, in order to obtain the specified strength and toughness for 50 kg class steel with the above ingredients and at the same time improve corrosion fatigue resistance, the rolling conditions described below are combined to achieve thorough refinement of one structure. Regarding rolling conditions, first, slab heating must be performed at 12 ooc or less in order to refine the austenite grains before rolling.
又このようなスラブ加熱温度から950C’Eでのオー
ステナイト再結晶域で一定量の圧it行い、再結晶オー
ステナイトを微細化する必要がある。そこで本発明では
、このオーステナイト再結晶域で20チ以上の累積圧下
全行うものでこれ未満の累積圧下では最終製品のミクロ
組織の微細化がはかれない。Further, it is necessary to apply a certain amount of pressure in the austenite recrystallization region at 950 C'E from such a slab heating temperature to refine the recrystallized austenite. Therefore, in the present invention, the entire cumulative reduction of 20 inches or more is carried out in this austenite recrystallization region, and if the cumulative reduction is less than this, the microstructure of the final product cannot be refined.
上記に続くオーステナイト未再結晶域(950C−A
r B変態点)での圧延は、フェライト核生成サイトと
なるオーステナイトの粒界面積と粒内変形帯密度を増加
させ、フェライトの著しい微細化をもたらすため、でき
る限りの圧下をこの領域で行うことが望ましく、最低5
0%の圧下金この領域で行う。又Ar、変態点(50キ
ロ級鋼では730〜780c)近傍での圧下が微細化に
著しい効果をもたらすので圧延仕上げ温度はArc変態
点直上、或いは直下が望筐しく。The austenite unrecrystallized area following the above (950C-A
Rolling at the rB transformation point increases the grain boundary area and intragranular deformation zone density of austenite, which serve as ferrite nucleation sites, and results in significant refinement of ferrite, so rolling as much as possible should be performed in this region. is desirable, and at least 5
Make 0% reduction in this area. Further, since rolling near the Ar transformation point (730 to 780c for 50kg steel) has a significant effect on refinement, it is desirable that the rolling finish temperature be just above or just below the Arc transformation point.
700〜800Cとする。即ち5oot:”以上では充
分な変形帯密度が得られないために所定の強度、靭性が
得られない。又Arc変態点下のフェライト・オーステ
プイト2相域で圧延すると加工組織の発達が顕著となり
耐食性の劣化と機械的性質の異方性を助長するため圧延
仕上げ温度の下限を700Cとする。The temperature should be 700-800C. In other words, if it is more than 5oot, sufficient deformation band density cannot be obtained, and the desired strength and toughness cannot be obtained.Also, if rolling is performed in the ferrite/austenite two-phase region below the Arc transformation point, the development of the deformed structure becomes remarkable, resulting in poor corrosion resistance. The lower limit of the rolling finishing temperature is set at 700C in order to promote deterioration of the steel and anisotropy of mechanical properties.
更に圧延終了後直ちにオンライン冷却を行い、粒成長を
抑制することによって細粒化を一層良好とする。冷却速
度および冷却停止温度が重要なパラメータであり、冷却
速度が早い程、又冷却停止温度が低いほど組織は細粒化
する。即ち冷却速度5 C/ see未満、冷却停止温
度600C超では十分な組織の微細化が実現せず、目的
とする腐食疲労特性が発揮されない。これに対し冷却速
度が25 C/ sec以上、或いは冷却停止温度50
0C以下では組織にマルテンサイトが顕われて靭性、溶
接性が劣化する。従って冷却速度を5〜25tll’/
seeとし、冷却停止温度を500〜600Cとするこ
とが必要である。Further, immediately after rolling is completed, online cooling is performed to suppress grain growth, thereby further improving grain refinement. The cooling rate and cooling stop temperature are important parameters; the faster the cooling rate and the lower the cooling stop temperature, the finer the structure becomes. That is, if the cooling rate is less than 5 C/see and the cooling stop temperature exceeds 600 C, sufficient microstructural refinement will not be achieved and the desired corrosion fatigue properties will not be exhibited. On the other hand, if the cooling rate is 25 C/sec or more or the cooling stop temperature is 50
Below 0C, martensite appears in the structure and toughness and weldability deteriorate. Therefore, the cooling rate should be increased from 5 to 25 tll'/
See, and it is necessary to set the cooling stop temperature to 500 to 600C.
上述のようにして本発明の圧延では、スラブ加熱から水
冷停止1でフェライトの細粒化を主目的としており、フ
ェライトを微細化することは同時に第2相組織(炭化物
)t−も微細化すること孔なり、その結果として強度、
靭性を高めると共に耐腐食疲労性を向上させる。又成分
的には高価な合金元素を用いることなく、低炭素当量を
特徴としているため溶接性も良好であり、海水環境下で
使用される溶接構造物用として優れたものであることは
明らかである。As described above, in the rolling of the present invention, the main purpose is to refine the grains of ferrite from slab heating to water cooling stop 1, and to refine the ferrite, the second phase structure (carbide) t- is also refined at the same time. The hole becomes strong and the result is strength.
Improves toughness and corrosion fatigue resistance. In addition, it does not use expensive alloying elements and has a low carbon equivalent, so it has good weldability and is clearly an excellent product for welded structures used in seawater environments. be.
本発明によるものの具体的な笑施例について説明すると
、以下の如くである。A specific example of the present invention will be described below.
即ち次の第1表に示すような鋼A−Cを溶製した。A%
B材は何れも鋼成分が本発明を満足するものであるが、
B材については高い靭性を得るためにCu、Nii添加
しである。なおC材はc、p、sがそれぞれ本発明でい
う規定範囲よりも多くなっているものであって、Cu1
Nl。That is, steels A-C as shown in Table 1 below were melted. A%
All B materials have steel components that satisfy the present invention,
For material B, Cu and Ni were added to obtain high toughness. Note that the C material has c, p, and s each larger than the specified range in the present invention, and Cu1
Nl.
Cr についてもそれぞれに含有せしめである。Cr is also included in each.
第1表 (qb)
上記したような各鋼材についてはそれぞれ次の第2表に
示すような加熱処理を行った。即ちA、B材については
本発明で規定する加熱処理を行ったが、C材については
オーステナイト再結晶域で圧延を仕上げ、焼ならしを施
したものである。Table 1 (qb) Each of the above-mentioned steel materials was subjected to heat treatment as shown in Table 2 below. That is, materials A and B were subjected to the heat treatment specified in the present invention, while material C was finished rolling in the austenite recrystallization region and normalized.
上記のようにして得られたA−Cの各村についての顕微
鏡組織は倍率400倍として第4図の顕微鏡写真に示す
通りであってA、B材はC材と比較すると加工熱処理に
よる著しい細粒化が笑現していることは明らかである。The microscopic structure of each village of A-C obtained as above is as shown in the micrograph in Figure 4 at a magnification of 400 times. It is clear that granulation appears.
更に上記したよりな各村についての機械的性質は次の第
3表に示す通りである。Further, the mechanical properties of each of the above-mentioned rigid villages are as shown in Table 3 below.
即ち各村とも引張試験値は50キロの規格を満足してい
るが、人材は軟鋼程度の単純&−勤又A、B材の衝撃値
がC材より遥かに優れているのもこの細粒化による効果
である。In other words, the tensile test value in each village satisfies the standard of 50 kg, but the human resources are as simple as mild steel.The reason why the impact values of materials A and B are far superior to that of material C is because of this fine grain. This is the effect of
腐食疲労試験は油圧サー?試験機を用い、20Cの曝気
した人工海水中において繰返し速度10 cpm、応力
比(最小応力/最大応力)0.1で行った。即ち第1図
に示すように両端側1が16wφで中間に10mφの縮
径部2を形成した試験片(全体の長さが140閣で、縮
径部は50m)を各村の3Atからその長手方向と圧延
方向が一致するように採し、試験した結果負荷応力と破
断繰返し数との関係で示すと第1の通りである。即ちA
、B材は何れもC材つは全般的に長寿命を示す傾向が認
められ、)力が低くなる程疲労寿命の差は顕著となる。Hydraulic sensor for corrosion fatigue test? Testing was carried out using a testing machine in aerated artificial seawater at 20C at a repetition rate of 10 cpm and a stress ratio (minimum stress/maximum stress) of 0.1. That is, as shown in Fig. 1, a test piece with both ends 1 of 16 wφ and a reduced diameter part 2 of 10 mφ formed in the middle (total length 140 m, diameter reduced part 50 m) was collected from 3 At of each village. The test results were taken so that the longitudinal direction and the rolling direction coincided, and the relationship between the applied stress and the number of rupture cycles is as shown in the first table. That is, A
It has been observed that materials B and C generally tend to have a longer life, and the lower the force, the more remarkable the difference in fatigue life becomes.
tば負荷応力23 h f /m”での疲労寿命を比較
すると、人材は126万回、B材は111万回であるの
に対してC材は76万回であり、この応力レベルにおい
てA、B材はC材よりもそごれ66俤、46チの寿命増
加を示している。Comparing the fatigue life at a load stress of 23h f /m'', the lifespan of human resources is 1.26 million times, material B is 1.11 million times, while material C is 760,000 times, and at this stress level, A , B material shows an increase in service life of 66 treble and 46 ts compared to C material.
正記のように本発明材が比較材より海水中の腐食疲労特
性の優れていることは以下の事実によっても確認される
。As mentioned above, the fact that the material of the present invention has better corrosion fatigue properties in seawater than the comparative material is confirmed by the following facts.
即ち第5図に負荷応力2 a Kyt/w” で破断し
た各試験片表面の走査型電子顕微鏡写真を示すが、同図
中A、Bとして示した本発明の人材、B材の表面は極め
て平滑であるのに対して比較材の表面はマクロ組織が露
出して凹凸の程度が著しいもので、腐食による表面の凹
凸度合いが結晶粒サイズに依存しているため本発明によ
る細粒化が腐食による表面凹凸を低減させたものと言え
る。That is, Fig. 5 shows scanning electron micrographs of the surface of each test piece fractured at a load stress of 2 a Kyt/w'', and the surfaces of the human resources and B materials of the present invention shown as A and B in the figure are extremely While the surface of the comparative material is smooth, the macrostructure is exposed and the degree of unevenness is significant.Since the degree of surface unevenness due to corrosion depends on the grain size, the grain refinement by the present invention is less likely to result from corrosion. This can be said to reduce the surface unevenness due to
又第2に、第6図に比較材の表面近傍断面のピットが形
成されており、本発明によるものはA?−ライトの微細
分散化、Sの低減によるMnBの減少がこれらの第2相
粒子およびその周辺の溶解脱落による腐食ピットの形成
を抑制したものと言える。なお・9−ライト量、MnS
量の腐食疲労寿命に及ぼす影響を明らかにするため第3
図に示す如く、C量とSliを座標にとり、負荷応力2
3Kof/m”で寿命が106回を超えるか否かを判定
した。即ち図中にはこれ1でに発表されている50キロ
級鋼のf−夕もプロットしであるが、この図から本発明
で規定する範囲内にC量、S量を制御することが腐食疲
労特性の改善上必須要件となっていることが明らかであ
る。Second, pits are formed in the cross section near the surface of the comparison material in FIG. 6, and the material according to the present invention is A? - It can be said that the fine dispersion of light and the reduction of MnB due to the reduction of S suppressed the formation of corrosion pits due to dissolution and falling off of these second phase particles and their surroundings. In addition, 9-light amount, MnS
In order to clarify the effect of corrosion fatigue life on corrosion fatigue life,
As shown in the figure, the amount of C and Sli are taken as coordinates, and the load stress 2
3Kof/m", it was determined whether the life exceeds 106 cycles.In other words, the figure also plots the f-time of 50 kg class steel, which was announced in 1. It is clear that controlling the amount of C and the amount of S within the range specified by the invention is an essential requirement for improving corrosion fatigue properties.
第3に、それらの結果として、前記した第5図によると
本発明材の方が長時間の試験を行ったにも拘わらず疲労
亀裂は殆んど認められないのに対し、比較材では疲労亀
裂が早期に多数発生し、亀裂間での合体が頻発し寿命の
低下を招いたものと言え、本発明によるものの疲労亀裂
抑制効果は明らかである。Thirdly, as a result of these, as shown in Figure 5 above, the material of the present invention shows almost no fatigue cracks even though the test was conducted for a longer time, whereas the comparative material showed no fatigue cracks. It can be said that a large number of cracks were generated at an early stage, and coalescence between cracks occurred frequently, leading to a decrease in life.The fatigue crack suppressing effect of the present invention is clear.
以上説明したような本発明によるときは耐腐食疲労性に
おいて極めて優れた鋼材を得る−ことができ、靭性およ
び溶接性において良好であると共に特殊な合金元素によ
るものでないから経済性に優れた海洋構造物用50キロ
級鋼を提供し得るものであって、工業的にその効果の大
きい発明である。According to the present invention as explained above, it is possible to obtain a steel material that has extremely excellent corrosion fatigue resistance, has good toughness and weldability, and is not made of special alloying elements, so it can be used for marine structures with excellent economic efficiency. This invention is capable of providing 50 kg class steel for commercial use, and is industrially highly effective.
図面は本発明の技術的内容を示すものであって、第1図
は腐食疲労試験片の説明図、第2図は負荷応力と破断繰
返し数との関係を示した図表、第3図はC量、S量の腐
食疲労寿命に及ぼす影響を示した図表、第4図は本発明
の実施例によるものcA材、B材)と比較材cC材)に
片表面性状を示す写真、第6図は比較材cC材)につい
ての表面近傍断面を倍率400倍でその腐食ピットの形
成状態を示した顕微鏡写真である。
特許出願人 日本鋼管株式会社
発 明 者 藤 1) 高 仏
間 稲 垣 裕 輔
第 / 鵬
第 2 岡
第 J 況
、5重(/、)
手続補正書(1人)
q8Iu−’へ98
特許庁長官者 杉 和 夫 殿
1、事件の表示
昭和タタ年待 許願第♂2Δd2 号
事件との関係q# 許出願人
名称(氏名)日本鋼管株式会社
4、代理人
補 正 の 内 容
l2本願明細書中温17頁6〜13行目中に[第4図は
・・・・・・・・・・・・・・である。]とあるのを「
第4図は本発明の実施例によるもの(人材1.B材)と
比較材(C材)についての表面における金属組織を示す
倍率400倍ζこよる各顕微鏡写真、第5図はその腐食
疲労試験後の倍率75倍の各試験片表面における金属組
織を示す写真、第6図は比較材(C材)についての表面
近傍断面の金属組織について倍率400倍でその腐食ピ
ットの形成状態を示した顕微鏡写真である。」と訂正す
る。The drawings show the technical content of the present invention, and Fig. 1 is an explanatory diagram of a corrosion fatigue test piece, Fig. 2 is a chart showing the relationship between applied stress and the number of rupture cycles, and Fig. 3 is a Fig. 4 is a photograph showing the properties of one surface of the examples of the present invention cA material, B material) and the comparative material cC material), Fig. 6 is a micrograph showing the state of formation of corrosion pits at a magnification of 400 times of a cross section near the surface of a comparative material (cC material). Patent applicant: Nippon Kokan Co., Ltd. Inventor: Fuji 1) Taka Butsuma Yusuke Inagaki / Peng 2nd Okadai J Situation, 5 layers (/,) Procedural amendment (1 person) q8Iu-'98 Commissioner of the Japan Patent Office Person Kazuo Sugi 1. Indication of the case Relationship to Showa Tata Patent Application No. ♂2Δd2 q# Name of applicant (name) Nippon Steel Tube Co., Ltd. 4. Contents of amendment by agent 12 Description of the present application On page 17, lines 6 to 13, [Figure 4 shows...]. ].
Figure 4 is a 400x magnification micrograph showing the metal structure on the surface of the material according to the embodiment of the present invention (material 1. B) and the comparative material (material C), and Figure 5 is the corrosion fatigue thereof. A photograph showing the metal structure on the surface of each specimen after the test at a magnification of 75 times, and Figure 6 shows the state of corrosion pit formation in the metal structure of a cross section near the surface of a comparison material (material C) at a magnification of 400 times. This is a microscopic photograph. ” he corrected.
Claims (1)
MFI:0.5〜1.6wt%、P:0.02wt1以
下。 S:0.004wt%以下 を含有し、更に必要に応じて、 Cu : 0.1”−0,5w t %、 Nl:0.
5wt1以下、Cr:0.5wt%以下 の何れか1種又は2種以上を含有し、残部が鉄および不
可避的不純物からなる鋼片を熱間圧延するに際し該鋼片
加熱温度を1200t:’以下と′し、オーステナイト
再結晶域での累積圧下率を20チ以上、未再結晶温度域
での累積圧下率を60係以上とし、且つ仕上り温度を7
00〜800Cとする圧延を行い、次いで上記圧延後直
ちに5〜25C/secの平均冷却速度で600〜50
0Cまで冷却し、以後放冷することを特徴とする耐腐食
疲労特性の優れた海洋構造物用50キロ級鋼の製造法。[Claims] C: 0.1 Zwt or less, St: 0.5 wt or less,
MFI: 0.5 to 1.6 wt%, P: 0.02 wt1 or less. Contains S: 0.004wt% or less, and further contains Cu: 0.1''-0.5wt%, Nl: 0.
When hot rolling a steel billet containing one or more of 5wt% or less, Cr: 0.5wt% or less, and the remainder consisting of iron and inevitable impurities, the billet heating temperature is 1200t:' or less. The cumulative reduction rate in the austenite recrystallization area is 20 degrees or more, the cumulative reduction rate in the non-recrystallization temperature area is 60 degrees or more, and the finishing temperature is 70 degrees or more.
Rolling is carried out to 00 to 800C, and then immediately after the above rolling, the temperature is reduced to 600 to 50C at an average cooling rate of 5 to 25C/sec.
A method for manufacturing 50 kg class steel for marine structures with excellent corrosion resistance and fatigue properties, which is characterized by cooling to 0C and then allowing it to cool.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3263784A JPS60177128A (en) | 1984-02-24 | 1984-02-24 | Production of 50-kg/cm2 class steel having excellent resistance to corrosion fatigue for oceanic structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3263784A JPS60177128A (en) | 1984-02-24 | 1984-02-24 | Production of 50-kg/cm2 class steel having excellent resistance to corrosion fatigue for oceanic structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60177128A true JPS60177128A (en) | 1985-09-11 |
Family
ID=12364367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3263784A Pending JPS60177128A (en) | 1984-02-24 | 1984-02-24 | Production of 50-kg/cm2 class steel having excellent resistance to corrosion fatigue for oceanic structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60177128A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63128117A (en) * | 1986-11-17 | 1988-05-31 | Kawasaki Steel Corp | Production of unnormalized high tensile steel |
JPS63199851A (en) * | 1986-08-30 | 1988-08-18 | Aichi Steel Works Ltd | Stainless steel having excellent corrosion fatigue resistance and seawater corrosion resistance and its production |
US4946516A (en) * | 1988-03-08 | 1990-08-07 | Nippon Steel Corporation | Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking |
WO1996017966A1 (en) * | 1994-12-06 | 1996-06-13 | Exxon Research & Engineering Company | Dual-phase steel and method thereof |
WO1996017965A1 (en) * | 1994-12-06 | 1996-06-13 | Exxon Research & Engineering Company | Method of making dual phase steel plate |
CN102605269A (en) * | 2012-03-27 | 2012-07-25 | 首钢总公司 | Cold-rolled sheet and method for manufacturing same |
-
1984
- 1984-02-24 JP JP3263784A patent/JPS60177128A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63199851A (en) * | 1986-08-30 | 1988-08-18 | Aichi Steel Works Ltd | Stainless steel having excellent corrosion fatigue resistance and seawater corrosion resistance and its production |
JPS63128117A (en) * | 1986-11-17 | 1988-05-31 | Kawasaki Steel Corp | Production of unnormalized high tensile steel |
US4946516A (en) * | 1988-03-08 | 1990-08-07 | Nippon Steel Corporation | Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking |
WO1996017966A1 (en) * | 1994-12-06 | 1996-06-13 | Exxon Research & Engineering Company | Dual-phase steel and method thereof |
WO1996017965A1 (en) * | 1994-12-06 | 1996-06-13 | Exxon Research & Engineering Company | Method of making dual phase steel plate |
US5545270A (en) * | 1994-12-06 | 1996-08-13 | Exxon Research And Engineering Company | Method of producing high strength dual phase steel plate with superior toughness and weldability |
CN102605269A (en) * | 2012-03-27 | 2012-07-25 | 首钢总公司 | Cold-rolled sheet and method for manufacturing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109082591B (en) | 125ksi hydrogen sulfide stress corrosion resistant high-strength oil casing steel and preparation process thereof | |
RU2210603C2 (en) | Method of production of superstrength weldable steels | |
JP4502012B2 (en) | Seamless steel pipe for line pipe and manufacturing method thereof | |
JP6857729B2 (en) | Super austenitic stainless steel rolled composite steel sheet and its manufacturing method | |
JP3898814B2 (en) | Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness | |
JP7197582B2 (en) | High-strength steel material with excellent resistance to hydrogen-induced cracking and low-temperature impact toughness, and method for producing the same | |
CN113549828B (en) | Low-yield-ratio ultrahigh-strength marine steel and manufacturing method thereof | |
JP7045459B2 (en) | High-strength steel materials for polar environments with excellent fracture resistance at low temperatures and their manufacturing methods | |
KR20220002511A (en) | Steel, steel rod and manufacturing method thereof | |
JPH01230713A (en) | Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance | |
WO2023097979A1 (en) | Corrosion-resistant high-strength steel sheet weldable with high heat input and used for ocean engineering, and preparation method therefor | |
JP2008045174A (en) | High-strength thick steel plate for structural purpose having excellent brittle crack propagation property and its production method | |
JP2008214652A (en) | High strength thick steel plate for structural purpose having excellent brittle crack propagation arrest property, and method for producing the same | |
JP4754362B2 (en) | Austenitic stainless hot-rolled steel with good corrosion resistance, proof stress, and low-temperature toughness, and method for producing the same | |
JP2008214653A (en) | High strength thick steel plate for structural purpose having excellent brittle crack arrest property, and method for producing the same | |
CN109423572B (en) | Seawater corrosion resistant steel plate with high crack arrest and strain aging embrittlement resistance and manufacturing method thereof | |
CN115074630B (en) | FH36 grade ocean engineering steel with high ductility and manufacturing method | |
GB2102449A (en) | Production of homogeneous steel | |
KR101465088B1 (en) | Low carbon high strength steel plates with good low temperature toughness and manufacturing method for the same | |
JP6590000B2 (en) | steel | |
CN111225987B (en) | Thick steel sheet having excellent low-temperature strain aging impact characteristics and method for producing same | |
JP3474661B2 (en) | Sour-resistant steel plate with excellent crack arrestability | |
JPS60177128A (en) | Production of 50-kg/cm2 class steel having excellent resistance to corrosion fatigue for oceanic structure | |
EP4071261A1 (en) | Normalizing heat treated steel sheet having good low impact toughness and method for manufacturing same | |
JPH09137253A (en) | High tensile strength steel excellent in stress corrosion cracking resistance and low temperature toughness and its production |