[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS60175520A - Dehumidification apparatus of compressed air system - Google Patents

Dehumidification apparatus of compressed air system

Info

Publication number
JPS60175520A
JPS60175520A JP59032070A JP3207084A JPS60175520A JP S60175520 A JPS60175520 A JP S60175520A JP 59032070 A JP59032070 A JP 59032070A JP 3207084 A JP3207084 A JP 3207084A JP S60175520 A JPS60175520 A JP S60175520A
Authority
JP
Japan
Prior art keywords
dehumidification
tower
compressed air
dehumidifying
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59032070A
Other languages
Japanese (ja)
Inventor
Toru Kigami
木上 徹
Masami Hirata
雅己 平田
Osamu Komori
修 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp, Nippon Genshiryoku Jigyo KK, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Engineering Corp
Priority to JP59032070A priority Critical patent/JPS60175520A/en
Publication of JPS60175520A publication Critical patent/JPS60175520A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Drying Of Gases (AREA)

Abstract

PURPOSE:To reduce installation cost by attaining the simplification of constitution and the reduction of an installation space without losing preparatory function, by providing three dehumidification towers, and first and second change- over values for changing over flowlines of compressed air and heated air used in regeneration to three dehumidification towers. CONSTITUTION:When a dehumidification tower 106A is in a dehumidification process, a dehumidification tower 106B in a regeneration process and a dehumidification tower 106C in a stand-by state, compressed air is dehumidified in the dehumidification tower 106A through a prefilter 103A and supplied to various measuring machineries through an after-filter 107. On the other hand, heated air is sent to the dehumidification tower 106B from a flower 120A and a heater 119A to regenerate an absorbing material under heated. For example, when the dehumidification tower 106A has gone wrong, dehumidification is performed in the dehumidification tower 106C and regeneration is performed in the dehumidification tower 106B. On the other hand, valves 105A, 107A-110A are closed to perform the inspection and repairing of the dehumidification tower 106A.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、例えば原子力発電所においてB1装機器に供
給する圧縮空気の湿分あるいは異物等を除去する圧縮空
気系除湿装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a compressed air dehumidifier that removes moisture, foreign matter, etc. from compressed air supplied to B1 equipment in, for example, a nuclear power plant.

〔発明の技術的背景〕[Technical background of the invention]

例えば原子力発電所では各種空気作動弁あるいは流量制
御器に計装用圧縮空気を供給する計装用圧縮空気系が設
けられている。ところで計装用圧縮空気に湿分あるいは
異物が含まれていると、誤動作や故障の原因となる。そ
のため除湿装置を設けて圧縮空気が露結しないようにそ
の露点を下げるとともにフィルタにより異物の除去を図
っている。
For example, a nuclear power plant is provided with an instrumentation compressed air system that supplies instrumentation compressed air to various air-operated valves or flow rate controllers. However, if the compressed air for instrumentation contains moisture or foreign matter, it may cause malfunction or failure. Therefore, a dehumidifier is installed to lower the dew point of the compressed air so that it does not condense, and a filter is used to remove foreign substances.

そこで第1図を参照して従来の計装用圧縮空気系除湿装
置について説明する。この計装用圧縮空気系除湿装置は
A系列およびB系列の2系列よりなシ、A系列およびB
系列共に同じ構成をなしている。以下A系列について説
明する。
Therefore, a conventional compressed air dehumidifier for instrumentation will be explained with reference to FIG. This instrumentation compressed air dehumidifier has two series, A series and B series.
Both series have the same structure. The A series will be explained below.

すなわちこの人畜列は1基のプレフィルタ2−A。In other words, this row of people has one prefilter 2-A.

2基の除湿塔9に、10に、2基のアウターフィルタ1
31.14に、1基の加熱ヒータJ7Aおよび1基のプ
ロワ18A等から構成されておシ、どちらか一方の除湿
塔例えば除湿塔9Aで圧縮空気の除湿を行ない他方の除
湿塔10にでプロワ18Aおよび加熱ヒータJ7Aよシ
供給される加熱空気を用いて湿分を含んだ吸着剤の再生
(加熱再生工程)を行なう。また2基の除湿塔9に、1
0には所定時間毎に除湿、再生工程を交互に繰返す構成
である。例えば除湿塔9Aで除湿を行なう場合には配管
1を介して導入される圧縮空気はブレフィル22人およ
び弁3Aを介して除湿塔9A内に導びかれ除湿塔9A内
の吸着剤によシ除湿される。そして除湿された圧縮空気
は配管20A1アフターフイルタ13におよび配管21
を介して図示しない各計装機器に送シ出される。一方除
湿塔10にでは加熱再生工程が行なわれている。すなわ
ちブロア18Aおよび加熱ヒータJ7Aよシ配管22A
1弁8Aを介して除湿塔10kに加熱空気が供給される
。この加熱空気によシ除湿塔10に内の吸着剤の湿分を
除去する。除去した湿分を含んだ空気は吸着塔10に下
部に接続された弁6A1配管23におよび弁16kを介
して排気される。なおその際弁4A、5Aおよび7Aは
閉弁している。そして加熱再生工程終了後1.吸着剤の
温度を下げる冷却再生工程および除湿塔10に内の圧力
を圧縮空気と略同圧まで上昇させる昇圧再生工程に入る
。すなわち冷却再生工程ではブロア18に’!:t>ら
の加熱空気の供給を停止して弁8Aを閉弁し、弁J5A
を開弁する。そして配管Z4Aおよび弁15Aを介して
除湿塔10A内に圧縮空気を供給し除湿塔10A内の吸
着剤を冷却する。その抜弁6A。
Two dehumidification towers 9, 10, two outer filters 1
31.14 is composed of one heater J7A and one blower 18A, etc., and one of the dehumidifying towers, for example, the dehumidifying tower 9A, dehumidifies the compressed air, and the other dehumidifying tower 10 dehumidifies the compressed air. The adsorbent containing moisture is regenerated (heating regeneration step) using the heated air supplied from the heater J7A and the heater J7A. In addition, two dehumidification towers 9 have one
0 has a configuration in which dehumidification and regeneration steps are alternately repeated at predetermined time intervals. For example, when dehumidifying in the dehumidifying tower 9A, compressed air introduced through the pipe 1 is guided into the dehumidifying tower 9A via the brefill 22 and valve 3A, and is dehumidified by the adsorbent in the dehumidifying tower 9A. be done. The dehumidified compressed air is then transferred to the piping 20A1 after filter 13 and the piping 21
The signal is sent to each instrumentation device (not shown) via. On the other hand, a heating regeneration process is being performed in the dehumidification tower 10. In other words, the blower 18A, heater J7A and piping 22A
Heated air is supplied to the dehumidification tower 10k via the 1-valve 8A. This heated air is used to remove moisture from the adsorbent in the dehumidifying tower 10. The air containing the removed moisture is exhausted to the valve 6A1 piping 23 connected to the lower part of the adsorption tower 10 and through the valve 16k. At this time, valves 4A, 5A, and 7A are closed. After the heating regeneration process is completed, 1. A cooling regeneration step in which the temperature of the adsorbent is lowered and a pressure increasing regeneration step in which the pressure inside the dehumidifying tower 10 is increased to approximately the same pressure as the compressed air are entered. In other words, in the cooling regeneration process, the blower 18'! :T> Stops the supply of heated air, closes valve 8A, and closes valve J5A.
Open the door. Compressed air is then supplied into the dehumidification tower 10A via the pipe Z4A and the valve 15A to cool the adsorbent within the dehumidification tower 10A. Its removal valve 6A.

配管23におよび弁16kを介して排気される。It is exhausted to the piping 23 and via the valve 16k.

次に昇圧再生工程に入る。すなわち上述した状態で弁1
6にのみを閉弁し除湿塔10A内の圧力を圧縮空気と同
圧まで上昇させる。この状態で前記除湿工程にあった除
湿塔9Aと除湿再生]:程の切替えを行なう。この除湿
再生工程の切替えは開弁していた弁3A、6kを閉弁し
、閉弁していた弁4A、5Aを開弁することによりなさ
れる。そしてこの除湿再生工程の切替えによシ、除湿工
程にあった除湿塔9Aが再生工程互に繰返す構成である
。なお図中IA 、17A。
Next, the pressure regeneration process begins. That is, in the above state, valve 1
6 is closed, and the pressure inside the dehumidifying tower 10A is increased to the same pressure as the compressed air. In this state, the dehumidification tower 9A that was in the dehumidification process and the dehumidification/regeneration process are switched. This dehumidification and regeneration process is switched by closing the open valves 3A and 6k and opening the closed valves 4A and 5A. By switching the dehumidifying and regenerating process, the dehumidifying tower 9A that was in the dehumidifying process repeats the regenerating process. Note that IA and 17A in the figure.

12には弁を示す。12 shows a valve.

以上A系列について説明したがB系列についても同様の
構成であり、h系列が万一故障した場合の予備として機
能する。なお図中B系列の各機器にはA系列と同一番号
に符号(B)を付して示した。
Although the A series has been described above, the B series also has a similar configuration and functions as a backup in case the h series fails. In the figure, each device of the B series is shown with the same number as the A series with the symbol (B) attached.

〔背景技術の問題点〕[Problems with background technology]

上記構成によると、除湿装置はA系列およびB系列の2
系列からなシ、万一どちらか一方の系列が故障しても他
方の系列で除湿運転を継続し故障した系列の補修を行な
う構成となっているが、このような構成は設備費および
設置スペースの点で不利でアシ、そこで予備機能を失う
ことなく構成の簡略化、それによる設備費の低減および
設置スペースの縮小を図ることが可能な圧縮空気系除湿
装置の実現が要求されていた。
According to the above configuration, there are two dehumidifiers, A series and B series.
The structure is such that even if one of the series breaks down, the other series continues dehumidifying operation and repairs the failed series, but such a configuration requires less equipment cost and installation space. Therefore, there has been a demand for a compressed air dehumidifier that can simplify the configuration without losing its reserve functions, thereby reducing equipment costs and installation space.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点にもとづいてなされたものでその目的
とするところは、予備機能を失うことなく構成の簡略化
を図ることができ、それによって設備費の低減および設
置スペースの縮小を図ることが可能な圧縮空気系除湿装
置を提供することにある。
The present invention has been made based on the above points, and its purpose is to simplify the configuration without losing reserve functions, thereby reducing equipment costs and installation space. An object of the present invention is to provide a compressed air dehumidification device that is capable of

〔発明の概要〕[Summary of the invention]

すなわち本発明による圧縮空気系除湿装置は、圧縮空気
中の異物を除去するプレフィルタと、このプレフィルタ
によシ異物を除去された圧縮空気を導入し除湿する3基
の除湿塔と、上記プレフィルタから3基の除湿塔・\の
流路を切替える第1の切替え弁機構と、上記除湿塔によ
シ除湿された圧縮空気中の異物を除去するアフターフィ
ルタと、所定時間除湿を行なった除湿塔内に加熱空気を
送シ込み除湿塔内の吸着剤を再生する加熱空気供給機構
と、この加熱空気供給機構から3基の除湿塔への流路を
切替える第2の弁切替え機構と、上記再生された吸着剤
を冷却して除湿塔内の圧力を上昇させる冷却昇圧横溝と
を具備した構成である。
That is, the compressed air dehumidification device according to the present invention includes a pre-filter that removes foreign matter from the compressed air, three dehumidification towers that introduce and dehumidify the compressed air from which the foreign matter has been removed by the pre-filter, and the above-mentioned pre-filter. A first switching valve mechanism that switches the flow paths from the filter to the three dehumidifying towers, an after-filter that removes foreign matter from the compressed air dehumidified by the dehumidifying tower, and a dehumidifying device that dehumidifies for a predetermined period of time. a heated air supply mechanism that sends heated air into the tower to regenerate the adsorbent in the dehumidification tower; a second valve switching mechanism that switches the flow paths from this heated air supply mechanism to the three dehumidification towers; This structure includes a cooling and pressurizing horizontal groove that cools the regenerated adsorbent and increases the pressure inside the dehumidification tower.

〔発明の実施例〕[Embodiments of the invention]

以下第2図ないし第5図を参照して本発明の一実施例を
説明する。第2図は本実施例による圧縮空気系除湿装置
の系統図である。すなわち2基のプレフィルタ1031
.103B、3基の除湿塔106に、106B、106
’C,2基の77タターラ1151.115B、2基の
加熱ヒータ119に、119Bおよび2基のプロワ12
61.120B等から構成されておシ、従来4基の除湿
塔で予備機能を果していたのに対し、これを3基の除湿
塔によシ可能とし、これによって付帯設備の削減を図ろ
うとする構成である。すなわち3基の除湿塔106 A
 、 106B。
An embodiment of the present invention will be described below with reference to FIGS. 2 to 5. FIG. 2 is a system diagram of the compressed air dehumidifier according to this embodiment. That is, two prefilters 1031
.. 103B, 3 dehumidification towers 106, 106B, 106
'C, 2 77 Tatara 1151.115B, 2 heaters 119, 119B and 2 blowers 12
61.120B etc. Conventionally, four dehumidification towers performed the backup function, but this can now be performed with three dehumidification towers, thereby reducing the amount of incidental equipment. It is the composition. That is, three dehumidification towers 106 A
, 106B.

106Cの内1基が除湿工程、1基が再生工程、そして
残シの1基が予備として待機している。
One of the 106Cs is used in the dehumidification process, one is used in the regeneration process, and the remaining one is on standby as a backup.

そして例えば除湿工程の除湿塔が故障した場合には待機
している除湿塔が除湿工程をなし、故障した除湿塔を補
修する構成である。以下詳細に述べる。
For example, if a dehumidifying tower in a dehumidifying process fails, a dehumidifying tower on standby performs the dehumidifying process and repairs the failed dehumidifying tower. The details will be explained below.

配管101を介して導入された圧縮空気は弁10RAS
76レフイルタ103に、配管104および弁105A
を介して除湿工程中の除湿塔106A内に導入され除湿
塔106A内の吸着剤によシ除湿される。その際弁10
5Bおよび105Cは閉弁している。除湿された圧縮空
気は弁10flA、配管111、弁114Aおよびアフ
ターフィルタ115Aを介して図示しない各種計装機器
に供給される。一方再生工程にある除湿塔106Bには
ゾロン120Aおよび加熱ヒータ119Aよシ弁118
 A 1配管J/7A。
Compressed air introduced via piping 101 is supplied to valve 10RAS.
76 refilter 103, piping 104 and valve 105A
The air is introduced into the dehumidifying tower 106A during the dehumidifying process and is dehumidified by the adsorbent in the dehumidifying tower 106A. At that time valve 10
5B and 105C are closed. The dehumidified compressed air is supplied to various instrumentation devices (not shown) via the valve 10flA, the piping 111, the valve 114A, and the afterfilter 115A. On the other hand, the dehumidification tower 106B in the regeneration process includes the ZOLON 120A and the heater 119A, as well as the shutoff valve 118.
A 1 Piping J/7A.

配管112および弁109Bを介して加熱空気が供給さ
れる。この加熱空気の供給によシ除湿塔106B内の吸
着材は加熱再生される。そして空気は配管121Bおよ
び弁110Bを介して排気される。加熱再生工程終了後
配管122、弁123、配管113および弁108Bを
介して圧縮空気が除湿塔106B内に供給され、上記加
熱再生された吸着剤はこの圧縮空気によシ冷却再生され
る。そして空気は配管121Bおよび弁110Bを介し
て排気される。この状態で弁110Bを閉弁して除湿塔
106B内の圧力を圧縮空気と同圧まで上昇させる。こ
れで除湿塔106Bにおける再生工程は終了する。この
とき除湿塔106Cは除湿可能な状態で待機している。
Heated air is supplied via piping 112 and valve 109B. By supplying this heated air, the adsorbent in the dehumidification tower 106B is heated and regenerated. The air is then exhausted via piping 121B and valve 110B. After the heating regeneration step is completed, compressed air is supplied into the dehumidification tower 106B through the pipe 122, valve 123, pipe 113, and valve 108B, and the heat-regenerated adsorbent is cooled and regenerated by the compressed air. The air is then exhausted via piping 121B and valve 110B. In this state, the valve 110B is closed to raise the pressure inside the dehumidification tower 106B to the same pressure as the compressed air. This completes the regeneration process in the dehumidification tower 106B. At this time, the dehumidification tower 106C is on standby in a dehumidifying state.

なお各除湿塔106に、106B。In addition, each dehumidification tower 106 has 106B.

106Cへの圧縮空気の流路切替えは、各除湿塔106
1.106B、106Cの圧縮空気入口側配管104お
よび出口側配管11ノに介挿された弁105に、105
B、105C,1071゜101B、107Cによ)行
なわれる。また加熱再生時の加熱空気の流路切替えは、
配管112に介挿された弁109に、109B、109
Cによシ行なわれ、さらに冷却、外圧再生用圧縮空気の
流路切替えは配管JJJに介挿された弁108に、l0
8B、108Cによシ行なわれる。そして各除湿塔10
6k 、 J 0(in 、106Cには、排気用の弁
110に、110B、110Cを介挿した配管121に
、121B、121Cがそれぞれ接続されている。また
図中102B*114B、118に、1111Bはそれ
ぞれ弁を示す。
The compressed air flow path to 106C is switched to each dehumidification tower 106.
1. 105 is inserted into the valve 105 inserted into the compressed air inlet side piping 104 and the outlet side piping 11 of 106B and 106C.
B, 105C, 1071° 101B, 107C). In addition, the flow path switching of heated air during heating regeneration is
109B, 109 are inserted into the valve 109 inserted into the pipe 112.
C, and further switching of the flow path of compressed air for cooling and external pressure regeneration is performed through valve 108 inserted in pipe JJJ.
8B and 108C. And each dehumidification tower 10
6k, J0(in), 106C, 121B, 121C are connected to the exhaust valve 110, pipe 121 with 110B, 110C inserted, respectively. In the figure, 102B*114B, 118, 1111B indicates a valve, respectively.

以上の構成をもとに作用を説明する。前述したように3
基の除湿塔1061.106B。
The operation will be explained based on the above configuration. As mentioned above, 3
Base dehumidification tower 1061.106B.

106Cの内1基は除湿工程、1基は吸着剤の再生工徨
:残シ01基は再生工程を終了した状態で待機している
。そして上記除湿工程にある除湿塔と再生工程にiる除
湿塔に所定時間毎交互に除湿、再生を行なわせ待機状態
にある除湿塔は通常使用しない。使用している2基の除
湿塔の内1基が故障したシあるいは点検を行なう場合に
他の1基と上記待機状態にある1基とで運転を行なう。
One of the 106C units is in the dehumidification process, one is in the adsorbent regeneration process, and the remaining 01 unit is on standby after completing the regeneration process. The dehumidifying tower in the dehumidifying step and the dehumidifying tower in the regenerating step perform dehumidification and regeneration alternately at predetermined time intervals, and the dehumidifying tower in a standby state is normally not used. When one of the two dehumidifying towers in use breaks down or is inspected, the other one and the one in standby are operated.

そこで除湿塔106Aが除湿工程、除湿塔106Bが再
生工程、除湿塔106Cが待機状態にあるとして説明す
る。この場合の動作は前述した通シであって第2図中太
線で示すラインで除湿および加熱、冷却、昇圧よシなる
再生が行なわれる。
Therefore, a description will be given assuming that the dehumidification tower 106A is in a dehumidification process, the dehumidification tower 106B is in a regeneration process, and the dehumidification tower 106C is in a standby state. In this case, the operation is the same as described above, and regeneration such as dehumidification, heating, cooling, and pressurization is performed as indicated by the thick line in FIG.

次に除湿塔1061.106Bの内どちらか一方例えば
除湿塔106kが故障した場合について説明する。この
場合には第3図に示すように待機状態にある除湿塔10
6Cで除湿を行ない除湿塔106Bで再生を行なう。す
なわち弁105C,107Cを開弁し、一方弁1051
L。
Next, a case will be described in which one of the dehumidification towers 1061 and 106B, for example, the dehumidification tower 106k, fails. In this case, as shown in FIG. 3, the dehumidification tower 10 is in a standby state.
Dehumidification is performed at 6C and regeneration is performed at dehumidification tower 106B. That is, valves 105C and 107C are opened, and one-way valve 1051 is opened.
L.

1071.1081,1091およびll0Aを閉弁し
て除湿塔106Aの点検修理を行なう、そして圧縮空気
は配管1o4、弁105を介して除湿塔106C内に導
入され、除湿塔106C内の吸着材によシ除湿される。
1071. Close valves 1081, 1091 and ll0A to perform inspection and repair of dehumidification tower 106A, and compressed air is introduced into dehumidification tower 106C via pipe 1o4 and valve 105, and is absorbed by the adsorbent in dehumidification tower 106C. It is dehumidified.

除湿された圧縮空気は弁107C,配管111、弁11
4Aおよびアフタークーラ115Aを介して各種計装機
器に供給される。また除湿塔106Bにおける再生につ
いては前述したとおシである。以後除湿塔106Bおよ
び10f;Cとの間で除湿。
The dehumidified compressed air is delivered to the valve 107C, piping 111, and valve 11.
4A and an aftercooler 115A to various instrumentation devices. Moreover, the regeneration in the dehumidification tower 106B is as described above. Thereafter, dehumidification is performed between the dehumidification towers 106B and 106F;C.

再生が交互に繰返される。Playback is repeated alternately.

以上本実施例による圧縮空気系除湿装置によると、従来
のようにプレフィルタ1基、除湿塔2基、アフターフィ
ルタ2基、ブロア1基、加熱ヒータ1基よりなる系列を
2系列設けこれによって除湿装置を構成していたのに対
して、プレフィルタ1基、除湿塔3基、アフターフィル
タ2基、ブロワ2基、加熱ヒータ2基よシなる1系列で
、除湿装置を構成しているので、少くとも除湿塔1基お
よびアフターフィルタ2基を削減することができそれに
伴ない設置スペースの縮小化およびコストの低減を図る
ことができる。これを第4図および第5図の一般置例で
説明すると、従来の場合路31.5 m2(4,5mX
7m)のスペースを必要とした。のに対し、本実施例の
場合には略16.5m2(5,5mX3m)と約半分の
スペースですむ。
As described above, according to the compressed air dehumidification device according to the present embodiment, two lines each consisting of one pre-filter, two dehumidifying towers, two after-filters, one blower, and one heater are provided as in the conventional system, thereby dehumidifying the air. In contrast, the dehumidifier consists of one system consisting of one pre-filter, three dehumidifying towers, two after-filters, two blowers, and two heaters. At least one dehumidification tower and two after filters can be eliminated, and accordingly, the installation space and cost can be reduced. To explain this using the general installation example shown in Figures 4 and 5, in the conventional case, the road was 31.5 m2
7m) of space was required. On the other hand, in the case of this embodiment, the space required is about half, approximately 16.5 m2 (5.5 m x 3 m).

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明による圧縮空気系除湿装置は
、圧縮空気中の異物を除去するプレフィルタと、このプ
レフィルタによシ異物を除去された圧縮空気を導入し除
湿する3基の除湿塔と、上記プレフィルタから3基の除
湿塔への流路を切替える第1の切替え弁機構と、上記除
湿塔によシ除湿された圧縮空気中の異物を除去するアフ
ターフィルタと、所定時間除湿を行なった除湿塔内に加
熱空気を送シ込み除湿塔内の吸着剤を再生する加熱空気
供給機構と、この加熱空気供給機構から3基の除湿塔へ
の流路を切替える第2の弁切替え機構と、上記再生され
た吸着剤を冷却して除湿塔内の圧力を上昇させる冷却昇
圧機構とを具備した構成である。
As detailed above, the compressed air dehumidifier according to the present invention includes a pre-filter that removes foreign matter from the compressed air, and three dehumidifiers that introduce and dehumidify the compressed air from which foreign matter has been removed by the pre-filter. a first switching valve mechanism that switches the flow path from the pre-filter to the three dehumidifying towers, an after-filter that removes foreign matter from the compressed air dehumidified by the dehumidifying tower, and a predetermined period of dehumidification. A heated air supply mechanism that sends heated air into the dehumidification tower to regenerate the adsorbent in the dehumidification tower, and a second valve switch that switches the flow path from this heated air supply mechanism to the three dehumidification towers. This structure includes a cooling mechanism and a cooling pressure increasing mechanism that cools the regenerated adsorbent and increases the pressure inside the dehumidification tower.

したがって予備機能を失うことなく構成の簡略化、設置
スペースの縮小化を図ることができ設備費の低減等コス
トの低減を効果的に図ることができる。
Therefore, the configuration can be simplified and the installation space can be reduced without losing reserve functions, and costs such as equipment costs can be reduced effectively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す圧縮空気系除湿装置の系統図、第
2図ないし第5図は本発明の一実施例を示す図で、第2
図および第3図は一運転例を示す圧縮空気系除湿装置の
系統図、第4図および第5図は効果を説明するだめの装
置の配置図である。 703A 、103B・・・プレフィルタ、l 06 
A rl 06B 、J 06C・・・除湿塔、105
A 、105B。 105C,107に、107B、107C・・・弁(第
1の切替え弁機構)、115に、115B・・・アフタ
ーフィルタ、119に、119B・・・加熱ヒータ、1
20に、120B・・・ゾロア、109A。 J 09B 、J 09C・・・弁(第2の切替え弁機
構)、122・・・配管、1081.108B、108
C。 123・・・弁。 出願人代理人 弁理士 鈴 江 武 彦第4図 第5図 5.5m
FIG. 1 is a system diagram of a compressed air dehumidifier showing a conventional example, and FIGS. 2 to 5 are diagrams showing an embodiment of the present invention.
3 and 3 are system diagrams of a compressed air dehumidifying device showing an example of operation, and FIGS. 4 and 5 are layout diagrams of the device to explain the effects. 703A, 103B...Pre-filter, l 06
A rl 06B, J 06C...Dehumidification tower, 105
A, 105B. 105C, 107, 107B, 107C... valve (first switching valve mechanism), 115, 115B... after filter, 119, 119B... heater, 1
20, 120B... Zorua, 109A. J 09B, J 09C... Valve (second switching valve mechanism), 122... Piping, 1081.108B, 108
C. 123... Valve. Applicant's representative Patent attorney Takehiko Suzue Figure 4 Figure 5 5.5m

Claims (1)

【特許請求の範囲】[Claims] 圧縮空気中の異物を除去するプレフィルタと、このプレ
フィルタによシ異物を除去された圧縮空気を導入し除湿
する3基の除湿塔と、上記プレフィルタから3基の除湿
塔への流路を切替える第1の切替え弁機構と、上記除湿
塔によシ除湿された圧縮空気中の異物を除去するアフタ
ーフィルタと、所定時間除湿を行なった除湿塔内に加熱
空気を送り込み除湿塔内の吸着剤を再生する加熱空気供
給機構と、この加熱空気供給機構から3基の除湿塔への
流路を切替える第2の弁切替え機構と、上記再生された
吸着剤を冷却して除湿塔内の圧力を上昇させる冷却昇圧
機構とを具備したことを特徴とする圧縮空気系除湿装置
A pre-filter that removes foreign matter from compressed air, three dehumidification towers that introduce and dehumidify the compressed air from which foreign matter has been removed by the pre-filter, and flow paths from the pre-filter to the three dehumidification towers. an after-filter that removes foreign matter from the compressed air dehumidified by the dehumidification tower; and an after-filter that removes foreign substances from the compressed air dehumidified by the dehumidification tower, and an adsorption system that sends heated air into the dehumidification tower that has been dehumidified for a predetermined period of time. a heated air supply mechanism that regenerates the adsorbent; a second valve switching mechanism that switches the flow paths from the heated air supply mechanism to the three dehumidifying towers; and a second valve switching mechanism that cools the regenerated adsorbent and reduces the pressure inside the dehumidifying tower. A compressed air dehumidifier characterized by comprising a cooling pressure boosting mechanism that increases the temperature of the compressed air.
JP59032070A 1984-02-22 1984-02-22 Dehumidification apparatus of compressed air system Pending JPS60175520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59032070A JPS60175520A (en) 1984-02-22 1984-02-22 Dehumidification apparatus of compressed air system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59032070A JPS60175520A (en) 1984-02-22 1984-02-22 Dehumidification apparatus of compressed air system

Publications (1)

Publication Number Publication Date
JPS60175520A true JPS60175520A (en) 1985-09-09

Family

ID=12348614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59032070A Pending JPS60175520A (en) 1984-02-22 1984-02-22 Dehumidification apparatus of compressed air system

Country Status (1)

Country Link
JP (1) JPS60175520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221130B1 (en) * 1999-08-09 2001-04-24 Cooper Turbocompressor, Inc. Method of compressing and drying a gas and apparatus for use therein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221130B1 (en) * 1999-08-09 2001-04-24 Cooper Turbocompressor, Inc. Method of compressing and drying a gas and apparatus for use therein

Similar Documents

Publication Publication Date Title
KR102058156B1 (en) Smart dryer system of flow dependant switching type and drying method usint the same
KR101906529B1 (en) Non-purge and adsorption type air dryer using a blower
US7449054B2 (en) Air purification system with regenerative purification units
JPH09103630A (en) Method and apparatus for pressure swing adsorption
JP4334688B2 (en) Clean air manufacturing method and supply system
US4054428A (en) Method and apparatus for removing carbon monoxide from compressed air
JPS60175520A (en) Dehumidification apparatus of compressed air system
JPH08141353A (en) Dehumidifier
JPH05200233A (en) Dry dehumidifier
JP4110782B2 (en) Ozone generator
JP3547503B2 (en) Medical compressed air supply device
US3421333A (en) Thawing technique for a single air separation plant
EP1163947A1 (en) Desiccant drying apparatus and method for controlling the airflow in the apparatus
JPS6087830A (en) Regenerating process of drying agent for dehumidifyer of compressed gas
JP3292555B2 (en) Ozone generator
KR100753190B1 (en) Regenerating process converting valve for absorption type air drying system
JP2000334253A (en) Compressed air supply device for station service
JPH01130717A (en) Method for dehumidifying compressed air
JPH01161199A (en) Compressed air supplying device for instrumentation
JP4351174B2 (en) Method for continuous supply in dehumidification of compressed gas and dehumidifier for compressed gas
KR100304523B1 (en) Compressed Air Drying System
KR20240161301A (en) Air dryer system
JPS6349224A (en) Reversible heating and regeneration type dehumidifier by pressurized gas
JPS59127625A (en) Regeneration of desiccant in gas dehumidifying apparatus
JPH06147546A (en) Ozone generator